МЕХАНИЗМ СТЕВИНА

Заговор невежд и мошенников

Среди множества машин, которые не работали, особое место занимает цепная машина Стевина. Это, пожалуй, первая из машин, изобретатель которой знал заранее, что она не может работать. Знал — и создал ее с намерением передать свое убеждение другим. К сожалению, он не достиг цели. К этому привел ряд причин.

Он писал просто, точно и ясно, но писал, как и говорил, по-фламандски, на своем родном языке, на языке малого народа. Поэтому его могли понимать только жители части Нидерландов и Бельгии, а здесь число образованных людей было весьма невелико во времена, отстоящие от наших дней приблизительно на 400 лет. Правда, труды Стевина были переведены на латынь, международный язык тогдашней науки, и на французский язык, язык дипломатов и светских салонов, но внимания к себе не привлекли. Между тем мало известный своему времени ученый заслуживал внимания — его след в науке заметен и поныне.

Симон Стевин родился в 1548 году в Брюгге. О жизни его известно мало. Вначале он был чиновником и собирал подати в родном городе. Затем стал инспектором сухопутных и водных сооружений. Страна жила трудно под игом покоривших ее испанцев. Возможно, поэтому молодой Стевин покинул родину и в течение десяти лет путешествовал по Европе. Возвратился он только в 1581 году, когда страна уже освободилась от иноземного господства. В последние годы жизни он занимал кафедру математики в Лейдене.

Посещая столицы мелких княжеств и крупных государств, Стевин во многих из них видел машины — разные, похожие только одним: все они не работали. Они не работали, несмотря на упорные попытки их создателей заставить машины работать безостановочно.

В те времена главными двигателями — средством передвижения и тягловой силой — служили животные. Они тянули повозки и качали воду, дробили руду и мололи зерно. Правда, кое-где применялись ветряные мельницы, которые не только мололи зерно, но и качали воду. Но ветер капризен. То его нет, то он разрушает лопасти. Издревле для тех же целей применялись и водяные колеса. Но реки текут далеко не везде. Как при этом не мечтать о других двигателях, использующих более надежные силы природы! Например, силу тяжести, действующую везде и всегда. Или какие-нибудь иные силы. Нужно лишь присмотреться к природе, найти в ее бесконечном богатстве подходящую силу и применить ее к делу. Заставить работать постоянно, а не так, как работает капризный ветер, работать там, где это нужно и где нет надежных, но ленивых рек или бурных, но трудно укротимых водопадов.

И мечтатели трудились, не щадя сил и времени. Искали. Размышляли. Делали выводы. Строили модели. Так они пришли к заключению, что большая модель крутится лучше и дольше, чем маленькая. И обычно это соответствовало действительности. Поэтому изобретатели строили все более и более крупные и даже огромные машины. Но все эти модели и машины не работали долго, хотя должны были работать. Ведь все рассуждения ясно показывали, что машины хорошо задуманы и должны работать не только долго, но и вечно. Однако не работали… Хоть убей. И многих изобретателей казнили или сажали в тюрьмы нетерпеливые заказчики, вкладывавшие деньги в опыты и в строительство машин. Дельцы не делали различия между истинными энтузиастами и мошенниками, а среди изобретателей все чаще попадались жулики и обманщики, которых интересовала только нажива, а машина была лишь поводом для того, чтобы выманивать деньги из легковерных.

Многое повидал Стевин в своих скитаниях. Повидал, изучил, обдумал. Большинство из таких машин содержало рычаги и блоки, зубчатые и ременные передачи, насосы и водяные колеса, которые так успешно работали во всех случаях, когда их приводили в движение вода, ветер, животное или просто рука человека. Для того чтобы создать машины, действующие без помощи воды, ветра или животных, изобретатели создавали все более сложные комбинации простых механизмов, надеясь так хитро их соединить, чтобы они работали сами по себе, одна от другой. И некоторые из машин действительно слушались. Но недолго. Потом останавливались. Портились? Или расчеты были не точны? И изобретатели их улучшали. И они работали дольше. Но вновь останавливались. Что-то опять портилось. То ли расчеты требовали дальнейшего уточнения. То ли нужно было тщательнее изготовить какую-то деталь. Уменьшить трение. Усложнить конструкцию… Найти более хитроумное приспособление… Ведь стоило потратить новые силы и дополнительные деньги, чтобы заставить в конце концов работать даровые силы природы под стать тому, как задаром работает ветер и текущая вода!

При том уровне знаний требовалась незаурядная интуиция и решимость, чтобы сказать себе — нельзя! Невозможно заставить работать силу тяжести больше чем один раз. Невозможно заставить силу поверхностного натяжения переливать воду из нижнего сосуда в верхний. Невозможно… Да, сила текущей воды может вращать колесо. Но это колесо не сможет вернуть воду обратно, вверх против течения, чтобы, стекая еще раз, она вновь вращала то же колесо.

Пусть умник убирается восвояси!

Стевин понял эту очевидную в наши дни, но загадочную в его время истину. Он только не мог понять тупого упрямства изобретателей и их меценатов, не желавших прислушаться к его словам. Они были единодушны — пусть скептик убирается восвояси и не мешает работать! Чего стоят его рассуждения, если модель вот-вот начнет действовать! Может быть, этот ученый муж просто добивается того, чтобы мы отступились, а сам доведет нашу идею до конца. И обогатится! Пусть убирается…

И он уходит. И едет дальше. И все повторяется в другом месте. Наконец он возвращается на родину. На освобожденную родину, где уже нет всесилия князьков и инквизиторов. И он думает. И ставит опыты. Опыты, которыми до него никогда не занимались ученые, а только изобретатели двигателей. Ведь учащихся от поколения к поколению убеждали в том, что они должны лишь наблюдать природу и размышлять — так учил великий Аристотель и все другие великие ученые до Аристотеля и после него: Платон и Евклид, и менее великие, но достойные именоваться учеными. Однако он, Стевин, ставивший выше всех Архимеда, тем не менее думал по-своему. Одними рассуждениями, считал он, не добьешься большего, чем сделал Архимед. Природа не легко выдает свои тайны пассивному наблюдателю. Только производя опыты, можно узнать кое-что новое. Конечно, если продумывать результаты. Продумывать критически, не упорствовать, как изобретатели вечных двигателей. Продумывать так, как это делал Архимед, и проверять свои мысли числами, как это делал он. Числами и чертежами.

Шли годы. Через пять лет после возвращения Стевина на родину вышла его книга, написанная, как мы уже знаем, к сожалению, по-фламандски. Замечательная книга. На ее титульном листе автор начертал вещие слова: «Чудо не есть чудо», а под ними изобразил цепь, на которую нанизаны 14 одинаковых шаров. Цепь перекинута через треугольник, лежащий на гипотенузе прямым углом вверх. 4 шара лежат на большом катете, 2 — на малом. Остальные 8 висят внизу.

Эта машина — символ. Основа всего, что содержится в книге. Это новое слово в науке. Слово, которому было суждено надолго остаться неуслышанным. Цепная машина и не должна была работать, но через многие годы она поставила своего создателя рядом с великими учеными.

Книга, о которой идет речь, посвящена статике — древнейшему разделу механики, и включает в себя гидростатику — раздел, имеющий особое значение для Нидерландов, страны мореходов и земледельцев, постоянно отстаивавших свои поля от разрушительных набегов воды. В этой книге Стевин предстает перед нами как прямой последователь Архимеда. При решении задач и общих проблем механики он применяет исключительно геометрический метод. Следует Архимеду и в построении системы определений, постулатов, теорем и в последующем решении задач. Однако он отнюдь не эпигон. При всем сходстве применяемых приемов и внешней аналогии в изложении материала имеется одно отличие. Существенное отличие, делающее Стевина одним из великих и самостоятельных умов, не столько завершающих труды предшественников, сколько открывающих дорогу последователям, пусть даже оставшимся в неведении его заслуг.

Это важное отличие является причиной того, что Стевин попал в нашу книгу. И оно так существенно для понимания эволюции науки, что на этой особенности метода Стевина надо остановиться подробнее.

Могущество интеллектуального обаяния

Архимед, живший за две тысячи лет до Стевина, в ряде трудов построил первую часть механики — статику. Исходя из чисто геометрических соображений, он открыл и геометрически обосновал свойства рычагов и сформулировал то, что мы теперь называем законами рычага.

Люди задолго до Архимеда пользовались рычагами и были знакомы с их основными свойствами. Но никто не мог понять и объяснить, почему рычаг действует так, а не иначе. Обычно для объяснения свойств рычага ссылались на свойства круга, а свойства круга при этом выступали как нечто совершенно мистическое. Архимед откровенно и остроумно высмеивал подобные рассуждения. Насмешливым, лукавым, мудрым предстает перед нами Архимед на картине великого испанского художника Риберы: с тонкой улыбкой Архимед протягивает зрителю чертеж, словно делится с ним недоумением: смотри, какую чушь тут понаписали невежды…

Установив свойства рычагов при помощи геометрии, Архимед показал, что действие многих простых машин, например ворота или блока, может быть понято и объяснено на основе свойств рычага. Более того, Архимед догадался, что при решении многих трудных геометрических задач, столь трудных, что ни он, ни другие не могли справиться с ними при помощи общепринятых тогда методов, можно свести каждую из них к задаче о рычаге или о рычагах.

А это уже не составляло для него большого труда. Так Архимед нашел решения многих сложнейших геометрических задач. Но трагедия его жизни (и не только его, но и многих людей, которые жили после него и могли бы шире пользоваться плодами его гениального ума) состояла в том, что Архимед вынужден был скрывать свой метод. Не из корысти или тщеславия. Из-за боязни преследований и гонений, опасаясь обвинения в отходе от традиций математики того времени.

Несмотря на то что важнейший труд Архимеда, содержащий секрет уникального метода, был утрачен и найден лишь в XX веке, появился незаурядный ум, который поднял его эстафетную палочку. Это был Стевин. За прошедшие между их жизнями века у Архимеда не было более близкого ему по духу и взглядам человека. Стевин, ничего не зная ни о скрытом труде Архимеда, ни о трагедии великого учителя, воспринял его идеологию и сделал следующий шаг. Это был шаг отважного мудреца. Стевин понял, что создать механизм, работающий вечно, без приложения внешних сил, невозможно, если даже в игру включатся такие вечные природные силы, как сила тяжести. Стевин не посягал на вечное движение — как и любой другой, он видел вечное движение звезд и планет. Стевин отрицал возможность создания вечного двигателя.

Наблюдая, как долго вращается маховик на хорошо смазанной оси, он понял роль трения как помехи движению. Понял, что при отсутствии трения маховик мог бы вращаться вечно. Конечно, не самостоятельно, а если его сначала привести во вращение. Он, по-видимому, первым догадался, как нужно ставить мысленные опыты. Осознал, что мысленный опыт может заменить и даже превзойти реальный опыт. Но это возможно только тогда, когда из него устраняют все второстепенное и оставляют лишь главное.

Так, Стевин первым ввел в науку абстракцию — метод, позволяющий успешно изучать сложные проблемы, решать запутанные задачи, очищая их предварительно от второстепенных деталей, от подробностей, не оказывающих существенного влияния на изучаемый процесс. Стевин ввел метод абстракции не только в механику, но и в гидростатику и в обеих областях совершил первый за многие века прорыв за пределы, достигнутые Архимедом.

Отважное одиночество

Великий древний ученый, вопреки мнению большинства современников, верил в шарообразность Земли. Все его исследования плавания тел и других задач гидростатики основаны на том, что поверхность всякой жидкости, строго говоря, имеет форму шара, центр которого совпадает с центром Земли. Так шарообразность Земли была впервые положена Архимедом в основу научных исследований, в основу расчетов. И каких сложнейших расчетов!

Стевин не побоялся пренебречь учетом шарообразности Земли в своих мысленных экспериментах. Гениальность Стевина, его принадлежность к будущему, а не к прошлому проявились в том, что он понял: учет шарообразности Земли при расчетах практических задач гидростатики излишен, он только придает вычислениям ненужную громоздкость. При решении таких задач можно и нужно рассматривать поверхность воды как плоскую поверхность!

Среди постулатов, приводимых в «Началах гидростатики», Стевин помещает «Постулат VI. Верхняя поверхность воды есть плоскость, параллельная горизонту». И дает «Пояснение. Известно, что поверхность воды имеет форму сферы, соответствующей земной поверхности или ей концентрической, а также, что капли имеют особую форму поверхности. Наш постулат не распространяется на последние ничтожные количества воды; однако это не имеет практического значения. Что же касается сферической формы поверхности воды, соответствующей земной поверхности, то принятие этого положения чрезвычайно затруднило бы доказательство последующих предложений, не дав никаких практических выгод для гидростатики. В целях упрощения рассуждений мы принимаем поэтому, что поверхность воды является плоской и параллельной горизонту».

Яснее не скажешь. Но Стевин остался не услышанным, и метод абстракции был заново разработан Галилеем.

Вернемся к проблемам механики, к тому, как Стевин, с помощью мысленных экспериментов, решает некоторые из них. В качестве основы своих рассуждений о механике Стевин взял цепную машину, о которой говорилось выше. 14 шаров на цепи, висящей на треугольнике. На прямоугольном треугольнике, один катет которого вдвое больше другого. На большом катете лежат 4 шара, на малом только 2. Остальные висят. Если бы 4 шара перевесили в этих условиях 2, то цепь сама по себе пришла бы в движение. Но это невозможно, считает Стевин. Если бы это было возможно, осуществился бы вечный двигатель, вечно черпающий даровую работу от силы тяжести. Ведь при перемещении цепи первоначальное расположение шаров повторяется вновь и вновь. Эти новые положения ничем не отличаются от первоначальных. Изобретатель вечного двигателя сказал бы (и многие говорили): прекрасно! Все начинается еще раз и будет повторяться вновь и вновь; цепная машина может работать вечно, совершая даровую работу. Стевин сделал противоположный вывод. Сила тяжести не может вечно давать даровую работу, значит, не может и сдвинуть с места цепную машину. А если эту машину толкнуть, ее остановит сила трения.

Цепная машина Стевина это схема, символ всех «вечных «двигателей, задача которых, по мысли их изобретателей, вечно черпать работу из силы тяжести при многократном повторении некоторого цикла движений. Многие известные проекты вечных двигателей содержали варианты цепных машин или колес, несущих подвижные рычаги с грузами. Но в отличие от своих предшественников и от всех последующих творцов вечных двигателей, Стевин сумел заставить свою цепную машину провести огромную работу. Работу, которая значительно приблизила человечество к овладению силами природы. Он применил цепную машину для вывода законов механики.

Теперь, уже без всяких вычислений, исходя лишь из того, что движение цепи не может начаться само по себе, Стевин утверждает: равновесие не нарушится и в том случае, если среди сторон треугольника не будет ни одной горизонтальной. Так же просто получается условие равновесия груза на наклонной плоскости, удерживаемого другим, висящим отвесно. Висящий груз должен быть во столько раз легче груза, лежащего на наклонной плоскости, во сколько высота наклонной плоскости меньше ее длины. Из подобных рассуждений вытекают и условия равновесия трех сил, приложенных к одной точке: они должны быть пропорциональны длинам сторон некоторого прямоугольного треугольника и направлены перпендикулярно этим сторонам. Так, исходя из невозможности создания вечного двигателя, Стевин получил закон равновесия грузов на наклонной плоскости, а затем построил все законы рычага и другие законы статики, прибегнув лишь к простейшим геометрическим построениям.

Стевина сближает с Архимедом и его критика попыток древних и средневековых ученых объяснить свойства рычага свойствами круга. В «Приложении к статике» Стевин поместил специальный раздел, озаглавленный «Причина равновесия рычага ни в какой мере не зависит от дуг круга, которые описывают концы его».

Он пишет: «То, что равные грузы, подвешенные к равным плечам рычага, пребывают в равновесии, достаточно подтверждается нашим непосредственным чувством. Но причина того, что два неравных груза, подвешенных к неравным плечам рычага, пребывают в равновесии, если отношение их весов обратно пропорционально отношению тех плеч, к которым они прикреплены, отнюдь не столь очевидна. Древние полагали, что причина лежит в дугах круга, описываемых концами рычага. Это положение можно видеть в «Механике «Аристотеля и сочинениях его приверженцев. Что это ложно, мы докажем следующим способом: то, что неподвижно, не описывает круга — два груза, находящиеся в равновесии, неподвижны; следовательно, два груза, находящиеся в равновесии, не описывают никакого круга. Итак, никакого круга здесь нет; если же нет круга, то нет и причины, которую ему можно было бы приписать; причина равновесия рычага лежит поэтому не в дугах круга». Далее Стевин указывает, где в основном тексте книги он описывает и доказывает причину равновесия неравноплечного рычага и заключает: «И не приходится вовсе удивляться, что тот, кто принимает подобные ошибочные утверждения за истину, приходит к ряду ложных предположений…»

Чудо не есть Чудо

Вот что ставит имя Стевина в один ряд с величайшими творцами механики — он построил всю статику, исходя из принципа невозможности создания вечного двигателя. Впоследствии этот принцип будет восприниматься как одна из формулировок закона сохранения энергии. Но тогда… Ведь само понятие энергии было осознано лишь более чем два с половиной века спустя!..

Сейчас мы считаем закон сохранения энергии фундаментом науки. Он настолько прочен, что любое отклонение от него, обнаруженное в каком-либо опыте, трактуется как ошибка. Если же не удается обнаружить ошибку, то ученые предпочитают немедленно приняться за пересмотр теории, использованной при обработке результатов опыта, сколь точной она ни считалась до того. Классический тому пример-вынужденное предсказание физиком-теоретиком Паули существования неизвестной в его время частицы (нейтрино). Узнав, что опыты с бета-распадом радиоактивных веществ не совпадают с законами сохранения энергии и импульса (куда-то «исчезает» часть энергии), и не сомневаясь в их незыблемости, Паули начал искать причины несоответствия. Не обнаружив ошибок ни в постановке опыта, ни в методах его обработки и расчетах, он предсказал существование новой частицы. Паули наделил ее весьма необычными свойствами, но они позволяли согласовать результаты опыта с законами сохранения энергии и импульса. И все считали его теорию правильной, несмотря на неудачи многочисленных попыток обнаружить предсказанные частицы. Через много лет нейтрино были обнаружены, и это стало новым триумфом науки, новым подтверждением незыблемости законов сохранения энергии и импульса. Но это было все-таки в XX веке. Стевин же, ничего не зная о законе сохранения энергии, всю гидростатику, а вместе с ней и знаменитый закон Архимеда выводит из принципа невозможности вечного двигателя.

Как известно, одной из важнейших работ Архимеда является его трактат «О плавающих телах». В нем он ставит и решает основные задачи гидростатики, столь необходимой при строительстве кораблей. В этой работе содержится закон Архимеда и другие истины, ставшие фундаментом гидростатики. Все эти истины поняты Архимедом интуитивно. Стевин, продолжая традицию, доказывает справедливость закона Архимеда без реального опыта только на основе мысленного эксперимента и убеждения в том, что вечный двигатель невозможен. Для этого он сначала формулирует и доказывает следующую теорему: «Вода удерживает в воде любое положение».

Доказательство: «Если бы было иначе и часть воды А не осталась бы на месте, а опустилась в Д, то вода, которая заняла бы ее место, также опустилась бы по той же причине. Таким образом, вследствие перемещения части А, вода пришла бы в вечное движение, что является абсурдом».

Отметим характерную для Стевина четкость формулировки. Он считает невозможным отнюдь не факт вечного движения, а то, что некая материальная система могла бы самопроизвольно прийти в вечное движение вследствие неких скрытых причин («по той же причине»). Хотелось бы пожелать такой четкости формулировок многим современным авторам. Даже в прекрасных фейнмановских лекциях по физике имеется такая поразительно нечеткая фраза: «Именно недопустимость вечного движения и есть общая формулировка закона сохранения энергии». Правда, непосредственно за этим сказано: «Определяя вечное движение, нужно быть очень осторожным». Но далее тратится треть страницы для того, чтобы пояснить на частном примере, что речь идет, по существу, о циклическом вечном двигателе.

Стевин, по-видимому, сказал бы сразу: невозможность вечного двигателя есть общая формулировка — ему пришлось бы закончить словами — основ механики, ибо понятия энергии он не знал, не знал он и науки об электричестве и теплоте, о многом другом, известном нам. Но он первый, причем с полной ясностью, сформулировал причины невозможности вечного двигателя и положил это в основу современной ему физики.

Стевин бесстрашно начертил свой девиз «чудо не есть чудо» в страшные времена разгула невежества — за тринадцать лет до того, как другого борца за знания, Джордано Бруно, сожгли на костре…

Загрузка...