Ни один математик до Лапласа не стремился приручить азарт. Ученый собрал материалы, обобщил идеи предшественников и предложил точное определение концепции вероятностей. Он соединил расчет вероятностей с анализом и разработал современную теорию вероятностей. Накопленные статистические данные позволили ему применить новую теорию в совершенно новых сферах — демографической, социальной, правовой и, конечно, астрономической.
В течение всего XVII века математики интересовались расчетами применительно к азартным играм, но только в конце XVIII века, с развитием теории вероятностей, а также теоретической и математической статистики, эта работа начала приносить свои плоды. Математическая дисциплина, которая вначале занималась анализом карт, игральных костей и избирательных бюллетеней, со временем стала одной из главных областей человеческого знания.
Уже в середине XVI века математик эпохи Возрождения Джероламо Кардано (1501-1576) написал «Книгу азартных игр». Кардано был очень азартным человеком и астрологом (он даже предсказал собственную смерть), использовал термин «вероятность», происходящий от латинского слова probare («доказать», или «утверждать»), для количественной оценки степени достоверности события и возможности выиграть. Расчет вероятностей родился как таковой в 1654 году, когда началась переписка Блеза Паскаля (1623-1162) и Пьера Ферма (1601-1665). Игрок Антуан Гомбо (1607-1684), известный как шевалье де Мере, призвал французских математиков решить задачу: если два человека, сыграв три партии, вынужденно прервали игру (вероятно, по причине прихода полиции, поскольку азартные игры были запрещены), как они должны разделить выигрыш, если один выиграл два раза, а второй — один? Как видите, расчет вероятностей тесно связан с наукой азарта.
Первооткрыватели расчета в азартных играх используют впоследствии свои рассуждения и в других областях знаний. В 1657 году Христиан Гюйгенс (1629-1695) опубликовал произведение «О расчетах в азартных играх», в котором применяются алгебраические методы для расчета ставок и введено понятие ожидания, или вероятного выигрыша. Кроме этого, в сотрудничестве со своим братом Гюйгенс предложил концепцию «ожидаемой продолжительности жизни». Исходя из таблиц смертности Лондона, опубликованных Джоном Грантом, отцом политической арифметики, братья Хагене и Эдмунд Галлеи рассчитали вероятности выживания, рассматривая жизнь и смерть как орел и решку. Ученые предположили, что 36 % жителей Лондона живут в среднем три года. Это означало, что родители каждого новорожденного тянут жребий, который в 36 случаях из 100 гласит: «ваш ребенок проживет только три года». Это мрачноватое интеллектуальное упражнение очень хорошо проводило аналогию между азартными играми и статистическими данными.
Труд Якоба Бернулли Ars conjectandi {«Искусство догадок») ознаменовал второй этап в истории теории вероятностей. В этом неоконченном трактате, опубликованном в 1713 году, уже после смерти автора, математик обратился к комбинаторным рассуждениям для вычисления вероятности какого-либо события. Он впервые представил проблему обращенной вероятности и пояснил, что теоретические количества случаев часто неизвестны, при этом то, что не дано вывести априорно (посредством исключительно логических рассуждений), можно получить апостериорно, то есть на основании многократного наблюдения. Якоб Бернулли стал автором одноименной формулы: относительная частота события стремится к заданному числу (вероятность события) при увеличении количества повторов.
Формула Якоба Бернулли позволяла эмпирическим путем рассчитать неизвестные вероятности и определить объективную вероятность события. И действительно, если частота события с увеличением количества наблюдений стремится к вероятностным значениям, почему не определить вероятность, исходя из частоты? Благодаря индукции можно определить вероятность как предел частоты, а не просто вычислить ее логическим или субъективным способом (как степень ожидания).
Французский математик Абрахам де Муавр (1667- 1754) — ревностный кальвинист, который был вынужден эмигрировать в Великобританию, чтобы избежать религиозных преследований, — в 1718 году опубликовал свой трактат «Доктрина азарта». В нем де Муавр подчеркивал, что статистическая закономерность, подтверждаемая формулой Бернулли, невозможна без помощи Бога. Вероятно, из его работ, как мы увидим это позже, Лаплас унаследовал отношение к божественному провидению, которому он нашел место даже в основах теории вероятностей.
Возьмем событие А, вероятность наступления которого равна р. Мы повторяем эксперимент п раз, чтобы определить частоту наступления А. Если событие А имеет место т раз, то, вычислив т/п, мы определим частоту его наступления, то есть количество раз, когда событие произошло по отношению к общему количеству попыток. В абсолютном выражении разница между вероятностью р и относительной частотой т/п определяет ошибку, которую мы могли бы совершить, если бы использовали относительную частоту в качестве приближенного значения вероятности. Бернулли доказал, что если мы повторим опыт достаточное количество раз, эта разница будет меняться: она стремится к нулю, когда п стремится к бесконечности. В математических терминах это выражается так, как показано ниже: если е — это положительное значение, сколь угодно малое, тогда:
Эта формула иллюстрирует закон случая, или закон стабильности частоты: используя терминологию той эпохи, существует уверенность в том, что в долгосрочной перспективе относительная частота события не будет слишком сильно отклоняться от его вероятности. Это самая простая формулировка закона больших чисел, предложенного в XIX веке последователем Лапласа Симеоном Луи Пуассоном.
Якоб Бернулли (1654-1705) по желанию своего отца изучал теологию, но очень скоро он оставил этот путь, чтобы стать преподавателем математики в Базельском университете. Эту должность ученый будет занимать до самой смерти. Его младший брат Иоганн (1667-1748), также очарованный математикой, пошел по стопам Якоба и сменил его на академическом посту. Отношения между братьями были напряженными в течение всей жизни. Оба педанты, они часто спорили о первенстве в решении математических задач. Жесткая полемика возникла по поводу того, кто первым нашел решение задачи о брахистохроне (кривой скорейшего спуска), которая была настоящим вызовом для европейских математиков: Якоб, Иоганн, Лейбниц или Ньютон (последний нашел ответ после изнурительного рабочего дня в монетном дворе Лондона и опубликовал его анонимно, однако инкогнито сохранить не удалось, поскольку «льва узнают по когтям», как сказал один братьев). Иоганн имел довольно тяжелый характер и даже выгнал из дома собственного сына Даниила (1700-1782).
Якоб Бернулли.
Якоб Бернулли посвятил последнюю часть своего важного трактата применению теории вероятностей в социальных, моральных и экономических делах:
«Искусство предполагать предстает перед нами как искусство рассчитать так точно, как это возможно, вероятности происходящих вещей. Цель наших суждений и наших действий — в том, чтобы мы всегда смогли следовать жребию, который выбрали в качестве лучшего. (...) Именно в этом состоит мудрость философа и проницательность политика».
Расчет вероятностей был полезен в азартных играх, и доказательство этого стало одним из вкладов Лапласа. Также математик приложил все усилия к тому, чтобы дать правильное определение вероятностям и объединить их расчет с анализом.
До Лапласа теорию вероятностей называли теорией шансов (или случаев) и расчета вероятностей. Однако благодаря ему шансы получили «дворянские грамоты» и стали математической наукой. Исследование Лапласа «О вероятности причин по событиям», опубликованное в 1773 году, является одним из краеугольных камней этой новой дисциплины. В своем труде Лаплас, сам того не ведая, повторил концепцию байесовского подхода — интерпретации понятия вероятностей, развитой преподобным отцом Томасом Байесом (1702-1761), который определял вероятность как степень уверенности в истинности суждения. Научное исследование Байеса было издано уже после смерти его автора, в 1763 году, но до Франции не дошло.
Для Лапласа речь шла скорее не о расчете вероятностей событий, а о расчете вероятностей причин. Можно выделить два типа событий. В первом случае вероятность появляется в результатах: например, если мы знаем содержимое урны с белыми и черными шарами, то можем предположить, с какой вероятностью достанем белый или черный шар. Во втором случае вероятность появляется в причинах. Мы знаем результат жеребьевки (1 черный шар) и стремимся определить содержимое урны, которое нам неизвестно. Исходя из результата (1 черный шар вынут) мы в состоянии определить вероятность причин, то есть все возможные сочетания шаров в урне. Так мы переходим от следствий к причинам (см. рисунок ниже).
В первом случае (слева) мы не знаем, какой шар сейчас вытащим, но исходим из наших знаний о содержимом урны. Во втором случае(справа) мы стремимся узнать содержимое урны, исходя из цвета вытащенного шара.
Одним из первых достижений Лапласа стали формулировка и доказательство теоремы Байеса, которая, вне всяких сомнений, была ему неизвестна. Свое название эта теорема получила через много лет по инициативе Огастеса де Моргана, который утверждал, что теорема была открыта его соотечественником. Что за идея лежит в основе формулы Байеса, заново открытой Лапласом? Представим себе, что у нас две урны с разным содержимым: первая содержит 2 белых и 3 черных шара, а вторая — 3 белых и 2 черных. Мы вытаскиваем один шар наугад, не зная, какая урна перед нами сейчас. Шар оказывается черным. Каково вероятное содержимое урны? С учетом цвета вытащенного шара можно предположить, что перед нами скорее первая урна, чем вторая (во второй меньше черных шаров). Теорема Байеса позволяет выразить эту интуитивную оценку в числовом значении.
Из события «вытащен черный шар» следуют два возможных содержимых урны. Мы можем предположить, что оба варианта равновероятны (50% вероятности у каждого), однако применение теоремы Байеса увеличивает до 60 % вероятность того, что это первая урна, и снижает до 40 % вероятность того, что это вторая. Априори вероятности были равны (50 и 50%), а на основании наблюдений, апостериори, составили 60 и 40%. И это действительно так: поскольку первая урна содержит больше черных шаров, чем вторая, более вероятно, что шар был вытащен из первой урны.
Лапласу, как и Байесу, эта теорема позволила извлечь из опыта уроки и даже узаконить индукцию. Так, Лаплас вслед за графом де Бюффоном подсчитал вероятность того, что Солнце взойдет завтра, на основании количества дней подряд, когда оно уже восходило. Применяя теорему Байеса, Лаплас пришел к знаменитому «правилу последовательности».
«Для события, происходящего подряд п раз, вероятность того, что оно произойдет еще раз, равна (п + 1) / (п + 2).
Правило последовательности Лапласа
Эта теорема позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Вероятность события равна дроби, числитель которой является произведением вероятности события и вероятности связанного с ним события (причины), а знаменатель — суммой произведений вероятности события, учитывая каждую из причин, умноженную на вероятность каждой из причин. Эта формулировка, больше похожая на упражнение в дикции, имеет очень точное символическое выражение, которое можно найти в любом школьном учебнике:
где Р(Аi I B) — это апостериорная вероятность (то есть вероятность причины известного события), Р(В I Аi) — вероятность события, причину которого предполагают, и Р(Аi) — априорная вероятность (она предшествует любой информации о событии). Благодаря формуле Байеса априорные вероятности могут быть вычислены апостериори; иначе говоря, мы можем принимать решения, основываясь на опыте.
Если предположить, что Солнце встает каждое утро в течение 5 тысяч лет, то есть 1826213 дней (Лаплас именно таким полагал возраст Земли), то вероятность того, что оно встанет на следующий день, равна 1826214/1826215 (*99,9999%). Однако — на основании этого правила — чем дольше живет человек, тем больше вероятность того, что он продолжит жить. В 80 лет он будет иметь больше шансов прожить следующий день, чем в 20, а это абсурд. Байес, Лаплас и другие сторонники байесовской теории столкнулись со сложностью определения априорных вероятностей. В приведенном выше примере кажется справедливым предположить, что содержимое двух урн, в принципе, равновероятно, то есть составляет 50%. Но в некоторых ситуациях не всегда можно присвоить событиям одинаковую вероятность или рассчитать ее, исходя из имеющейся информации о каждом событии (субъективная вероятность). Можно ли определить вероятность объективно, например благодаря индукции определить ее как приблизительное значение частоты, опираясь на теорию Бернулли? Этот горячий научный спор, который вдохновил Лапласа, не завершен до сих пор: математики и философы и сегодня спорят о правильности различных подходов.
В 1780 году Лаплас представил «Мемуар о вероятностях», в котором усовершенствовал свой анализ этого вопроса. Ученый начал с того, что подчеркнул возможность определения вероятности тремя различными способами: априори, то есть посредством логических заключений; апостериори, то есть исходя из опыта; и третьим способом, очень близким к первому, который посредством умозаключений позволяет нам судить о степени вероятности будущего события. Первым способом мы можем установить равную вероятность при соперничестве между двумя игроками (каждый имеет 50 % шансов на победу). Благодаря второму способу мы можем определить вероятность выигрыша для каждого игрока исходя из результата предыдущих партий (если первый игрок выиграл семь партий из десяти, вероятность его выигрыша равна 70%). Наконец, при помощи третьего способа, если мы знаем, что первый игрок играет лучше второго, то можем предположить, что у него 80 % шансов на победу. В первом случае, говоря словами Лапласа, мы определили «абсолютную» вероятность (сегодня мы говорим «логическую вероятность»); во втором — «приблизительную» вероятность (объективную), а в третьем — «относительную» вероятность наших знаний и надежды. Также Лаплас определил различие между шансом и вероятностью. В его детерминистской философской концепции шанс по своей природе не имеет отношений к реальности. Учитывая, что все события имеют свои причины, шанс — это лишь выражение нашего незнания о причинах события. Вероятность — более подходящий способ описания нашего незнания причин, определяющих события.
В основе теории вероятностей — только здравый смысл, сведенный до исчисления; эта теория позволяет нам оценить с точностью то, что острые умы чувствуют своим инстинктом, находящимся вне времени и неспособным считать.
Пьер-Симон де Лаплас
Лаплас не ограничился анализом вероятностей, а также взял на себя труд доказать их пользу для статистики и демографии. В своей работе он анализировал вероятности того, какого пола родится ребенок. Лаплас опирался на данные приходских книг для определения априорных вероятностей, необходимых, чтобы применить теорему Байеса. Ученый сделал вывод, что вероятность рождения мальчика немного выше вероятности рождения девочки. По его мнению, можно предугадать, что рождаемость мальчиков в Париже немного превзойдет рождаемость девочек в течение следующих 179 лет. И все это благодаря статистике!
Несмотря на поддержку Кондорсе, применение теории вероятностей в других областях встречало сопротивление: так, сам наставник Лапласа, д’Аламбер, неоднократно выражал сомнения относительно пользы расчета вероятностей. Однако несмотря ни на что Лаплас пошел дальше своих предшественников и не прекратил настаивать на необходимости такого типа выводов для наблюдений и экспериментальных наук, которые идут от следствий к причинам. В этих науках часто известны результаты, а не причины. Байесовское приближение, применяемое к статистическому выводу, стало на рубеже XIX и XX веков одним из инструментов, представленных статистиками Карлом Пирсом (1857-1936), Рональдом Эйльмером Фишером (1890-1962), Эгоном Пирсом (1895-1980, сын Карла) и Ежи Нейманом (1894-1981). Эти четверо математиков, увлеченные генетикой, евгеникой и биологией, критиковали Байеса и разработали современные статистические методы. И все же именно благодаря Лапласу статистика перестала быть описательной наукой и превратилась в дисциплину индуктивную и моделирующую будущее. Так в ряду математических дисциплин зажглась новая звезда.
Д’Аламбер написал для Энциклопедии статью о вероятностях, хотя, в отличие от Кондорсе и Лапласа, он был критически настроен к этому понятию. В статье д’Аламбер допустил ошибку, рассчитав вероятность выпадения орла и решки путем подбрасывания двух монет. Он утверждал, что вероятность равна 1/3, то есть существует только один благоприятный результат (одна монетка ложится орлом, а вторая — решкой) из трех возможных (два орла, две решки, орел и решка). Он не учитывал возможность получения орла и решки двумя разными способами: орел и решка и решка и орел. Таким образом, реальная вероятность — 2/4, или два благоприятных исхода из четырех возможных. Лаплас не упустил возможности указать своему наставнику на ошибку!
Теория вероятностей, предложенная Лапласом, опирается на знаменитое правило Лапласа, определяющее вероятность какого-либо события. Оно сформулировано в научном исследовании, датируемом 1774 годом. Бернулли и Муавр в своих работах ранее предложили более или менее похожие определения.
Вероятность (какого-либо события) — это количество благоприятных исходов, разделенное на количество возможных исходов.
Правило Лапласа
Так, вероятность события выражается цифрой от 0 до 1.
Когда вероятность равна 1, это означает, что событие произойдет обязательно. Когда вероятность равна 0, мы говорим о невозможном событии. Приведем пример: если одна урна содержит 7 шаров, из которых 5 белых и 2 черных, вероятность вытащить черный шар, по знаменитому правилу, равна 2/7 (~ 29%); у нас есть 2 черных шара (2 благоприятных исхода) на 7 шаров, лежащих в урне.
Правило Лапласа предполагает, что все исходы, благоприятные или возможные, имеют одинаковую вероятность.
В ситуациях, когда один исход имеет большую или меньшую вероятность, чем другие, возможно определить вероятность события, применяя правило сумм, также сформулированное Лапласом: если событие может произойти двумя различными способами (или больше, чем двумя), несовместимыми один с другим, то вероятность — это сумма вероятностей всех благоприятных исходов. Например, вероятность вытащить туз или короля в колоде из 32 карт — это сумма вероятности вытащить туз (которая равна 4/32, так как в колоде 4 туза) и вероятности вытащить короля (также 4/32): 4/32 + 4/32 = 8/32 (=25 %).
Однако событие, вероятность которого мы хотим рассчитать, иногда может быть составным. В этом случае необходимо применить не правило Лапласа, а правило произведения, которое мы также находим у Лапласа: если для появления события А нужно, чтобы в одно и то же время произошли два других события, В и С, то вероятность события А равна произведению вероятности события В, умноженной на вероятность события С, при условии, что событие В уже произошло. Это формулу мы знаем сегодня как формулу условных вероятностей. Например, вероятность, что выпадет 6, если мы бросаем одну кость, равна 1 /6. Какова вероятность получить сразу две 6? На основании правила умножения необходимо умножить вероятность выпадения первой 6(1 /6) на вероятность выпадения второй 6 (также 1/6, поскольку эти два события не зависят друг от друга): 1/6 х 1/6 = (1/6)² = 1/36 (-2,8%).
Шевалье де Мере описывает следующую ситуацию: игроки А и В играют друг против друга, и каждый ставит 32 золотые монеты, то есть всего 64 монеты, которые заберет первый игрок, выигравший три партии. Однако они вынуждены прервать игру. Как следует разделить выигрыш, если один из них победил в двух партиях, а второй — только в одной? Ошибочное решение для этой задачи нашел Лука Пачоли в XV веке. Он предложил игрокам разделить деньги исходя из количества побед: так как они сыграли три партии и игрок А выиграл две из них, а игрок В — только одну, А должен забрать 2/3 денег, а В — 1/3. Однако Кардано доказал, что это неверное решение, потому что оно не учитывает количество партий, которое каждый игрок должен был выиграть, чтобы забрать весь банк.
Решение нашли Паскаль и Ферма — каждый своим способом. «Я вижу, — писал первый второму, — что истина одна и та же в Тулузе и Париже».
Предположим, что А и В в одинаковой степени ловки в игре (в каждой партии вероятность, что один выиграет у другого, равна 1/2); вероятность, что А выиграет третью партию у В, — 3/4, так как есть два возможных исхода: либо он выиграет с первой попытки (с вероятностью 1/2, финальный счет тогда 3:1), либо со второй (вероятность 1/2 х 1/2 = 1/4, финальный счет 3:2). Сумма вероятностей этих двух исходов — 3/4. Напротив, вероятность того, что В выиграет, — лишь 1/4, поскольку ему для этого необходимо выиграть два раза подряд (1/2 х 1/2 = 1/4). Таким образом, следует разделить монеты следующим образом: 3/4 для А (48 монет) и 1/4 — для В (16 монет). Впоследствии Лаплас обобщает эту задачу исходя из гипотезы, что два игрока играют по-разному.
Схема различных возможностей завершить игру.
Первая публикация этого позднего труда — Лапласу было уже 62 года — состоялась в 1782 году. Работа была посвящена Наполеону. Автор подчеркивал, что расчет вероятностей применялся «к самым важным жизненным вопросам, которые по большей части являются лишь задачами вероятности». Наполеон в ответ назвал теорию вероятностей «первой из наук». Лаплас в течение десятилетий полностью посвятил себя небесной механике, но потом он вновь взялся за свои прежние труды о вероятностях и отправил в издательство научный трактат на эту тему.
РИС.1
РИС. 2
Как гласило название, Лаплас стремился предложить аналитическую теорию вероятностей, то есть установить связь между анализом и расчетом вероятностей — двумя дисциплинами, тогда еще полностью разделенными.
Важен тот факт, что в своей книге Лаплас исследовал центральную предельную теорему, имеющую решающее значение для статистики и теории вероятностей. В своем труде от 1773 года он изучал увлекательный вопрос, связанный с определением реального положения звезды на основании серии наблюдений. Здесь недостаточно применить арифметический метод, ведь необходимо доказать, что выбранное значение минимизирует погрешность, то есть разницу между реальным и наблюдаемым явлениями. Лаплас интерпретировал эту проблему, рассматривая фактическое положение звезды в качестве причины наблюдаемых положений, и предположил, что погрешности зависят от случая. Искусно используя теорему Байеса, ученый пришел к выводу, что возможно начертить кривую, которая представляла бы распределение погрешностей вокруг истинного значения. Кривая является симметричной и нисходящей, исходит из центрального значения; чем больше мы удаляемся от этой точки, тем больше вероятность, что мы допускаем погрешность измерения. Чем ближе мы к вершине кривой, тем больше вероятность того, что мы ближе к фактическому значению. Решая дифференциальное уравнение, Лаплас сделал вывод, что кривая распределения погрешностей (рисунок 1, страница 136) выражается экспоненциальной функцией:
φ(x) = (e-|x|)/2.
Лаплас не первый определил нормальное распределение, равно как и экспоненциальную функцию (хотя и выраженную с помощью другой формулы). Она была введена Муавром в начале XVIII века. Обычная кривая распределения погрешностей связана с методом наименьших квадратов (рисунок 2, страница 136), цель которого — представление полученных данных в виде кривой, а также минимизация погрешностей метода. Лежандр представил этот метод в 1805 году в труде «Новые методы для определения орбит комет». Кроме этого молодой математик по имени Карл Фридрих Гаусс утверждал, будто он первым использовал этот метод в 1801 году, что спровоцировало ожесточенный спор между двумя математиками, каждый из которых отстаивал свое право на авторство открытия.
Гаусс первым рассчитал орбиту планеты Церера, открытой в начале XIX века, 1 января 1801 года. Немецкий ученый проанализировал серию наблюдений Цереры, предположил, как проходит ее орбита, и предсказал, где эта малая планета появится снова. Ученый использовал собственный метод — метод наименьших квадратов, который тщательно описал в своем дневнике. Он позволяет построить траекторию на основании совокупности точек и минимизировать при этом сумму квадратов погрешностей, то есть различие между наблюдаемыми и реальными значениями.
В 1809 году Гаусс триумфально вошел в мир астрономии со своим трудом «Теория движения небесных тел». В нем он устанавливал связь между методом наименьших квадратов и теорией погрешностей, доказывая, что распределение погрешностей может быть проанализировано с помощью этого метода. В действительности однажды, определяя кривую, которая позволяла минимизировать среднюю квадратичную погрешность, Гаусс заметил, что погрешности приближенного значения распределяются случайным образом вокруг среднего значения. Это симметричное распределение в виде купола было не чем иным, как кривой Гаусса (рисунок 3, ниже). Она может быть выражена в виде функции:
φ(x) = 1/(√2π) · e-x/2.
Как мы можем заметить, график функции, использованной Лапласом, достаточно близок к кривой Гаусса. Это нормальное распределение, описанное кривой в форме купола, было рассмотрено в качестве универсального распределения погрешностей, что-то вроде естественного закона. Однако выражением «нормальный закон» мы обязаны Адольфу Кетле (1796-1874), который ввел концепцию «среднего человека», и Фрэнсису Гальтону (1822-1911), кузену Чарльза Дарвина. Оба ученых неоднократно применяли этот закон к своим социальным исследованиям и сделали вывод, что большинство природных характеристик распределяется «нормальным образом» и большинство людей имеют средний рост.
Труды Гаусса вдохновили Лапласа к написанию «Аналитической теории вероятностей». Он изложил некоторые открытия немецкого математика в области вероятностей, среди прочего метод наименьших квадратов- и нормальное распределение, что позволило ему разработать центральную предельную теорему: если данное значение является результатом суммы большого количества переменных, описанных с определенной погрешностью, оно тяготеет к нормальному распределению независимо от распределения каждого отдельного слагаемого. Иными словами, эта теорема подтверждает, что при некоторых достаточно общих условиях можно моделировать исследуемую характеристику, как если она распределена нормальным образом. Мы не можем предсказать индивидуальное поведение одной переменной или одного индивидуума, но можем предвидеть среднее поведение населения. Этот результат статистической регулярности, проявление закона больших чисел, был для Лапласа еще одним математическим доказательством стабильности Вселенной.
РИС.З
Наконец, «Аналитическая теория вероятностей» представляет длинный список способов ее применения в астрономии и геодезии (с использованием теории погрешностей), в статистике и демографии (ожидаемая продолжительность жизни) и даже в юриспруденции (электоральная математика). В труде упоминается достаточно любопытный результат: согласно расчетам Лапласа искоренение ветряной оспы во Франции позволило бы увеличить вероятную продолжительность жизни на три года.
Объединение расчета вероятностей Лапласа, статистики и анализа позволило разработать современную теорию вероятностей, которая сыграла особую роль в последующие столетия. Однако сама по себе «Аналитическая теория вероятностей» осталась неоцененной, и большое количество открытий Лапласа были заново доказаны в середине XIX века. Теория вероятностей, рассматриваемая под углом анализа, согласно концепции Лапласа, просуществовала до 1933 года, когда советский математик Андрей Колмогоров (1903-1987) подтвердил метод, включив его в теорию измерения. Он предложил ряд аксиом, которые повторяли фундаментальные предчувствия, сформулированные в классическом определении теории вероятностей, в частности правило Лапласа, применяемое к равновероятным случаям, формулу Бернулли для повторяющихся явлений. Субъективная интерпретация вероятностей (степень уверенности в суждении или проверяемости событий, различных для каждого индивидуума) была сформулирована в 1937 году итальянским статистиком Бруно де Финетти (1906-1985) и распространена Леонардом Джимми Сэвиджем (1917-1971) в 1954 году. Последний вновь обнародовал теорию Байеса, в которую Лаплас сделал большой вклад.
Блез Паскаль (1623-1662) применял метод вероятностей для принятия решений в области теологии. Рассуждал он следующим образом: Бог либо существует, либо нет. Если Его не существует, то верить или не верить — не имеет значения. Но если Бог существует, то вера в Него ведет к спасению и вечной жизни. Так как спасение предпочтительнее, чем проклятие (ожидаемый выигрыш очень важен), разумный человек будет действовать так, как если бы Бог существовал. Даже если вероятность существования Бога крайне мала, она будет компенсирована огромным выигрышем, который представляет собой вечная жизнь. Используя термины вероятностей: если не верить в Бога, надежда выиграть нулевая, а если в Него верить, то положительная (слабая вероятность существования Бога компенсируется бесконечным выигрышем).
В своем «Опыте философии теории вероятностей» Лаплас выражал сомнения относительно пари Паскаля, подчеркивая, что его довод обманчив. По мнению Лапласа, надежда, следующая из веры, является не позитивной, а нулевой, потому что вероятность существования Бога крайне мала, и когда ее умножают на бесконечный выигрыш веры, получают не положительную величину, а рассеивающуюся (0 х ∞ = 0). Эти заявления вызвали обсуждения в математической среде, в частности уважаемые математики и католики Огюстен Луи Коши и Паоло Руффини выступили против применения вероятностей в современных науках.
В этой работе, которая пользовалась большим успехом, Лаплас освещал те же темы, что и на втором уроке в Нормальной школе в 1795 году. Изначально текст был опубликован в качестве введения ко второму изданию «Аналитической теории вероятностей», но очень скоро, в 1814 году, он вышел отдельно. В работе были представлены основные принципы и самые важные результаты теории вероятностей. Как и в «Изложении системы мира», Лаплас стремился популяризовать теорию, поскольку, по его мнению, все сферы жизни и все проблемы касались понятия вероятности. Привлекательность «Опыта...» в том и состоит, что эта работа предлагает примеры применения вероятностей в политике и морали. И правда, если этот метод оказался так эффективен в естественных науках, почему бы его не использовать в гуманитарных? Сам того не ведая, Лаплас дал сильный импульс развитию социальных наук.
Труд начинается с исследования вероятности свидетельских показаний. Представим, что какой-либо факт был передан нам по цепочке из 20 свидетелей; первый рассказал его второму, тот — третьему и так далее. Если вероятность, что каждый свидетель передаст информацию без изменений, равна 9/10 (то есть 90%, это достаточно много), то вероятность, что факт будет сообщен нам без изменений, напротив, лишь (9/10)20 25 0,12 (и это довольно мало). Таким образом, только 12% — вероятность того, что информация дойдет до наших ушей без искажений.
Затем Лаплас занялся вопросами выборов, решений ассамблей и судебных приговоров. Он сравнил процессы принятия решений с извлечением шара из урны, предположив, что белые шары представляют справедливые решения, а черные — несправедливые. Используя сложные расчеты, ученый определил вероятность ошибки в вердикте суда исходя из количества судей, его составляющих, и количества голосов, необходимых для вынесения приговора.
Теория вероятностей послужила Лапласу даже в анализе возможного существования Бога...
Картина Луи Леопольда Буальи(1761- 1845) 1804 года, которая представляет Жана-Антуана Гудона в своей мастерской в ходе работы над бюстом Лапласа.
Портрет Томаса Байеса, его единственное известное нам изображение.
Портрет Лапласа в одежде канцлера Сената кисти Паулина Герена (1783- 1855).
Лаплас не переставал отстаивать свой детерминизм, и это часто подчеркивали научные историки и философы. Выражение «демон (или гений) Лапласа» указывает на существование высшего разума, которое математик предположил в известном отрывке с первых страниц «Аналитической теории вероятностей» и в «Опыте философии теории вероятностей». Эта концепция была не нова. Лаплас присоединился к ней 40 лет назад и нашел в ней философскую опору для научной деятельности. В действительности все «философы-геометры» рассматривали существование высшего существа или высшего разума, даже если называли себя атеистами (за исключением искренне верующего Эйлера). Кондорсе предложил гипотетическую ситуацию, которую Лаплас через много лет припомнил и популяризировал, введя гипотезу абсолютного и всесильного разума, расположившегося на вершине математического анализа. Впервые эта концепция у Лапласа появилась в статье 1776 года, а в более развернутом виде мы можем видеть это кредо на первых страницах «Опыта философии теории вероятностей» (1814):
«Мы можем рассматривать настоящее состояние Вселенной как следствие его прошлого и причину его будущего. Разум, которому в каждый определенный момент времени были бы известны все силы, приводящие природу в движение, и положение всех тел, из которых она состоит, будь он также достаточно обширен, чтобы подвергнуть эти данные анализу, смог бы объять единым законом движение величайших тел Вселенной и мельчайшего атома; для такого разума ничего не было бы неясного, и будущее существовало бы в его глазах точно так же, как прошлое. Человеческий ум в совершенстве, которое он сумел придать астрономии, дает нам представление о слабом наброске этого разума. Его открытия в механике и геометрии в соединении с открытием всемирного тяготения сделали его способным понимать под одними и теми же аналитическими выражениями прошлые и будущие состояния системы мира».
В этом заключалась идеология Лапласа. Все в небе и на земле подчиняется небольшому количеству естественных законов. В «Изложении системы мира» ученый писал: «Все происходящее так же необходимо, как смена сезонов». «Кривая, описанная простой молекулой воздуха или пара, управляется таким же образом, как и орбиты планет», — добавил он позже. В сфере небесной механики мечта о высшем Разуме стала реальностью. Когда мы вновь опускаемся на Землю, незнание причин событий мешает нам формулировать утверждения с той же степенью уверенности. Учитывая невозможность знать абсолютно все, человек компенсирует этот пробел, определяя различные степени вероятности. Как следствие, именно слабости человеческого ума мы обязаны одной из самых искусных и продуманных математических дисциплин, науке шансов или вероятностей, в которой шанс есть не что иное, как мера нашего незнания причин.
Так как Вселенная детерминирована, все события связаны условиями причинности; возможность прогнозирования относится не только к небесным явлениям, но и к земным. Так, земные события могут быть предсказаны лишь с точки зрения вероятности. Лаплас стал настоящим первооткрывателем, потому что придумал новую отрасль математики, которая относится не только к играм и гипотетическим урнам, а также к расчету научных погрешностей, статистике и даже к философской причинности.
Сегодня, спустя два века, мы знаем, что Лаплас был прав, заставляя думать о важных плодах науки о вероятностях. Но также мы знаем, что он ошибался, полагая, будто мечта о высшем разуме уже почти стала реальностью в области небесной механики. Ньютонова вселенная казалась примером прекрасно придуманного часового механизма: все в нем было предопределено, поэтому можно было, точно зная причины, определить последствия. Но, как мы уже увидели в главе 2, в сердце мировой системы зарождался хаос...
Механика и законы физики в действительности намного богаче, чем мог представить Лаплас. Он был твердо убежден, что детерминистская система, следовавшая законам Ньютона, была предсказуемой. Однако, как вскоре доказал Пуанкаре, даже система, соответствующая классической физике, может стать хаотичной. Одним из самых революционных последствий теории хаоса является опровержение уравнения «детерминизм = = предсказуемость», за которое выступал Лаплас. В 1908 году в «Науке и Методе» Анри Пуанкаре написал:
«Если бы мы знали точно законы природы и состояние Вселенной в начальный момент, то могли бы точно предсказать состояние Вселенной в любой последующий момент. Но даже и в том случае, если бы законы природы не представляли собой никакой тайны, мы могли бы знать первоначальное состояние только приближенно. Если это нам позволяет предвидеть дальнейшее ее состояние с тем же приближением, то это все, что нам нужно. Мы говорим, что явление было предвидено, что оно управляется законами. Но дело не всегда обстоит так; иногда небольшая разница в первоначальном состоянии вызывает большое различие в окончательном явлении. Небольшая погрешность в первом вызвала бы огромную ошибку в последнем. Предсказание становится невозможным...»
Даже при очень точном знании законов маленькая погрешность в измерении или расчете помешала бы демону Лапласа предсказать будущее системы мира через некоторый промежуток времени. Слова Пуанкаре символизируют победу хаоса над этим всемогущим демоном.