Глава IV. Логические действия над понятиями


Представление и понятие


§ 1. В повседневной практике мышления люди пользуются не строго установившимися понятиями, но лишь представлениями о предмете. Представление, так же как и понятие, есть мысль, выделяющая в предмете известные признаки этого предмета. Но в представлении, во-первых, не выделяются непременно существенные признаки. В представлении о предмете выделяются те признаки, которые почему-либо бросаются в глаза и которые могут не быть существенными.

Когда в русском языке возникло слово «чернила», слово это, родственное со словом «чёрный», должно было вызывать в мысли представление: «то, чем чернят» или «то, посредством чего окрашивают в черный цвет». В настоящее время это представление уже не совпадает с признаками, которые мыслятся в понятии «чернила». Понятие «чернила» выражает мысль о жидкости, посредством которой пишут, независимо от её цвета. Жидкость эта может быть не только чёрной, но и фиолетовой, синей, зелёной и красной. То представление окрашивающей в чёрный цвет жидкости, которое мыслилось прежде, оказалось теперь несущественным для понятия «чернила».

Во-вторых, в представлении признаки устанавливаются не одинаково и зависят от лица, представляющего предмет, от психологических обстоятельств в каждом отдельном случае. Так, если два человека представляют себе, например, квадрат, то их представления будут, конечно, отличаться друг от друга. Один представит себе большой квадрат, начерченный на листе бумаги, другой – квадрат, нарисованный на доске, и т. д. и т. п. Напротив, в понятиях, устанавливаемых наукой, признаки берутся только существенные и берутся таким образом, что всякий раз, когда данное понятие мыслится, состав его существенных признаков не подвергается случайным изменениям, не зависит от того, какое лицо и в каком психологическом состоянии мыслит данное понятие. Так, если два человека знакомы с геометрией, то понятие о квадрате у них будет одно и тоже: и тот и другой будут разуметь под квадратом прямоугольник, у которого все стороны равны.

§ 2. Именно эти свойства понятия – твёрдость и точность, с какой в содержании понятия устанавливаются его существенные признаки, – делают понятие важной логической формой научного мышления. В известном смысле понятие и наука – синонимы, т. е. слова, означающие одно и то же.

Понятие – одновременно и первое условие научного мышления и его последний высший результат. Логическое мышление начинается с образования различных понятий о различных объектах. Посредством суждений, раскрывающих различные отношения между различными понятиями, познание существенных свойств предмета всё более углубляется и обогащается. Выясняются новые точки зрения, с которых могут рассматриваться свойства предметов, а следовательно, признаки их понятий. В результате возникают понятия, вмещающие в себе множество связанных между собой, но различных групп существенных признаков, отражающих в нашей мысли существенные свойства предметов. Путь, ведущий от первых опытов образования понятий до высших понятий, очень сложен и долог. Путь этот совершается не только при помощи суждений, но также при помощи других форм познания и мышления, о которых речь впереди. Но в результате путь этот приводит к возникновению понятий, которые как бы сжимают в одной сложной мысли огромное множество познанных свойств предметов, их отношений и связей между ними.


Определение понятия

§ 3. Так как характернейшей чертой понятия, отличающей его от простого представления, является точность, с какой в содержании понятия указываются существенные признаки, то отсюда следует, что важнейшей логической операцией, или первым логическим действием над понятием будет установление его содержания. Действие это называется определением понятия. Определить понятие значит указать, какие существенные признаки мыслятся в его содержании.

Словесное обозначение понятия, точно определённого и пригодного к применению в науке, называется термином. Определение не просто поясняет значение термина. Определение устанавливает это значение. Такое установление значения необходимо не только для новых, впервые вводимых в науку понятий и их терминов. Оно не в меньшей степени необходимо для уточнения давно употребляющихся в языке, но неточных, сбивчивых терминов. Хотя понятия обычно образуются из материалов повседневных представлений, но научными они становятся только после того, как превратятся из простых и неотчётливых представлений в определённые понятия.

§ 4. Как всякая деятельность мышления, определение может быть правильным и неправильным. Правильное определение, т. е. определение, указывающее существенные признаки понятия, выражается в форме предложения, в котором подлежащее есть само определяемое понятие, сказуемое же содержит в себе перечисление существенных признаков определяемого. Логическое определение не есть простое пояснение значения слова — вроде тех, которые содержатся в толковых словарях, например в толковом словаре Ушакова. Логическое определение не есть и простая подстановка одного слова вместо другого. Логическое определение раскрывает для мысли признаки, которые мыслятся наукой в содержании понятия.

§ 5. Мы уже знаем, что объём понятия находится в обратном отношении с его содержанием, указанным в определении. В зависимости от того, какие существенные признаки мыслятся в содержании понятия, объём этого понятия будет бо́льшим или меньшим. Но именно потому, что объём каждого понятия ограничивается содержанием понятия, определение должно быть таково, чтобы оно точно указывало тот объём, который мыслится в данном понятии.

Поэтому первое условие правильности определения состоит в его соразмерности. Определение называется соразмерным, если объём определяющего понятия в точности равен объёму понятия определяемого. В определении «квадрат есть прямоугольник, у которого все стороны равны», объёмы определяемого («квадрат») и определяющего («прямоугольник, у которого все стороны равны») в точности равны друг другу: все квадраты суть такие прямоугольники, и все такие прямоугольники суть квадраты.

Определение, в котором требование соразмерности не соблюдено, будет неправильным определением. Рассмотрим, например, определение «квадрат есть четырёхугольник, у которого все стороны равны». Определение это неверно, так как несоразмерно: ромб — тоже равносторонний четырёхугольник. Ошибочность этого определения в том, что при его посредстве нельзя точно отличить квадрат от ромбоида. Определение, в котором объём определяющего больше объёма определяемого, называется чересчур широким.

Несоразмерное определение может быть и чересчур узким. Так называется определение, в котором объём определяющего оказывается меньшим сравнительно с объёмом определяемого. Например, определение «энергия есть способность производить полезную работу» есть также несоразмерное, но при этом чересчур узкое определение. И действительно, объём определяющего оказался здесь меньшим сравнительно с объёмом определяемого: определяющее указывает на способность производить полезную работу, в то время как в действительности понятие энергии означает способность производить всякую работу, будет ли она полезной или бесполезной.

Второе условие правильного определения состоит в том, что определение не должно заключать в себе круга. Кругом называется такой способ определения, когда понятие как будто определяется посредством другого понятия, однако это другое понятие таково, что оно само может сделаться понятным только через определяемое. Таково, например, определение «величина есть всё то, что можно увеличивать и уменьшать». Здесь понятие величины раскрывается посредством понятия увеличения и уменьшения, однако это понятие в свою очередь разъясняется только посредством понятия величины. И действительно, увеличение и уменьшение есть не что иное, как изменение величины.

Особо явный случай круга в определении образует тавтология. Так называется определение, в котором определяющее представляет простое повторение того, что мыслится в определяемом. В такой явной форме тавтология хотя и редко, но встречается. В одной плохой книжке по истории музыки автор, желая пояснить, в чём сущность музыкального стиля Мейербера, писал: «Стиль Мейербера — это настоящий мейерберовский стиль». Определение это — яркий пример тавтологии.

В письме одного учёного XVII в., Ноэля, к знаменитому французскому математику и писателю Паскалю имеется определение света, представляющее явную тавтологию. По этому определению свет есть «световое движение лучей, состоящих из светящихся телец, которые наполняют прозрачные тела и получают этот свет только от других светящихся тел».

Но и в новое время логическая ошибка тавтологии может быть обнаружена в ряде научных рассуждений. Только здесь она выступает обычно не в столь явном виде. Так, Маркс показал, что классики политической экономии и их продолжатели в XIX в. постоянно впадали в ошибку «круга» или тавтологии. Состояла эта ошибка в том, что стоимость товаров они определяли стоимостью труда, а стоимость труда — стоимостью товаров. Однако, поступая таким образом, мы, как показал Маркс, «лишь отодвигаем затруднение, так как определяем одну стоимость другой стоимостью, которая в свою очередь нуждается в определении».1

Причиной тавтологии может быть как небрежность и неотчётливость логического мышления, так и крайняя трудность, с какой приходится встречаться при определении.

Образцом небрежности логического мышления, приводящей к тавтологии вместо определения, может быть наш пример с определением «мейерберовского» стиля. Подобные ошибки сразу видны и легко могут быть исправляемы.

Но иногда заметить тавтологию в определении оказывается делом чрезвычайно трудным. Это бывает в случае, когда предмет, понятие которого определяется, настолько прост, что в понятии о нём трудно выделить существенные признаки, составляющие его содержание.

Некоторые выражения мысли кажутся на первый взгляд тавтологиями, но в действительности не являются тавтологиями. Существует, например, французская поговорка «на войне как на войне» (à la guerre comme à la guerre). Выражение это вовсе не есть определение, а потому не есть и тавтология. Выражение это означает приблизительно следующее: на войне не приходится проявлять мягкости в отношении врага, как не приходится ждать и себе пощады от врага, т. е. война есть война со всеми своими последствиями.

Третье условие правильного определения: определение не должно быть только отрицательным. Отрицательным называется такое определение, в котором указано только, какие признаки не принадлежат данному понятию, но не указывается, какие признаки принадлежат ему. Так, определение «паук — не насекомое» есть отрицательное определение. В нём имеется только указание на то, что существенные признаки понятия «насекомое» не совпадают с существенными признаками понятия «паук».

В самом деле: с точки зрения зоологии и пауки и насекомые принадлежат к членистоногим, но при этом пауки относятся к хелицероносным членистоногим, а насекомые — к трахейнодышащим членистоногим. Отношение между этими двумя группами такое же, как отношение, например, между остроугольными и прямоугольными треугольниками. И те и другие — треугольники, но отсюда не следует, что остроугольные треугольники суть прямоугольные.

Из отрицательного определения понятия «паук» никак нельзя узнать, каковы же будут существенные признаки паука. Поэтому такое определение мало пригодно для расширения действительного знания о предмете. Отрицательное определение ограничивается областью признаков невыясненных. Вопрос, где, среди каких именно признаков следует искать те, которые образуют положительное содержание понятия о предмете, остаётся без рассмотрения.

Отрицательное определение встречается иногда в самых серьёзных научных изложениях. Например, в книге знаменитого древнего математика Евклида «Начала» имеется такое определение понятия точки: «Точка есть то, что не имеет частей»1. Определение это — явно отрицательное. Вызвано оно тем, что точка есть элемент пространства настолько простой и однородный, что всякая попытка найти в нём какие-нибудь части, которые могли бы служить для мысли положительными признаками понятия, не удаётся.

Отрицательным определением, подобным евклидову определению точки, является, например, имеющееся у Стэвина определение понятия твёрдого тела: «Твёрдое тело есть такое, которое не является ни жидким, ни текучим, не растворяется в воде и не испаряется в воздухе»2.

Однако некоторые отрицательные выражения, не будучи определениями, имеют вполне определённый смысл.

Возможность круга в определении, а также возможность отрицательных определений в мышлении даже крупных учёных доказывает не только то, что и крупные учёные могут иногда делать логические ошибки. Появление в мышлении тавтологий и отрицательных определений доказывает, что некоторые понятия с трудом поддаются определению. Таковы понятия, посредством которых мыслятся наиболее простые, «сами собой разумеющиеся» предметы, свойства предметов, действия. Попытка определить такие понятия приводит к тому, что мы или не узнаём из определения ничего нового (как это бывает при тавтологии), или узнаём то, что характеризует не положительно, но лишь отрицательно (как это бывает при отрицательном определении).

Поэтому, приступая к рассмотрению понятия, необходимо исследовать, допускает ли данное понятие определение или же попытка определить его приведёт лишь к тому, что на место ясного мы поставим менее ясное.

Четвёртым условием правильности определения является ясность определения, т. е. отсутствие в нём всякой двусмысленности. Многие выражения, например сравнения, будучи чрезвычайно картинными, образными и ценными для выражения чувства, для познания, однако, не являются вовсе определениями, так как не указывают существенных признаков предмета.

§ 6. Из всех возможных логических ошибок определения самая важная — ошибка чересчур широкого и чересчур узкого определения. В первом случае ошибка состоит в том, что в перечне признаков пропускается какой-либо необходимый существенный признак. Во втором случае, напротив, в содержание определяемого понятия вводится излишний признак, являющийся существенным только для некоторых предметов, мыслимых в понятии. В первом случае содержание определяемого понятия становится на один признак меньше, зато объём его мыслится большим. Во втором случае, напротив, в содержании определяемого предмета становится на один признак больше, зато объём понятия мыслится меньшим.

Определение через ближайший род и через видообразующее отличие


§ 7. Так как определение понятия состоит в установлении его существенных признаков, то правила определения должны, очевидно, заключать в себе указание приёмов, посредством которых могут быть найдены именно существенные, а не иные признаки определяемого понятия.

Во многих случаях перечисление всех таких признаков — слишком продолжительное занятие. Существует способ определения понятия без подробного перечисления всех его существенных признаков. Состоит этот способ в том, что указывается, во-первых, ближайший род, к которому это определяемое понятие принадлежит, и, во-вторых, указывается особый признак (или признаки), посредством которого данное понятие, как вид, отличается от всех других видов указанного рода.

Признак этот называется «видовым отличием» или «видообразующим отличием», самый же указанный приём определения в целом называется определением «через ближайший род и через видовое отличие».

Определение через ближайший род и видообразующее отличие применяется всюду там, где предыдущее исследование выяснило, что определяемое понятие есть понятие о предмете, принадлежащем к одному из видов некоторого рода. Другими словами, определение этого типа применяется к понятиям, входящим в систему отношений вида к роду и обратно. Таковы многие понятия математических, физико-химических и биологических наук. Так, рефлекс определяется в биологии как «непременная закономерная реакция организма на внешний агент, которая осуществляется при помощи определённого отдела нервной системы» 1.

Определение это есть определение через ближайший род и видообразующее отличие. Согласно этому определению, ближайшим родом для понятия о рефлексе является род реакций организма на внешний агент. Рефлекс есть один из видов таких реакций. Но определение не только указывает ближайший род, к которому принадлежит определяемое понятие. Определение указывает также, какими признаками определяемое понятие отличается как вид от других видов того же рода. Принадлежа к роду реакций организма на внешний агент, рефлекс отличается от других реакций организма тем, что это — 1) реакция непременная, 2) реакция закономерная и 3) реакция, осуществляемая при помощи определённого отдела нервной системы. Три этих признака составляют вместе видообразующее отличие, т. е. то, чем рефлекс как особый вид реакций организма на внешний агент отличается от других видов того же рода.


Генетическое определение


§ 8. Определение через ближайший род и видообразующее отличие предполагает, что определяемое понятие есть понятие о предмете, который 1) уже возник и существует и который связан определённым отношением принадлежности к другому классу предметов, заключающему его в себе так, как род заключает вид. При этом способ возникновения предмета не отмечается в самом определении.

Но определение может рассматривать предмет и по способу его возникновения или образования. При этом признаки содержания понятия, которые в обычном определении перечисляются или указываются как уже существующие, здесь рассматриваются как обусловленные самим способом возникновения предмета.

Так, например, круг можно определить как фигуру, получающуюся в результате вращения отрезка прямой вокруг одного из его концов в плоскости.

Определения этого типа называются генетическими от слова «генезис», означающего «возникновение».

§ 9. Генетические определения указывают такой способ происхождения или образования предмета, который представляется как всегда возможный. Таково только что приведённое определение круга. Всякий круг можно мыслить как возникший по способу, указанному в этом определении.

Генетические определения основываются на том, что, указывая на возможный способ образования или производства предмета, определения эти тем самым указывают и на свойства возникшего таким образом предмета


Ограничение понятия


§ 10. Включение в содержание понятия нового признака обычно приводит к тому, что объём понятия сужается, ограничивается. Но если включаемый в содержание понятия новый признак не принадлежит к числу существенных, но выводится из существенных, то добавление такого признака не изменяет объёма понятия. Так, например, если к числу существенных признаков понятия «квадрат» — к прямоугольности и равносторонности — мы добавим признак равенства диагоналей, то от этого добавления объём понятия «квадрат» не станет ни бо́льшим, ни меньшим. В этом случае объём понятия не изменится, так как не изменилось его содержание. И действительно, добавленный нами признак есть признак новый, но не существенный, так как он может быть выведен как следствие из уже установленных ранее существенных признаков понятия «квадрат».

Напротив, если присоединяемый к содержанию понятия новый признак не принадлежит всем предметам, мыслимым в объёме понятия, то добавление такого признака ведёт к тому, что объём понятия сужается. Так, если к числу признаков растения мы добавим признак размножения посредством спор, то мы сузим объём мыслимого в этом случае понятия растения, ограничив его споровыми растениями и исключив из него цветковые. Логическая операция, состоящая в прибавлении к содержанию понятия нового признака, наличие которого в содержании понятия сужает его объём, называется ограничением понятия. В основе ограничения лежит разъяснённое уже выше, в главе III (§ 28 и 29), отношение между содержанием и объёмом. В силу этого отношения в понятиях, находящихся между собой в отношении рода и вида, добавление новых видовых признаков всегда уменьшает объём рода, т. е. число предметов, в которых свойства, выражаемые видовыми признаками, могут действительно встретиться.

§ 11. Логические понятия рода и вида — понятия относительные. Понятие, рассматриваемое как вид по отношению к некоторому родовому понятию, может в свою очередь рассматриваться как род по отношению к другому понятию. Например, понятие «офицер» есть вид по отношению к родовому понятию «командир», но то же самое понятие «офицер» есть род по отношению к понятию «лейтенант».

Часто бывает, что ограничение понятия, т. е. переход от рода к виду, усмотрение в этом виде нового рода, переход от него к новому виду и т. д., может продолжаться очень долго, охватывая длинную цепь понятий. При этом с каждым таким переходом объём каждого следующего вида будет становиться всё более и более узким. Продолжая достаточно долго операцию обобщения, мы можем получить в конце такой объём, который состоит из одного единственного предмета. Так, переходя от родового понятия «русский» к видовому понятию «русский учёный», мы получим понятие уже меньшего объёма: русских учёных меньше, чем русских людей. Далее, мы можем видовое понятие «русский учёный» рассматривать в свою очередь как родовое. Тогда видовым по отношению к нему понятием будет, например, понятие «русский учёный XVIII века». Объём этого понятия будет ещё меньшим, чем объём понятия «русский учёный». Наконец, мы можем видовое понятие «русский учёный XVIII века» также рассматривать в качестве родового по отношению к понятию «величайший русский учёный XVIII века». В этом последнем понятии объём будет состоять уже из одного единственного лица; этим лицом будет, конечно, Ломоносов.

Понятие, объём которого равняется единице, очевидно, уже не может подвергнуться дальнейшему ограничению. Такое понятие называется понятием не о виде, а об индивиде (от латинского слова «individuum», означающего «неделимое»).

Напротив, исключая из содержания понятия его видовой признак, мы расширяем объём этого понятия.


Обобщение понятия


§ 12. Логическая операция, посредством которой в результате исключения видового признака получается понятие более широкого объёма, называется обобщением понятия. Название это отмечает, что в итоге получается понятие более общее сравнительно с тем, какое рассматривалось до исключения видового признака.

В силу относительности понятий логического рода и вида, родовое понятие может быть в свою очередь рассматриваемо как видовое по отношению к своему родовому понятию. Например, понятие «педагогический институт» есть родовое по отношению к понятию «педагогический институт иностранных языков». Но то же понятие «педагогический институт» в то же время есть видовое по отношению к понятию «институт».

Чтобы превратить данное видовое понятие в родовое, необходимо исключить из его содержания тот существенный признак, который является видовым отличием. Такое исключение и называется обобщением.

Во многих случаях процесс обобщения может охватывать очень длинный ряд понятий. С каждым новым обобщением объём понятия, получающегося в результате обобщения, будет становиться всё более широким. Так, объём понятия «педагогический институт» шире объёма понятия «педагогический институт иностранных языков», объём понятия «институт» в свою очередь шире объёма понятия «педагогический институт», объём понятия «высшее учебное заведение» ещё шире, чем объём понятия «институт», объём понятия «учебное заведение» ещё шире, чем понятие «высшее учебное заведение», и, наконец, объём понятия «заведение» шире объёма понятия «учебное заведение».

При обобщении весь объём каждого предшествующего понятия целиком содержится внутри объёма каждого последующего: все педагогические институты иностранных языков входят в число педагогических институтов, все педагогические институты — в число институтов, все институты — в число высших учебных заведений, все высшие учебные заведения — в число учебных заведений и, наконец, все учебные заведения — в число заведений.

Спускаясь посредством ограничения со ступенек рода на ступеньки входящих в этот род видов, мы доходим, наконец, до индивида.

В содержании понятия индивида мыслится такое богатство определённых признаков, что в своём соединении признаки эти могут принадлежать только одному предмету.

Напротив, поднимаясь посредством обобщения со ступенек видов на ступеньки родов, обнимающих эти виды, мы доходим, наконец, до родовых понятий, настолько обширных по объёму, что любой мыслимый предмет может быть включён в их объём — независимо от того, какие определённые признаки мыслятся в его содержании. Таково, например, понятие «объект». Именно потому, что в содержании этого понятия не могут мыслиться никакие определённые особым образом признаки, объём этого понятия настолько широк, что любой мыслимый предмет может быть подведён под понятие «объект».

Но именно в силу своей крайней общности и неопределённости мыслимых в них признаков (признаки эти могут быть любыми) понятия вроде «объект» с трудом поддаются дальнейшему обобщению.


Разделение понятия


§ 13. В содержании многих понятий мы можем найти такой существенный признак, который может изменяться по определённому принципу или правилу. Например, в содержании понятия «угол» может изменяться признак, выражающий отношение его к прямому углу. Всякий данный угол имеет известную величину, и потому в понятии всякого угла имеется признак известной величины этого угла. Но мы можем представить себе эту величину изменяющейся относительно прямого угла.

Тогда в одних углах эта величина будет меньше прямого угла, в других — равна прямому и в третьих — больше прямого.

Совершенно очевидно, что каждому изменению признака в содержании понятия во всех трёх указанных случаях будет соответствовать известная часть объёма понятия «угол». Одну часть этого объёма займут острые углы, другую — прямые и третью — тупые. А так как других случаев изменения величины угла не предполагается, то очевидно, что при таком изменении признака величины угла мы разделим весь объём понятия угла только на три части.

При этом каждая часть объёма будет соответствовать одному из трёх возможных случаев изменения величины угла, а все три части объёма в своей сумме исчерпают весь объём понятия «угол».

Логический приём, посредством которого мы делим весь этот объём на части, или на виды, называется делением понятия.

Понятие, объём которого выясняется при посредстве деления, называется «делимым». Виды или видовые понятия, на которые разделяется объём делимого, называются членами деления.

§ 14. Объём одного и того же родового понятия может быть разделён на виды не одним единственным способом. Какие именно виды получатся в результате деления понятия, зависит от того, по какому признаку производится само деление. Так, объём понятия «треугольник» может быть разделён на виды различным образом — в зависимости от того, будем ли мы рассматривать различия между треугольниками по величине их углов или по относительной величине сторон.

В первом случае, руководясь различиями по величине углов, мы найдём, что весь объём понятия «треугольник» делится на видовые объёмы прямоугольных, остроугольных и тупоугольных треугольников. Во втором случае, принимая во внимание относительную величину сторон, мы найдём, что тот же объём понятия «треугольник» разделится на видовые объёмы разносторонних, равнобедренных и равносторонних треугольников.

Признак (или группа признаков), по изменению которого мы можем разделить объём родового понятия на виды, называется основанием деления.

§ 15. Разделение понятий играет важную роль в логическом мышлении. Особенно велика его роль в науке и научном мышлении. Разделение — если оно правильно произведено, — во-первых, точно выясняя объём понятия, раскрывает соотношение между видами, принадлежащими к одному и тому же роду, и соотношение между подвидами каждого вида.

Во-вторых, разделение объёма понятия применяется, как мы увидим ниже, в качестве составной части некоторых доказательств.

В-третьих, разделение постоянно применяется — и в практической жизни и в науке — при классификации. Классификацией называется такое распределение всех предметов известного класса по разрядам, при котором переход от одного разряда к другому совершается систематически, по определённому правилу, каждый предмет класса попадает в какой-нибудь один из разрядов класса, а сумма всех предметов во всех разрядах оказывается в точности равной сумме всех предметов класса.

Для осуществления всех этих задач деление должно быть правильным, а для этого требуется строго выполнять три следующих необходимых условия.

§ 16. Первое условие правильного деления состоит в том, чтобы каждое данное деление производилось по одному и тому же основанию. Хотя объём одного и того же понятия может быть разделён на виды, вообще говоря, различным образом, т. е. по различному основанию, однако в каждом отдельном случае деление должно производиться только по одному основанию. Так, объём понятия «треугольник» может быть разделён на виды либо по величине углов, либо по относительной величине сторон. Но нельзя, начав деление треугольников по признаку величины углов и не закончив этого деления, перескакивать вдруг на деление по признаку относительной величины сторон и продолжать деление по этому — уже другому — основанию. Нельзя также делить людей на худых, толстых и глупых или делить картины на исторические, бытовые, пейзажные и акварельные. Во всех этих примерах одна и та же ошибка: основание деления не одно и то же. Так как в каждом из этих предметов деление производится не по одному и тому же признаку, то у нас не может быть уверенности ни в том, что мы действительно полностью разделили весь объём делимого рода на виды, ни в том, что каждый экземпляр рода попал в результате деления только в один какой-нибудь из видов рода.Так, глупыми могут быть и толстые и худые.

§ 17. Второе условие правильности деления состоит в требовании, чтобы сумма предметов во всех полученных при делении видах в точности равнялась сумме предметов разделённого понятия, т. е. чтобы сумма видов исчерпывала весь объём родового понятия. При нарушении этого правила деление получается либо слишком узким, либо слишком широким. Так, разделив объём понятия «лес» на виды хвойных и лиственных лесов, мы получим, очевидно, слишком узкое деление, так как кроме хвойных и лиственных лесов бывают ещё леса смешанные, т. е. хвойно-лиственные. Здесь сумма объёмов видовых понятий, очевидно, меньше объёма делимого, она не исчерпывает полного объёма делимого и не содержит в себе всех его видов.

Напротив, разделив объём понятия «звёзды» на виды заходящих звёзд, незаходящих звёзд и планет, мы получим, очевидно, слишком широкое деление, так как планеты не суть звёзды. Здесь вследствие включения планет в число звёзд сумма объёмов видовых понятий оказалась большей сравнительно с объёмом делимого понятия.

§ 18. Третъе условие правильности деления состоит в требовании, чтобы члены деления исключали друг друга. Это значит, что в итоге деления каждый предмет, входящий в объём делимого родового понятия, должен войти в объём какого-либо одного из видовых понятий, но не должен сразу войти в два или в большее число видов. Иными словами, разделение как результат деления понятия состоит из соподчинённых понятий, т. е. из видов, подчинённых делимому как роду.

Примером нарушения этого правила будет деление рек на судоходные, несудоходные, сплавные и порожистые. В делении этом некоторые члены (сплавные реки и порожистые реки, несудоходные реки и порожистые реки) не исключают друг друга, не являются видами, исключающими друг друга. Это значит, что, производя деление и переходя от одного видового понятия к другому, например от понятия несудоходных рек к понятию порожистых рек, мы ввели в состав этого последнего часть предметов, уже вошедших в состав предыдущего.

§ 19. Из всех возможных ошибок деления самой значительной является ошибка, состоящая в отступлении от принятого при делении основания.

И действительно: правильность разделения объёма делимого родового понятия на соподчинённые виды зависит от того, насколько последовательно и систематически будет проводиться нами изменение признака, составляющего основание деления. Так как всякая часть объёма, получающаяся в результате деления родового понятия, определяется известным изменением признака, входящего в содержание понятия, то всякая ошибка при решении вопроса о принципе, по которому должно происходить изменение этого признака, должна привести к ошибке в результатах деления. Деление, в котором допущена эта ошибка, называется сбивчивым или перекрёстным. Последнее название показывает, что в случае подобного деления одни и те же предметы оказываются одновременно входящими в различные виды. Кто, например, разделит людей на храбрых, трусливых и осторожных, должен согласиться с тем, что осторожными могут оказаться и некоторые храбрые и некоторые трусливые люди.

§ 20. Деление, свободное от логических ошибок, есть далеко не лёгкая задача. Оно легко осуществимо, если признак, по изменению которого производится распределение рода на виды, настолько точен и отчётлив, что все возможные изменения его легко обозримы и могут быть установлены исчерпывающим образом.

В сложных предметах и явлениях природы и общества часто чрезвычайно трудно найти и выделить такое изменение признаков, которое ставило бы группу предметов, являющихся известной разновидностью, вне любой другой группы предметов, обладающих другой разновидностью того же самого вида. Можно, например, разделить объём понятия «военный самолёт» на виды в зависимости от назначения самолёта. Тогда объём понятия «военный самолёт» разделится на виды: 1) разведчиков; 2) истребителей; 3) бомбардировщиков; 4) штурмовиков и 5) транспортных самолётов.

Однако это разделение не учитывает того, что один и тот же самолёт может исполнять одновременно два назначения: например, применяться и при штурмовке и при бомбардировке в одно и то же время. Но это значит, что может существовать такой штурмовик, который, входя в разряд штурмовиков, входит одновременно и в разряд бомбардировщиков.


Дихотомия


§ 21. Существует приём деления, свободный от ошибок, встречающихся при других способах деления. Называется этот приём «дихотомией», т. е. делением надвое.

В рассмотренных нами ранее примерах за основание деления принималось возможное изменение признака в некотором определённом отношении. При дихотомии основанием деления служит не изменение признака, а простое наличие или отсутствие известного признака. Иными словами, дихотомия есть деление объёма данного понятия на два противоречащих друг другу видовых понятия, т. е. на два таких понятия, из которых одно представляет отрицание признаков другого. Таково, например, деление людей на плавающих и неплавающих или растений на споровые и неспоровые. Часто бывает, что полученное посредством дихотомии деление объёма понятия может быть продолжено. Так бывает, когда отрицательное понятие, составляющее один из видов разделённого рода, в свою очередь есть сложное понятие, допускающее дальнейшее деление надвое.

Рис. 11

Например, разделив объём понятия «учёные» на противоречащие видовые понятия «математик» и «не-математик», мы можем, в свою очередь, разделить объём отрицательного понятия «не-математик» на противоречащие видовые понятия «естественник» и «не-естественник». В свою очередь объём отрицательного понятия «не-естественник» может быть разделён на противоречащие видовые понятия «историк» и «не-историк» и т. д. (см. рис. 11).

Такое деление может продолжаться до тех пор, пока мы не дойдём до видового понятия, к которому должно быть отнесено понятие исследуемого нами предмета. Дихотомия применяется как вспомогательное средство ориентировки, например в ботанике — при составлении так называемых определителей растений. В этих справочниках длинная цепь дихотомических делений приводит в конечном счёте к определению вида, к которому принадлежит рассматриваемое растение.

§ 22. Преимущество дихотомии в том, что при ней не нарушаются указанные выше правила деления. В самом деле, при дихотомии виды, получающиеся в результате деления, оказываются понятиями, противоречащими друг другу. Но объёмы противоречащих понятий не могут быть перекрещивающимися: не может быть найден такой предмет, который одновременно входил бы в объём видового понятия и в объём понятия, противоречащего этому видовому понятию. Иными словами, деление при дихотомии не может быть сбивчивым. Если растения делятся на споровые и неспоровые, то ясно, что исследуемое растение должно оказаться либо в числе споровых, либо в числе неспоровых. Ясно и то, что если оно входит в число споровых, то оно не может в то же время оказаться в числе неспоровых.

При дихотомии сумма видовых объёмов, полученных в итоге деления, полностью исчерпывает объём делимого, не может быть ни больше, ни меньше этого объёма. Поэтому разделение, осуществлённое по правилам дихотомии, никогда не может быть ни слишком широким, ни слишком узким. Если род позвоночных животных разделён на виды крылатых и некрылатых, то ясно, что, кроме этих двух видов, невозможен никакой третий, который составил бы часть объёма разделённого понятия.

§ 23. При всех этих преимуществах дихотомия имеет свои недостатки. Во-первых, деление объёма на противоречащие понятия оставляет слишком неопределённой ту часть объёма данного делимого, которая выражается отрицательным понятием. Если о позвоночных я знаю только то, что они бывают или крылатые, или некрылатые, то второй, отрицательный вид «некрылатые» — слишком общее, слишком неопределённое понятие. Такое понятие, как это всегда бывает с противоречащими понятиями, подразумевает лишь признаки, которые должны быть отрицаемы в содержании видового понятия.

§ 24. Во-вторых, продолжая дихотомическое деление, мы обычно доходим, наконец, до такой области, относительно которой весьма затруднительно решить, к какому — положительному или противоречащему ему отрицательному — виду будет принадлежать понятие данного предмета. Так, различие между животным и растением резко бросается в глаза, если мы имеем дело с высшими формами животного и растительного мира. Никто не затруднится сказать, что, например, тигр — животное, а дуб — растение. Но там, где приходится иметь дело с микроорганизмами, даже учёные-специалисты часто затруднялись ответить на вопрос, к животным или к растениям должен быть отнесён данный вид. В таких видах часто имеются налицо и обычные отличительные признаки животного и признаки растения.

Неудивительно поэтому, что роль дихотомии в научной классификации предметов и явлений очень ограничена, дихотомия обычно используется лишь как предварительный вспомогательный приём ориентировки.


Задачи


1. Определите понятия: «окружность»; «газета»; «безусловный рефлекс»; «остров», «перешеек», «канал» (в географическом смысле); «колонна» (в военном смысле); «гора», «холм»; «лысина»; «артист», «актёр»; «ямб»; «синус угла»; «трение»; «барометр»; «революция»; «конус»; «конституция»; «ягода», «плод»; «ось»; «психология»; «признак».

2. Проверьте правильность следующих определений и в случаях, когда эти определения окажутся неправильными, поясните, какое правило определения в них нарушено: «день — промежуток времени между восходом и заходом солнца»; «цилиндр — тело, образуемое вращением прямоугольника вокруг одной из его сторон»; «кит — не рыба»; «вдохновение — живейшее расположение души к восприятию впечатлений и к соображению о них»; «дебют — выступление артиста перед публикой»; «пирога — лодка индейцев, выдолбленная из ствола дерева и управляемая веслом»; «чемпион — победитель в состязании»; «экзамен — испытание учащегося в каком-нибудь предмете»; «афиша — расклеенное в публичных местах извещение о каком-нибудь зрелище»; «параллельные линии — линии, которые ни при каком продолжении не пересекаются между собой»; «либерал — человек либеральных убеждений».

3. Произведите действие ограничения над следующими понятиями: «орден», «авиация»; «писатель»; «офицер»; «геометрия»; «двигатель»; «плоская фигура» (в геометрическом смысле); «полководец»; «тело»; «гриб»; «танец»; «газета»; «русский»; «врач»; «жидкость»; «жир»; «зерновые культуры»; «картина».

4. Произведите действие деления над следующими понятиями: «артиллерийское орудие»; «пути сообщения»; «планета»; «газета»; «четырёхугольник»; «коническое сечение»; «растение»; «часы»; «отопление»; «климатический пояс»; «рыба»; «железнодорожный путь»; «масла»; «двигатель»; «школа»; «позвоночное животное»; «пулемёт»; «генерал»; «кривая»; «заём».

5. Проверьте правильность следующих разделений и в случаях, когда разделения окажутся неправильными, поясните, в чём состоит допущенная в них ошибка: «вагоны бывают пассажирские, товарные, почтовые, спальные, плацкартные и бесплацкартные»; «углы бывают смежные, вертикальные и прямые»; «вулканы бывают действующие и потухшие»; «десанты бывают морские и воздушные»; «науки делятся на математические, естественные, медицинские и общественные»; «поэмы бывают эпические, исторические, драматические, лирические и романтические»; «авиабомбы делятся на фугасные, зажигательные и глубинные»; «пути сообщения могут быть наземные, подземные, водные, воздушные и межпланетные»; «географические карты бывают физические, метеорологические, экономические, политические, административные и карты путей сообщения»; «зубы бывают передние, верхние, нижние, резцы, клыки, молочные и зубы мудрости»; «звёзды делятся на постоянные и переменные, заходящие и не заходящие»; «ружья бывают детские, типа монте-кристо, охотничьи, боевые, автоматы, противотанковые и ружья-пулемёты»; «пение бывает сольное, камерное и хоровое».

6. Произведите дихотомическое деление следующих понятий: «офицер»; «музыкант»; «книга»; «город»; «дороги»; «вещества».


Загрузка...