На вулиці йде справжній дощ із ДНК. На березі Оксфордського каналу в нижній частині мого саду росте велика верба, саме вона й фонтанує в повітря насінням. Вітру майже немає, і насіння повільно дрейфує навсібіч від дерева. Уздовж усього каналу, наскільки можна побачити в мій бінокль, вода біліє від пухнастих цяток, що плавають на поверхні, і можна бути впевненим, що вони килимом укрили землю приблизно в такому ж самому радіусі в інших напрямках теж. Ці схожі на вату цятки складаються здебільшого з целюлози, що оточує крихітну капсулу, яка містить ДНК — генетичну інформацію. Уміст ДНК має становити невеличку частку від загального об’єму, то чому ж я сказав, що йшов дощ із ДНК, а не з целюлози? Відповідь полягає в тому, що значення має саме ДНК. Целюлозний пушок, хоч і об’ємніший, є лише парашутом, який потім уже не знадобиться. Все дійство, вата, сережки, дерево тощо покликані допомогти лише одній-єдиній речі — поширенню ДНК околицями. І не просто будь-якої ДНК, а ДНК, в кодованих знаках якої містяться специфічні інструкції для створення верб, що порозкидають нове покоління пухнастого насіння. Ці пухнасті цятки в буквальному сенсі поширюють інструкції зі створення самих себе. Вони з’явилися, бо їхнім предкам пощастило зробити те саме. Надворі йде дощ з інструкцій, дощ із програм, дощ з алгоритмів вирощування дерев і поширення пушків. І це не метафора, а щира правда. З таким самим успіхом там міг би йти дощ із дискет.
Усе просто й правдиво, однак люди довгий час цього не розуміли. Ще недавно, якби ви спитали мало не будь-якого біолога, що такого особливого в живих істотах на відміну від неживих, він почав би розповідати вам про особливу речовину під назвою протоплазма. Протоплазма не схожа на жодну іншу речовину; вона жива, вона вібрує, тріпоче, пульсує, «легко збудлива» (шкільні вчительки називають так здатність до швидкої реакції). Якщо взяти живий організм і розрізати його на дедалі менші шматочки, ви врешті-решт дійдете до частинок чистої протоплазми. Свого часу, в минулому столітті, реальний прототип професора Челленджера з романів сера Артура Конан Дойла вважав, що чистою протоплазмою є «глобігериновий мул» на дні моря. Коли я був школярем, літні автори підручників усе ще писали про протоплазму, хоча на той час вони вже мали б краще знатися на цьому питанні. У наші дні ви цього слова вже не почуєте й не побачите. Воно стало мертвим, подібно до флогістону та всесвітнього ефіру. У речовинах, з яких складаються живі організми, немає нічого особливого. Як і все інше, живі організми є просто скупченням молекул.
Особливим є те, що ці молекули зібрані разом у значно складніші схеми, ніж молекули неживих істот, і це збирання здійснюється шляхом дотримання програм, наборів інструкцій щодо розвитку, які організми носять у самих собі. Можливо, вони справді вібрують, тріпочуть, пульсують «легкою збудливістю» та світяться «живим» теплом, але всі ці властивості виникли між іншим. В основі кожної живої істоти лежить не вогонь, не тепле дихання, не «іскра життя». Це інформація, слова, інструкції. Якщо хочете метафору, забудьте про вогонь, іскри та дихання. Подумайте натомість про мільярд окремих цифрових знаків, висічених на гранях кристалів. Якщо ви хочете зрозуміти життя, думайте не про вібрацію й трепетання желе та мулів, а про інформаційні технології. Саме на це я натякав у попередньому розділі, називаючи королеву мурах центральним банком даних.
Основною вимогою до передової інформаційної технології є наявність своєрідного носія даних із великою кількістю комірок пам’яті. Кожна комірка має бути здатною перебувати в одному з дискретного числа станів. Так чи інакше, цим вимогам відповідають цифрові інформаційні технології, що сьогодні домінують у нашому світі штучності. Існує й альтернативний різновид інформаційної технології, який ґрунтується на аналоговій інформації. Аналоговою, наприклад, є інформація на звичайній грамофонній платівці. Зберігається вона у модульованих канавках запису. Інформація ж на сучасному лазерному диску (який часто називають «компакт-диском», що сумно, бо ця назва є неінформативною) є цифровою і зберігається у вигляді низки крихітних заглибин, кожна з яких точно там або точно не там — жодних половинчастих вимірів. У цьому й полягає характерна особливість цифрової системи: її основні елементи перебувають або чітко в одному стані, або чітко в іншому, без жодних напіввимірів і проміжних етапів чи компромісів.
Інформаційна технологія генів є цифровою. Цей факт відкрив у ХІХ столітті Ґреґор Мендель, хоча він сам сформулював би його інакше. Мендель показав, що наша спадковість не є міксом генів, отриманих від двох батьків. Ми отримуємо нашу спадковість у вигляді дискретних частинок. Коли йдеться про кожну частинку, то ми або успадковуємо її, або ні. Насправді, як зауважив Р. А. Фішер, один із засновників того, що тепер називають неодарвінізмом, факт дискретної спадковості завжди у нас перед очима щоразу, як ми думаємо про стать. Ми успадковуємо ознаки від батьків чоловічої та жіночої статі, але кожен із нас є або чоловіком, або жінкою, а не гермафродитом. Для кожного нового немовляти існує приблизно рівна ймовірність успадкування чоловічої або жіночої статі, але будь-яке немовля успадковує лише одну з цих ознак, а не поєднує обидві. Сьогодні ми знаємо, що те саме справедливо для всіх наших частинок спадковості. Вони не змішуються, а залишаються дискретними й окремими в міру того, як тасуються й перетасовуються крізь покоління. Звісно, впливи генетичних одиниць на організми часто створюють переконливу оману змішування. Якщо висока людина спаровується з низькою або чорна з білою, їхнє потомство часто являє собою проміжні варіанти. Але позірне змішування стосується лише впливів на організми й виникає завдяки сумарним невеличким впливам великої кількості частинок. Самі ж частинки, коли доходить до передавання їх наступному поколінню, залишаються окремими й дискретними.
Ця відмінність між змішаною спадковістю й дискретною відіграє в історії еволюційних ідей дуже важливу роль. За часів Дарвіна всі (крім Менделя, який, усамітнившись у своєму монастирі, на жаль, залишався в тіні аж до самої смерті) вважали спадковість змішаною. Шотландський інженер на ім’я Флімінґ Дженкін зазначив, що факт (як тоді вважалося) змішаної спадковості мало не заперечує природний відбір як правдоподібну основу теорії еволюції. Ернст Майр доволі нелюб’язно зауважив, що стаття Дженкіна «ґрунтується на всіх звичайних упередженнях і неправильному розумінні фізиків». Тим не менше аргументи Дженкіна глибоко стривожили Дарвіна. Найяскравіше вони втілені у притчі про білого чоловіка, що зазнав кораблетрощі на острові, населеному «неграми»:
…наділімо його всіма перевагами, які тільки може мати білий над аборигенами; припустімо, що в боротьбі за існування його шанси на довге життя будуть значно вищими порівняно з місцевими вождями; однак з усіх цих припущень геть не випливає, що через якусь лімітовану чи нелімітовану кількість поколінь мешканці острова стануть білими. Наш герой, що вижив у кораблетрощі, міг би стати королем; він міг би повбивати дуже багато чорних у боротьбі за існування, мати дуже багато дружин і дітей, тоді як багато його підданих жили б і помирали парубками… Якості нашого білого, безумовно, посприяли б його доброму збереженню до поважного віку, але він би все одно не зумів за будь-яку кількість поколінь зробити населення острова повністю білим… У першому поколінні з’явилося б декілька десятків розумних молодих мулатів, інтелект яких у середньому був би значно вищим, ніж у негрів. Можна було б очікувати, що впродовж декількох поколінь трон займатиме більш-менш жовтий король; але чи можна повірити, що весь острів поступово отримає біле чи хоча б жовте населення або що острів’яни набудуть енергії, сміливості, винахідливості, терпіння, самоконтролю, витривалості — якостей, завдяки яким наш герой повбивав стількох їхніх предків і породив стількох дітей, по суті, тих якостей, які й відбирала би боротьба за існування, якби вона могла щось відбирати?
Хай вас не збивають з пантелику расистські припущення про вищість білих. За часів Дженкіна й Дарвіна вони були так само незаперечними, як сьогодні є незаперечними властиві нашому видові припущення про права людини, людську гідність і священність людського життя. Аргументи Дженкіна можна перефразувати й за допомогою більш нейтральної аналогії. Якщо змішати разом білу й чорну фарбу, ви отримаєте сіру. Якщо ж змішати разом сіру й сіру фарбу, ви не зможете відтворити ані первинну білу, ані первинну чорну. Змішування фарб не таке вже далеке від доменделівського бачення спадковості, і навіть сьогодні масова культура часто зображує спадковість з погляду «змішування крові». У своєму «болотному аргументі» Дженкін вказує, що зі зміною поколінь, згідно з припущенням про змішану спадковість, мінливість приречена на засмоктування ознаками, що існували раніше, немов болотом. Превалювати почне дедалі більша однорідність. Урешті-решт мінливості просто не залишиться і природному відбору ні з чим буде працювати.
Правдоподібний за своїм звучанням, цей аргумент спрямований не лише проти природного відбору. Він спрямований більше проти невідворотних фактів про саму спадковість! Це ж явно неправда, що зі зміною поколінь мінливість зникає. Сьогодні люди не більш схожі один на одного, ніж вони були за часів своїх дідусів і бабусь. Мінливість зберігається. Існує цілий фонд мінливості для роботи природного відбору. 1908 року це було математично продемонстровано В. Вайнберґом і незалежним чином ексцентричним математиком Ґ. Г. Гарді. Останній, до речі, як свідчить книга записів парі його (та мого) коледжу, одного разу побився з колегою об заклад на «півпенні на його користь до самої смерті, що сонце зійде й завтра». Однак лише Р. А. Фішер з колегами, засновниками сучасної популяційної генетики, спромоглися підготувати повну відповідь Флімінґу Дженкіну з погляду теорії генетики частинок Менделя. Іронія в тому, що, як ми побачимо нижче, у розділі 11, у ті часи, на початку ХХ століття, провідні послідовники Менделя вважали себе антидарвіністами. Фішер із колегами показали, що дарвінівський відбір має сенс, а проблема Дженкіна елегантно розв’язується, якщо в процесі еволюції змінюється лише відносна частота дискретних спадкових частинок, або генів, кожна з яких або наявна, або відсутня в будь-якому конкретному окремо взятому організмі. Після Фішера дарвінізм став називатися неодарвінізмом. Його цифрова природа не є випадковим фактом, що справдився для генетичної інформаційної технології. Цифровість є, мабуть, необхідною передумовою для роботи дарвінізму як такого.
У нашій електронній технології дискретні цифрові комірки мають лише два стани, традиційно представлені як 0 та 1, хоча їх можна уявляти як «високо — низько», «увімкнено — вимкнено», «верх — низ». Важливо лише те, що вони мають бути окремими одна від одної та що схема їхніх станів може «читатися» так, аби мати якийсь вплив на щось. Електронна технологія використовує різноманітні фізичні носії для зберігання нулів і одиниць включно з магнітними дисками, магнітною стрічкою, перфокартами та перфострічкою, а також вбудовані «чипи» з багатьма маленькими напівпровідниками всередині.
Основний носій пам’яті всередині насіння верби, мурах і всіх інших живих клітин є не електронним, а хімічним. Він використовує той факт, що певні типи молекул здатні до «полімеризації», яка являє собою об’єднання в ланцюжки нескінченної довжини. Існує багато різних типів полімерів. Наприклад, поліетилен складається з довгих ланцюжків маленької молекули під назвою «етилен» — полімеризованого етилену. Крохмаль і целюлоза є полімеризованими цукрами. Деякі полімери замість того, щоб бути однорідними ланцюжками однієї маленької молекули на кшталт етилену, є ланцюжками з двох чи більше різних типів маленьких молекул. Щойно така неоднорідність потрапляє до полімерного ланцюжка, інформаційна технологія стає теоретично можливою. Якщо в ланцюжку є два типи маленьких молекул, їх можна вважати 1 та 0 відповідно, і одразу ж з’являється можливість зберігати будь-який обсяг інформації будь-якого типу, за умови, що ланцюжок достатньо довгий. Конкретні полімери, що використовуються живими клітинами, називаються полінуклеотидами. У живих клітинах є дві основні родини полінуклеотидів, що коротко звуться ДНК та РНК. Обидві є ланцюжками маленьких молекул під назвою «нуклеотиди». Як ДНК, так і РНК є неоднорідними ланцюжками з чотирма різними типами нуклеотидів. Звісно ж, саме на цьому й базується можливість зберігання інформації. Замість лише двох станів — 1 та 0 — інформаційна технологія живих клітин використовує чотири стани, які можна умовно представити як A, T, Ц і Г. У принципі, відмінність між бінарною інформаційною технологією, як у комп’ютері, та інформаційною технологією чотирьох станів, як у живій клітині, дуже невелика.
Як я згадував наприкінці розділу 1, в одній-єдиній людській клітині достатньо інформаційної ємності для збереження Британської енциклопедії, всіх її 30 томів, три чи чотири рази поспіль. Відповідних цифр для насінини верби чи мурахи я не знаю, але вони явно будуть не менш приголомшливими. У ДНК однієї-єдиної насінини лілії чи одного-єдиного сперматозоїда саламандри достатньо ємності пам’яті для збереження Британської енциклопедії 60 разів поспіль. Деякі види амеб, яких несправедливо називають «примітивними», містять у своїх ДНК стільки ж інформації, скільки її в тисячі Британських енциклопедій.
Як не дивно, але насправді, наприклад, у людських клітинах використовується, схоже, лише приблизно 1 % генетичної інформації, грубо кажучи, еквівалент одного тому Британської енциклопедії. Для чого там інші 99 %, ніхто не знає. В одній зі своїх попередніх книжок я висловив припущення, що це можуть бути паразити, які живуть за рахунок 1 %, — цю теорію нещодавно під назвою «егоїстична ДНК» прийняли молекулярні біологи. Бактерія має інформаційну ємність, приблизно в тисячу разів меншу, ніж людська клітина, і, мабуть, використовує її майже всю — для паразитів місця залишається мало. Її ДНК могла б умістити «лише» один примірник Нового Заповіту!
Сучасні генні інженери вже мають технологію, щоб записати Новий Заповіт чи щось інше в ДНК бактерії. «Значення» символів у будь-якій інформаційній технології є довільним, і немає жодних причин не призначити комбінації (скажімо, триплети) з 4-літерного алфавіту ДНК літерам нашого власного 26-літерного алфавіту (залишилося б місце для всіх великих і малих літер із 12 розділовими знаками). На жаль, на запис Нового Заповіту в бактерію знадобилося б приблизно п’ять століть, тож я сумніваюсь, що хтось за це візьметься. Якби ж хтось це таки зробив, частота відтворення бактерій є такою, що за один день могли б виходити 10 мільйонів примірників Нового Заповіту. Мрія місіонера — якби тільки люди вміли читати алфавіт ДНК, але, на жаль, знаки там такі дрібні, що всі 10 мільйонів примірників могли б одночасно уміститися на поверхні шпилькової головки.
Електронна комп’ютерна пам’ять умовно поділяється на ПЗП (ROM) та ОЗП (RAM). ПЗП розшифровується як «постійний запам’ятовувальний пристрій». По суті, це пристрій, на який записують інформацію один раз і з якого читають багато. Комбінація нулів та одиниць «випалена» в ньому раз і назавжди під час виробництва. Надалі вона залишається незмінною впродовж усього строку служби пристрою, а інформацію з нього можна зчитувати будь-яку кількість разів. Інший електронний запам’ятовувальний пристрій, під назвою ОЗП, можна читати, але на нього можна й «записувати» (люди звикають до цього неелегантного комп’ютерного жаргону доволі швидко). Таким чином, ОЗП може робити все, що робить ПЗП, і навіть більше. Те, як розшифровуються літери ОЗП, насправді збиває людей з пантелику, тому я про це не згадуватиму. Важливо лише запам’ятати, що в ОЗП можна ввести будь-яку комбінацію нулів та одиниць, причому в будь-яку його частину і стільки разів, скільки вам заманеться. Більшість комп’ютерних запам’ятовувальних пристроїв — це ОЗП. Коли я набираю ці рядки, вони потрапляють прямісінько в ОЗП, та й програма обробки текстів, що контролює процес, також міститься в ОЗП, хоча теоретично її можна було б випалити в ПЗП й потім уже ніколи більше не змінювати. ПЗП використовуються для фіксованого репертуару стандартних програм, які запускаються багато разів і які ви не можете змінити, навіть якби захотіли.
ДНК — це ПЗП. Читати її можна мільйони разів поспіль, але записати лише раз — коли вона вперше «збирається» під час народження клітини, в якій мешкає. У клітинах будь-якого індивіда ДНК є «випаленою» й жодного разу не змінюється впродовж життя цього індивіда, за винятком дуже рідкісних випадкових пошкоджень. Однак її можна копіювати. Вона подвоюється з кожним поділом клітини. Комбінація нуклеотидів A, T, Ц та Г якнайточніше копіюється в ДНК кожної з трильйонів нових клітин, що створюються в міру зростання дитини. Під час зачаття нового індивіда в ПЗП його ДНК випалюється нова унікальна комбінація даних, з якою він залишається до кінця свого життя. Вона копіюється в усі його клітини (крім репродуктивних, у які, як ми побачимо нижче, копіюється випадкова половина його ДНК).
Уся комп’ютерна пам’ять (чи то ПЗП, чи ОЗП) є адресною. Це означає, що кожна комірка пам’яті має свою позначку, зазвичай цифру, але це — довільна умова. Важливо розуміти відмінність між адресою і змістом комірки пам’яті. Кожна комірка відома за своєю адресою. Наприклад, перші дві літери цього розділу «На» у цей момент сидять у комірках ОЗП 6446 і 6447 у моєму комп’ютері, який має загалом 65 536 комірок ОЗП. Іншого разу зміст цих двох комірок буде іншим. Змістом комірки є що завгодно, записане туди останнім. Кожна комірка ПЗП також має адресу та зміст. Відмінність полягає в тому, що тут кожна комірка пов’язана з її змістом раз і назавжди.
ДНК розташована вздовж нитчастих хромосом, схожих на довгі комп’ютерні перфострічки. Уся ДНК у кожній нашій клітині є адресною в тому самому сенсі, що й комп’ютерний ПЗП чи, по суті, комп’ютерна перфострічка. Точні цифри чи назви, які ми використовуємо для позначення конкретної адреси, є довільними, так само, як і для комп’ютерної пам’яті. Значення має лише те, що конкретна комірка моєї ДНК точно відповідає одній конкретній комірці вашої ДНК: вони мають однакову адресу. Зміст моєї комірки ДНК 321762 може бути чи не бути таким самим, як зміст вашої комірки 321762. Але моя комірка 321762 займає точно таке саме положення у моїх клітинах, як і ваша комірка 321762 у ваших клітинах. «Положення» тут означає розташування вздовж конкретної хромосоми. Точне фізичне положення хромосоми в клітині не має значення. По суті, вона вільно плаває в рідині, тому її фізичне положення змінюється, але кожна комірка вздовж хромосоми має точну адресу з погляду лінійного порядку вздовж хромосоми, так само, як кожна комірка вздовж комп’ютерної стрічки має точну адресу, навіть якщо стрічка тягнеться по підлозі, а не охайно змотана. Усі ми, всі людські істоти, маємо однаковий набір адрес ДНК, але не обов’язково однаковий зміст цих адрес. У цьому й полягає головна причина того, що ми всі відрізняємось один від одного.
Інші види не мають такого самого набору адрес. Шимпанзе, наприклад, мають 48 хромосом, на відміну від нас із нашими 46. Строго кажучи, порівняти їхній зміст адреса за адресою неможливо, бо на різних боках видових бар’єрів адреси не відповідають одна одній. Однак близькоспоріднені види на кшталт шимпанзе й людей мають такі великі спільні шматки суміжних змістів, що їх можна легко ідентифікувати як здебільшого однакові, навіть попри те, що ми не можемо використовувати для обох видів абсолютно однакову систему адресації. Вид визначає те, що всі його представники мають однакову систему адресації для своїх ДНК. За кількома незначними винятками, всі представники одного виду мають однакову кількість хромосом, і кожна комірка уздовж хромосоми має свій точний відповідний номер у тому самому положенні вздовж відповідної хромосоми всіх інших представників цього виду. Відрізнятися серед представників виду може лише зміст цих комірок.
Відмінності змістів у різних індивідів виникають таким чином, і тут я маю наголосити, що говорю про види зі статевим розмноженням, такі як наш власний. Усі наші сперматозоїди чи яйцеклітини містять по 23 хромосоми. Кожна адресна комірка одного з моїх сперматозоїдів відповідає конкретній адресній комірці кожного іншого мого сперматозоїда та кожної вашої яйцеклітини (чи сперматозоїда). Усі інші мої клітини містять 46 хромосом — подвійний набір. У кожній із цих клітин ті самі адреси використовуються двічі поспіль. Кожна клітина містить у собі дві хромосоми 9 і дві версії комірки 7230 уздовж хромосоми 9. Зміст обох може бути чи не бути однаковим, так само, як вони можуть бути чи не бути однаковими в інших представників виду. Коли сперматозоїд, що має 23 хромосоми, створюється з клітини тіла, що має 46 хромосом, він отримує лише одну з двох копій кожної адресної комірки. Яку саме з них він отримає, можна вважати випадковістю. Те саме справедливо й для яйцеклітин. Результатом є те, що кожен вироблений сперматозоїд і кожна вироблена яйцеклітина є унікальними з погляду змісту їхніх комірок, хоча їхня система адресації ідентична в усіх представників одного виду (за незначними винятками, що не повинні відвертати нашу увагу). Коли сперматозоїд запліднює яйцеклітину, повний комплект із 46 хромосом, безумовно, відновлюється, і всі вони потім дублюються в усіх клітинах у процесі розвитку ембріона.
Я говорив, що на ПЗП не можна записувати інформацію, крім єдиного моменту, коли він тільки виготовляється, і це справедливо також для ДНК у клітинах, за винятком періодичних випадкових помилок при копіюванні. Але в певному сенсі у колективний банк даних, що складається з ПЗП всього виду, можна вносити конструктивні записи. У процесі зміни поколінь невипадкове виживання та репродуктивний успіх індивідів у межах виду ефективно «записує» вдосконалені інструкції для виживання в колективну генетичну пам’ять виду. Еволюційна зміна виду здебільшого складається зі зміни кількості копій кожного з різноманітних можливих змістів для кожної адресної комірки ДНК із плином поколінь. Звісно, в будь-який конкретний час кожна копія має перебувати всередині тіла індивіда. Але в процесі еволюції велике значення мають зміни частоти альтернативних можливих змістів за кожною адресою в популяції. Система адресації залишається тією ж самою, але статистичний профіль змісту комірки змінюється з плином століть.
Дуже рідко змінюється й сама система адресації. Шимпанзе має 24 пари хромосом, а ми — 23. Ми маємо з шимпанзе спільного предка, тож у якійсь точці нашого або їхнього родоводу, мабуть, сталася зміна числа хромосом. Або ми втратили хромосому (дві злилися), або шимпанзе набули одну (одна розщепилася). Мав бути хоча б один індивід, кількість хромосом якого відрізнялася від їх кількості у його батьків. Загалом у генетичній системі відбуваються також інші періодичні зміни. Як ми побачимо нижче, цілі шматки генетичного коду час від часу можуть копіюватися до абсолютно різних хромосом. Ми знаємо це, бо знаходимо ідентичні довгі нитки тексту ДНК, розкидані між хромосомами.
Коли інформація в комп’ютерній пам’яті зчитується з конкретної комірки, з нею може відбуватися одна з двох речей. Вона може або просто записуватися кудись іще, або вступати в якусь «дію». Запис кудись іще означає копіювання. Ми вже бачили, що ДНК легко копіюється з однієї клітини до іншої, нової і що шматки ДНК можуть копіюватися з одного індивіда до іншого — його дитини. Із «дією» ситуація складніша. У комп’ютерах одним видом дії є виконання інструкцій програми. У ПЗП мого комп’ютера комірки номер 64489, 64490 та 64491, разом узяті, містять конкретну комбінацію змісту (одиниць і нулів), що під час інтерпретації їх як інструкції спонукає динамік комп’ютера видавати уривчастий звуковий сигнал. Ось ця комбінація — 10101101 00110000 11000000. Від природи в цій комбінації немає нічого уривчастого чи звукового. Ніщо в ній не говорить вам, що вона матиме такий вплив на динамік. Вона здійснює цей вплив лише через спосіб, яким з’єднана між собою решта частин комп’ютера. У такий самий спосіб комбінації чотирилітерного коду ДНК мають впливи, наприклад, на колір очей чи поведінку, але ці впливи не властиві комбінаціям даних ДНК як таким. Вони є лише результатом способу, яким розвивається решта ембріона, на який, у свою чергу, впливають комбінації інших частин ДНК. Цю взаємодію між генами ми детально розглянемо в розділі 7.
Перш ніж вони зможуть вступити в будь-яку дію, кодові символи ДНК мають транслюватися на інший носій. Спочатку вони транскрибуються точно відповідними символами РНК, яка також має чотирилітерний алфавіт. Після цього вони транслюються в іншого типу полімер — поліпептид, або білок. Його можна було б назвати й поліамінокислотою, бо основними його складовими є амінокислоти. У живих клітинах існує 20 різновидів амінокислот. Усі біологічні білки є ланцюжками, що складаються з цих 20 основних будівельних блоків. Хоча білок є ланцюжком амінокислот, більшість із них не залишаються довгими та нитчастими. Кожен ланцюжок скручується в складний вузол, точна форма якого визначається порядком амінокислот. Тому форма цього вузла ніколи не змінюється, за жодної конкретної послідовності амінокислот. Послідовність амінокислот, у свою чергу, точно визначена кодовими символами вздовж ДНК (через РНК як посередника). Тому в певному сенсі тривимірна скручена форма білка визначається одновимірною послідовністю кодових символів ДНК.
Процедура трансляції втілює в собі славнозвісний трилітерний «генетичний код». Це словник, у якому кожен із 64 (4 × 4 × 4) можливих триплетів символів ДНК (чи РНК) перетворюється на одну з 20 амінокислот або на символ «кінець зчитування». Існують три такі розділові знаки «кінець зчитування». Багато амінокислот кодуються більш ніж одним триплетом (як ви могли б здогадатися з того факту, що існує 64 триплети й лише 20 амінокислот). Уся трансляція від строго послідовного ПЗП ДНК до точно інваріантної тривимірної форми білка є дивовижним досягненням цифрових інформаційних технологій. Подальші кроки, якими гени впливають на організми, є трохи менш очевидно комп’ютероподібними.
Кожну живу клітину, навіть одну-єдину бактеріальну, можна уявити собі як величезний хімзавод. Комбінації ДНК, або гени, справляють свої ефекти, впливаючи на хід подій на цьому хімзаводі, і роблять це, діючи на тривимірну форму молекул білка. Слово «величезний» може здатися дивним для клітини, особливо коли згадати, що на поверхні шпилькової голівки можуть уміститися 10 мільйонів бактеріальних клітин. Але згадайте також, що кожна з цих клітин здатна вмістити весь текст Нового Заповіту. Крім того, вона таки величезна, якщо міряти за кількістю складних машин, які у ній містяться. Кожен механізм являє собою велику білкову молекулу, зібрану під впливом конкретної ділянки ДНК. Білкові молекули під назвою «ферменти» є машинами в тому сенсі, що кожна з них забезпечує розгортання конкретної хімічної реакції. Кожна така білкова машина випускає свій власний конкретний хімічний продукт. Для цього вона використовує сировину, що дрейфує в клітині, будучи, дуже ймовірно, продуктом інших «білкових машин». Аби дати вам уявлення про розмір цих білкових механізмів, скажу, що кожен із них складається приблизно з 6 тисяч атомів, що дуже багато за молекулярними стандартами. Усього на цьому хімзаводі, яким є клітина, налічується близько мільйона таких великих апаратів, причому представлених понад 2 тисячами різновидів, кожен з яких спеціалізується на виконанні конкретної операції. Саме характерні хімічні продукти таких ферментів надають клітині її індивідуальної форми та поведінки.
Оскільки всі клітини організму містять однакові гени, може здатися дивним, що всі ці клітини не ідентичні. Причина полягає в тому, що в різних типах клітин читаються різні набори генів, тоді як інші ігноруються. У клітинах печінки не читаються ті частини ПЗП ДНК, що особливо значимі для побудови клітин нирки, і навпаки. Форма та поведінка клітини залежать від того, які саме гени всередині її читаються та перетворюються на відповідні білкові продукти. Це, у свою чергу, залежить від хімічних речовин, які вже є в клітині, що почасти залежить від того, які гени попередньо були зчитані в ній, а почасти від сусідніх клітин. Коли одна клітина ділиться надвоє, то дві дочірні не обов’язково є в усьому схожими одна на одну. У первинній заплідненій яйцеклітині, наприклад, одні хімічні речовини збираються на одному її краю, а інші на другому. Коли така поляризована клітина ділиться, у двох її дочірніх клітинах хімікати розподіляються по-різному. Це означає, що в дочірніх клітинах зчитуватимуться різні гени й відбуватиметься своєрідна самопідкріплювана дивергенція. Остаточна форма всього тіла, розмір його кінцівок, налаштування мозку, синхронізація його поведінкових схем — усе це є непрямими наслідками взаємодій між різними типами клітин, відмінності між якими, в свою чергу, виникають через зчитування різних генів. Ці процеси дивергенції найкраще уявити собі як місцево автономні, на манер «рекурсивної» процедури з розділу 3, а не як скоординовані в якийсь масштабний центральний задум.
«Дія» в тому сенсі, в якому це поняття використовується в даному розділі, є тим, про що говорить генетик, коли згадує «фенотиповий ефект» гена. ДНК чинить на тіло, колір очей, кучерявість волосся, ступінь агресивності поведінки та тисячі інших властивостей впливи, які називаються фенотиповими ефектами. ДНК здійснює ці впливи спочатку локально, зчитуючись у вигляді РНК та транслюючись у білкові ланцюжки, які потім впливають на форму та поведінку клітини. Це один із двох способів, якими може зчитуватись інформація у схемі ДНК. Інший спосіб полягає в тому, що вона може дублюватись у нову нитку ДНК. Це саме те копіювання, про яке ми говорили раніше.
Між цими двома шляхами передавання інформації ДНК, вертикальним і горизонтальним, існує фундаментальна відмінність. Вертикально інформація передається до іншої ДНК в клітинах (що утворюють інші клітини), які продукують сперматозоїди чи яйцеклітини. Отже, вона передається вертикально наступному поколінню, а потім, знову вертикально, нескінченній кількості майбутніх нащадків. Я називатиму її «архівною ДНК». Вона потенційно безсмертна. Послідовність клітин, якою просувається архівна ДНК, називається зародковою лінією. Ця зародкова лінія являє собою набір клітин усередині тіла, що є предковими для сперматозоїдів чи яйцеклітин, а отже, для майбутніх поколінь. ДНК передається також убік, або горизонтально, — до ДНК клітин незародкової лінії, таких як клітини печінки чи шкіри, всередині таких клітин до РНК, звідти до білка та різноманітних впливів на ембріональний розвиток, а отже, й на форму та поведінку дорослого організму. Горизонтальне та вертикальне передавання можна вважати відповідниками двох підпрограм — РОЗВИТКУ та РОЗМНОЖЕННЯ — з розділу 3.
Різний успіх конкурентних ДНК у справі вертикального передавання в архіви виду цілком і повністю пов’язаний із природним відбором. «Конкурентна ДНК» означає альтернативний зміст конкретних адрес у хромосомах виду. Одні гени є успішнішими за конкурентні у збереженні в архівах. Хоча вертикальне передавання архівами виду, врешті-решт, якраз і означає «успіх», критерієм успіху зазвичай є дія, яку гени справляють на організми за рахунок їх передавання вбік. Тут усе так само, як у комп’ютерній моделі з біоморфами. Наприклад, припустімо, що у тигрів існує конкретний ген, який за рахунок його впливу по горизонталі, у клітинах щелеп, змушує зуби бути трохи гострішими за ті, що виросли б під впливом конкурентного гена. Тигр із такими надгострими зубами може вбивати здобич ефективніше, ніж звичайний тигр, а отже, має більше потомство і, значить, передає (вертикально) більше копій гена, що робить зуби гострішими. Звісно, одночасно він передає і всі інші свої гени, але в середньому в організмах гострозубих тигрів опиниться лише конкретний «ген гострих зубів». З погляду його вертикального передавання сам ген виграє від середніх впливів, які він має на цілу низку організмів.
Ефективність ДНК як архівного середовища захоплює. За своєю здатністю зберігати повідомлення вона значно перевершує кам’яні скрижалі. Корови та горох (а по суті, й усі ми) мають майже ідентичний ген під назвою «ген гістона H4». Текст його ДНК складається з 306 знаків. Не можна сказати, що він має однакові адреси в усіх видів, бо не можна точно порівняти позначки адрес між видами. Але зрозуміло, що у корів є ділянка завдовжки 306 знаків, практично ідентична ділянці завдовжки 306 знаків у гороху. Корови і горох відрізняються один від одного лише двома знаками з цих 306. Ми не знаємо точно, як давно жив спільний предок корів і гороху, але скам’янілості свідчать про те, що це було десь від 1 до 2 тисяч мільйонів років тому. Хай буде 1,5 мільярда. За цей неймовірно довгий (для людей) час кожна з двох ліній, що розгалужувалися від цього далекого предка, зберегла незмінними 305 із 306 знаків (у середньому: цілком можливо, що одна лінія зберегла всі 306 із них, а друга — лише 304). Це при тому, що навіть літери, висічені на надгробках, стають нечитабельними за якісь сотні років.
У певному сенсі збереження документа ДНК «гістон H4» є ще приголомшливішим, бо, на відміну від кам’яних скрижалів, текст зберігається не однією й тією самою фізичною структурою. Він неодноразово копіюється й перекопійовується зі зміною поколінь на кшталт іудейських священних книг, які згідно з ритуалом переписувачі копіювали кожні 80 років, аби попередити їхнє зношування. Важко оцінити точно, скільки разів документ «гістон H4» було перекопійовано в лінії, що веде до корів від їхнього спільного з горохом предка, але, мабуть, цих копій було не менше 20 мільярдів. Також важко знайти мірило, щоб порівняти збереження понад 99 % інформації в процесі 20 мільярдів послідовних копіювань. Можна спробувати використати версію гри «Зіпсований телефон». Уявімо собі 20 мільярдів машиністок, що сидять у ряд. Цей ряд міг би оперезати Землю 500 разів. Перша машиністка друкує сторінку документа й передає її своїй сусідці. Та копіює її й передає копію наступній. Та передруковує її знову, передає копію далі… Урешті-решт повідомлення досягає кінця ряду, і ми читаємо його (чи, радше, це роблять наші 12 тисяч разів правнуки — якщо припустити, що всі машиністки працюють із типовою для доброї секретарки швидкістю). Наскільки точним було б у цьому разі відтворення вихідного повідомлення?
Щоб відповісти на це запитання, треба зробити певне припущення про точність роботи машиністок. Зайдімо з іншого боку. Наскільки точною має бути кожна машиністка, щоб зберегти відповідність ДНК? Відповідь є чи не надто абсурдною, щоб її озвучувати. Хай там як, але кожна машиністка мала би помилятися не частіше ніж приблизно один раз на трильйон знаків — тобто бути достатньо акуратною, щоб припускатися лише однієї-єдиної помилки під час передруку Біблії 250 тисяч разів поспіль. Гарна секретарка в реальному житті помиляється з частотою приблизно один раз на сторінку. Це десь у півмільярда разів більше за частоту помилок гена гістона H4. У реальному житті ряд секретарок уже на двадцятій із 20 мільярдів копій залишив би від тексту тільки 99 % його первинних літер. На десятитисячній з ряду від первинного тексту залишилося б менше 1 %. І ця точка майже повної деградації була б досягнута ще до того, як 99,9995 % машиністок узагалі б його побачили.
Усе це порівняння трохи оманливе, але в цікавому й показовому сенсі. Я створив враження, що ми вимірюємо лише помилки під час копіювання. Але документ гістона H4 не просто копіювався, а ще й зазнавав природного відбору. Гістон є надзвичайно важливим для виживання. Він використовується в побудові структури хромосом. Можливо, помилок під час копіювання гена гістона H4 було значно більше, але мутантні організми не виживали чи принаймні не розмножувалися. Щоб зробити це порівняння наочнішим, треба припустити, що в кожен стілець вбудовано пістолет, під’єднаний так, що у разі помилки машиністка буде одразу ж застрелена, а її місце займе резервна (надто чутливі читачі можуть уявити собі катапульту, що м’яко викидає неакуратну машиністку з ряду, але пістолет створює реалістичнішу картину природного відбору).
Отже, цей метод вимірювання збереження ДНК з огляду на кількість змін, що насправді відбулися за якийсь геологічний час, поєднує точність копіювання як таку з фільтраційними ефектами природного відбору. Ми бачимо лише нащадків успішних змін ДНК. Тих же, що призвели до смерті, з нами явно немає. А чи можна виміряти реальну точність копіювання до того, як природний відбір візьметься за роботу над кожним новим поколінням генів? Так, вона є зворотною стороною того, що відоме як частота мутацій, і її можна виміряти. Імовірність неправильного копіювання будь-якої конкретної літери за будь-якого випадку копіювання виявляється трохи більшою, ніж один на мільярд. Відмінність між цим, частотою мутацій і нижньою частотою, з якою зміна насправді вноситься в ген гістона під час еволюції, є мірилом ефективності збереження природним відбором цього давнього документа.
Збереження гена гістона впродовж віків за генетичними мірками є винятковим. Інші гени змінюються з вищою частотою переважно тому, що природний відбір більш толерантний до їхньої мінливості. Наприклад, гени кодування білка, відомі як фібринопептиди, в процесі еволюції змінюються з частотою, що наближається до базової частоти мутацій. Можливо, це означає, що помилки в деталях цих білків (вони виробляються під час згортання крові) не мають великого значення для організму. Частота зміни генів гемоглобіну є проміжною між частотами мутацій гістонів і фібринопептидів. Можливо, й толерантність природного відбору до їхніх помилок є проміжною. Гемоглобін виконує в крові важливу роботу, і його властивості справді мають значення, але декілька альтернативних його варіантів, схоже, здатні виконувати цю роботу не гірше.
Тут ми маємо щось схоже на невеличкий парадокс, але тільки допоки не придивимось уважніше. Молекули, що еволюціонують найповільніше, на кшталт гістонів, як виявляється, найбільше піддаються природному відбору. Молекули фібринопептидів еволюціонують найшвидше, бо природний відбір майже повністю їх ігнорує. Вони вільні еволюціонувати з частотою мутацій. На парадокс це схоже тому, що ми приділяємо надто велику увагу природному відбору як рушійній силі еволюції. Із цього випливає, що, якби природного відбору не існувало, можна було б очікувати, що не відбувалася б і еволюція. І навпаки, нормально було б вважати, що потужний «тиск відбору» може привести до швидкої еволюції. Натомість ми спостерігаємо, що природний відбір справляє гальмівний вплив на еволюцію. За відсутності природного відбору базова частота еволюції є максимально можливою й відповідає частоті мутацій.
Насправді жодного парадоксу тут немає. Якщо придивитись уважніше, стає зрозуміло, що інакше й бути не могло б. Еволюція шляхом природного відбору не могла б рухатися швидше за частоту мутацій, бо мутація є, врешті-решт, єдиним способом, яким у вид вносяться нові варіації. Природний відбір може лише прийняти одні нові варіації й відхилити інші. Частота мутацій приречена задавати верхню межу частоти, з якою може відбуватись еволюція. Власне кажучи, природний відбір здебільшого переймається попередженням еволюційних змін, а не їх просуванням. Покваплюся зазначити: це не означає, що природний відбір є суто деструктивним процесом. Він здатен і до конструктиву — способами, які буде розкрито в розділі 7.
Навіть частота мутацій є доволі повільною. Іншими словами, навіть без природного відбору ефективність коду ДНК в точному збереженні його архіву вражає. За однією консервативною оцінкою, за відсутності природного відбору ДНК реплікується настільки точно, що для помилки при копіюванні 1 % знаків потрібно п’ять мільйонів поколінь реплікації. Наші гіпотетичні машиністки все ще безнадійно програють ДНК навіть за відсутності природного відбору. Щоб зрівнятися з ДНК без природного відбору, кожна з них мала б бути здатною передрукувати весь Новий Заповіт лише з однією помилкою, тобто бути приблизно в 450 разів точнішою за типову секретарку з реального життя. Це явно значно менше, ніж порівняльна цифра в півмільярда разів, у які ген гістона H4 після природного відбору є точнішим за типову секретарку; однак це все одно приголомшлива цифра.
Але я був несправедливим до машиністок. Я припускав, по суті, що вони не здатні помічати свої помилки й виправляти їх. Я припустив повну відсутність коректури. У реальності ж, ясна річ, вони коректуру роблять. Тому мій ряд із мільярдів машиністок не спричинив би дегенерації первинного повідомлення таким доволі простим шляхом, який я відобразив. Механізм копіювання ДНК виконує корекцію помилок такого ж самого типу автоматично. Якби він цього не робив, то не досягнув би нічого, схожого на колосальну точність, яку я описав. Процедура копіювання ДНК передбачає різноманітні методи «коректури». Вони тим більш необхідні, що літери коду ДНК жодним чином не є статичними, немов ієрогліфи, висічені в граніті. Натомість задіяні молекули настільки маленькі — згадайте всі ті Нові Заповіти, які уміщаються на шпильковій головці, — що зазнають постійних атак від повсякденної штовханини молекул під впливом тепла. Спостерігається постійний потік, круговерть літер у повідомленні. У кожній людській клітині за день дегенерують приблизно 5 тисяч літер ДНК, які одразу ж замінюються відновлювальними механізмами. Якби відновлювальних механізмів не було і якби вони безупинно не працювали, повідомлення поступово розчинилося б. Коректура свіжоскопійованого тексту є лише особливим випадком звичайних відновлювальних робіт. Саме коректура переважно відповідає за дивовижну точність ДНК та ефективність зберігання інформації.
Ми вже бачили, що молекули ДНК є центром захопливої інформаційної технології. Вони здатні вміщувати просто безмежний обсяг точної цифрової інформації в дуже малому просторі, а також зберігати цю інформацію (з разюче нечисленними помилками, але все ж не без них) упродовж дуже довгого часу, що вимірюється мільйонами років. Куди ці факти нас ведуть? Вони ведуть нас у напрямку основоположної істини про життя на Землі — істини, на яку я натякав у першому абзаці цього розділу, говорячи про вербове насіння. Вона полягає в тому, що живі організми існують на користь ДНК, а не для чогось іншого. Наразі це може бути не очевидно, але згодом я сподіваюся переконати вас у цьому. Повідомлення, які містять молекули ДНК, є мало не вічними порівняно з часовою шкалою тривалості життя окремих індивідів. Тривалість життя ДНК-повідомлень (плюс-мінус декілька мутацій) вимірюється одиницями в діапазоні від мільйонів до сотень мільйонів років, або, іншими словами, від 10 тисяч строків життя індивідів і до трильйона. Кожен окремий організм слід розглядати як тимчасовий засіб пересування, в якому ДНК-повідомлення проводять лише крихітну частину свого геологічного існування.
У світі повно об’єктів, що існують. Цього не можна заперечувати, але чи приведе це нас хоч кудись? Об’єкти існують або тому, що вони тільки нещодавно виникли, або тому, що наділені якостями, які зробили малоймовірним їх руйнування в минулому. Скелі не виникають із високою частотою, але коли вже вони існують, то є міцними й довговічними. Інакше вони були б не скелями, а піском. Щоправда, деякі з них ним і є, саме тому ми маємо пляжі! У вигляді скель існують лише ті, що залишилися довговічними. З іншого боку, краплі роси існують не тому, що вони довговічні, а тому, що вони тільки-но виникли і ще не встигли випаруватися. Ми, схоже, маємо два типи «придатності до існування»: тип крапель роси, які можна загалом назвати «ймовірними для виникнення, але не дуже довговічними», й тип скель, які можна загалом назвати «не дуже ймовірними для виникнення, але здатними до тривалого існування після виникнення». Скелям притаманна довговічність, а краплям роси — «виникабельність». (Я намагався дібрати менш потворне слово, але не зміг.)
ДНК отримує найкраще від обох світів. Самі молекули ДНК як фізичні сутності подібні до краплин роси. За відповідних умов вони виникають із великою частотою, але жодна з них не існує довго, і всі будуть зруйновані за кілька місяців. Вони не є довговічними, як скелі. Але схеми, закладені в їхніх послідовностях, є такими самими довговічними, як найміцніші скелі. Вони мають те, що потрібно для існування впродовж мільйонів років, і саме тому сьогодні вони все ще тут. Основною їхньою відмінністю від росинок є те, що нові росинки не породжуються старими. Одні краплі роси, безперечно, нагадують інші, але вони не нагадують конкретні, «батьківські», краплі. На відміну від молекул ДНК, вони не формують спадкові лінії, а отже, не можуть передавати повідомлення. Краплі роси виникають шляхом спонтанного зародження, а повідомлення ДНК — шляхом реплікації.
Трюїзми на кшталт «У світі повно об’єктів, що мають усе необхідне для існування в світі» здаються банальними й ледь не дурними, допоки не почнеш застосовувати їх до якогось особливого типу довговічності — довговічності у формі спадкових ліній множинних копій. Повідомленням ДНК притаманна довговічність не такого типу, як скелям, та не такого типу виникабельність, як краплинам роси. Для молекул ДНК «усе необхідне для існування у світі» має значення, яке точно не є ані очевидним, ані тавтологічним. Виявляється, що «все необхідне для існування у світі» охоплює здатність створювати машини на кшталт нас із вами — найскладніші об’єкти у відомому нам Усесвіті. Подивімось, яким чином це може відбуватися.
Головна причина полягає в тому, що властивості ДНК, які ми ідентифікували, виявились основними компонентами, необхідними для будь-якого процесу накопичувального відбору. У нашій комп’ютерній моделі в розділі 3 ми спеціально закладали в комп’ютер основні компоненти накопичувального відбору. Якщо накопичувальний відбір справді виникає у світі, то мали виникнути певні сутності, властивості яких і є тими основними компонентами. Погляньмо тепер, що це за компоненти. При цьому слід узяти до уваги той факт, що дуже подібні компоненти, хоча б у якійсь рудиментарній формі, мали спонтанно виникнути на Землі на початку часів, інакше накопичувальний відбір, а отже, й життя ніколи б узагалі не зародилися. Ми говоримо тут не конкретно про ДНК, а про основні компоненти, необхідні для виникнення життя будь-де у Всесвіті.
Коли пророк Єзекіїль опинився в долині сухих кісток, то проповідував тим кісткам і змусив їх з’єднатися разом. Потім він знову говорив до них і змусив натягнутися на них плоть і жили. Але духу в них усе ще не було. Найголовнішого компонента, компонента життя, бракувало. Навіть мертва планета має атоми, молекули та більші грудки матерії, що зміщуються й зіштовхуються одне з одним випадковим чином, згідно із законами фізики. Іноді закони фізики змушують атоми й молекули з’єднуватися разом на кшталт сухих кісток Єзекіїля, а іноді — розпадатися. Можуть формуватися доволі великі нагромадження атомів, які потім кришаться й ламаються знову. Але духу в них однаково немає.
Єзекіїль закликав чотири вітри вселити живий дух у ті сухі кістки. Але який найголовніший компонент повинна була мати мертва планета на кшталт Землі на початку часів, щоб отримати шанс урешті-решт стати живою, як наша планета й зробила? Це не дух, не вітер, не якийсь чарівний еліксир чи мікстура. Це взагалі не речовина, а властивість — властивість самореплікації. Це й є основний компонент накопичувального відбору. Якимось чином унаслідок звичайних законів фізики мають виникнути самокопіювальні сутності, які я називатиму реплікаторами. У сучасному житті цю роль майже повністю перебрали на себе молекули ДНК, але для її виконання придасться й будь-що інше, з чого робляться копії. Можна припустити, що першими реплікаторами на примітивній Землі були не молекули ДНК. Малоймовірно, щоб повноцінна молекула ДНК раптом виникла без допомоги інших молекул, що зазвичай існують лише в живих клітинах. Перші реплікатори, мабуть, були грубішими й простішими за ДНК.
Є ще два необхідні компоненти, що зазвичай автоматично випливають з першого — самореплікації як такої. Під час самокопіювання мають виникати періодичні помилки: навіть система ДНК зрідка припускається помилок, і здається ймовірним, що перші реплікатори на Землі були значно менш точними. Крім того, хоча б деякі з реплікаторів мають проявляти владу над своїм власним майбутнім. Цей останній компонент видається більш лиховісним, аніж він є насправді. Він означає лише те, що деякі властивості реплікаторів повинні мати вплив на ймовірність їхньої реплікації. Хоча б у рудиментарній формі це, схоже, буде неминучим наслідком основних фактів щодо самої самореплікації.
Виходить, що кожен реплікатор створює копії самого себе. Кожна копія є такою самою, як оригінал, і має ті самі властивості. Серед яких, звісно, і властивість створення (іноді з помилками) нових копій самого себе. Тож кожен реплікатор потенційно є «предком» нескінченно довгої низки реплікаторів-нащадків, що простягається в далеке майбутнє й розгалужується, щоб створити (потенційно) надзвичайно велику їх кількість. Кожна нова копія має бути створена з сировинних матеріалів, менших будівельних блоків, що плутаються навколо. Імовірно, реплікатори працюють як своєрідні формочки чи шаблони. Менші компоненти завантажуються у формочку разом таким чином, що створюється її дублікат. Потім цей дублікат вивільняється й може вже сам працювати як формочка. У результаті ми отримуємо популяцію реплікаторів, що потенційно зростає. Ця популяція не ростиме нескінченно, бо врешті-решт обмеженням стане надходження сировини — менших елементів, що завантажуються у формочки.
Перейдімо до розгляду нашого другого компонента. Іноді копіювання не буде ідеальним — траплятимуться помилки. Можливість помилок ніколи не можна повністю виключити з будь-якого процесу копіювання, хоча їх імовірність можна зменшити до низьких рівнів. Саме до цього весь час прагнуть виробники високоякісного обладнання, адже процес реплікації ДНК, як ми вже бачили, приголомшливо ефективний у зменшенні помилок. Однак сучасна реплікація ДНК є справою високотехнологічною, зі складними техніками коректури, удосконаленими за багато поколінь накопичувального відбору. Як ми вже бачили, перші реплікатори, мабуть, були порівняно грубими й низькоточними пристроями.
А тепер повернімося до нашої популяції реплікаторів і погляньмо, яким буде ефект помилкового копіювання. Очевидно, що замість однорідної популяції ідентичних реплікаторів ми отримаємо популяцію змішану. Можливо, виявиться, що багато продуктів помилкового копіювання втратили властивість самореплікації, притаманну їхнім «батькам». А деякі збережуть властивість самореплікації, але відрізнятимуться від «батьків» у якомусь іншому сенсі. Тому ми матимемо в популяції дуплікацію копій помилок.
Коли ви читаєте слово «помилка», женіть із голови всі зневажливі асоціації. Це помилка лише з погляду високоточного копіювання. І вона цілком може привести до покращення. Не побоюся сказати, що багато нових витончених страв були створені саме тому, що кухар припустився помилки, намагаючись дотримуватися рецепта. Наскільки я можу судити, свого часу всі оригінальні наукові ідеї виникли як результат непорозуміння чи неправильного тлумачення чиїхось думок. Повернімося до наших первісних реплікаторів. Хоча більшість помилок під час копіювання, мабуть, призвели до зменшення ефективності копіювання чи повної втрати властивості самокопіювання, декілька могли насправді виявитися кращими під час самореплікації, ніж батьки-реплікатори, що їх породили.
Що означає «кращими»? У кінцевому рахунку це означає ефективнішими під час самореплікації, але що це могло б означати на практиці? Це підводить нас до третього «компонента». Я називаю його «владою», і скоро ви зрозумієте, чому. Коли ми розглядали реплікацію як процес формування, то бачили, що останнім кроком у цьому процесі має бути вивільнення нової копії зі старої формочки. На його тривалість може впливати властивість, яку я називатиму «липкістю» старої формочки. Припустімо, що в нашій популяції реплікаторів, яка варіює через старі помилки під час копіювання ще їхніх «предків», деякі різновиди стали більш «липкими», ніж інші. Дуже «липкий» різновид липне до кожної нової копії в середньому більш як на годину, перш ніж вона нарешті вивільниться і процес зможе початися знову. Менш «липкий» різновид відпускає кожну нову копію за частки секунди після її формування. Який із цих двох різновидів почне домінувати в популяції реплікаторів? Відповідь не викликає жодних сумнівів. Якщо це єдина властивість, за якою відрізняються два різновиди, то «липкий» приречений стати значно менш чисельним у популяції. «Нелипкий» же потоком випускає свої нелипкі копії — в тисячі разів швидше, ніж «липкий» випускає липкі. Різновиди з проміжною липкістю матимуть проміжну швидкість самовідтворення. Спостерігатиметься «еволюційна тенденція» до зменшення липкості.
Щось подібне до такого способу елементарного природного відбору було відтворено в пробірці. Існує вірус під назвою Q-бета, що живе як паразит кишкової бактерії Escherichia coli. Q-бета не має ДНК, але все ж містить (по суті, здебільшого з неї складається) одну-єдину нитку спорідненої молекули РНК. РНК здатна до реплікації схожим із ДНК чином.
У нормальній клітині білкові молекули збираються згідно зі специфікацією планів РНК. Вони є робочими копіями планів, знятими з оригіналів ДНК, що зберігаються в цінних архівах клітин. Однак теоретично можливо створити спеціальну машину — білкову молекулу — на кшталт решти клітинних машин, що знімає копії РНК з інших копій РНК. Така машина називається молекулою РНК-реплікази. Сама бактеріальна клітина зазвичай не має користі від таких машин і жодної не створює. Але оскільки репліказа є такою самою білковою молекулою, як і будь-яка інша, універсальні машини для створення білка бактеріальної клітини здатні легко перемкнутися на їх створення, так само, як верстати автомобільного заводу під час війни можна швидко перелаштувати на випуск боєприпасів: варто лише закласти в них потрібні креслення. Отут-то й виходить на сцену вірус.
Робочою частиною вірусу є план РНК. Ззовні його неможливо відрізнити від будь-яких інших робочих креслень РНК, що вільно плавають навколо після зняття з оригіналу ДНК бактерії. Але якщо прочитати невеличку роздруківку вірусної РНК, виявиться, що там написано щось диявольське. Літери роз’яснюють план створення РНК-реплікази для продукування машин, що виготовляють більше копій тих самих планів РНК, що виробляють більше машин, які створюють більше копій планів, які роблять більше…
Таким чином, завод, немов терористи, захоплюють ці своєкорисливі креслення. У певному сенсі він сам аж кричав, щоб його захопили. Якщо ви заповнюєте свій завод настільки складними машинами, здатними зробити все, що накаже їм будь-яке креслення, навряд чи варто дивуватися, коли рано чи пізно виникне креслення, яке накаже цим машинам копіювати себе. Завод заповнюється дедалі більшою кількістю цих шахрайських машин, кожна з яких потоком випускає шахрайські креслення для створення нових машин, що виготовлятимуть іще більше самих себе. Зрештою нещасна бактерія вибухає й випускає мільйони вірусів, що інфікують нову бактерію. Отакий він, звичайний життєвий цикл вірусу в природі.
Я назвав РНК-репліказу і РНК відповідно машиною й кресленням. Ними вони в певному сенсі й є (що розглядатиметься з інших позицій в одному з наступних розділів), але вони є також молекулами, і для людей-хіміків можливо очистити їх, розлити по пляшках і зберігати на полиці. Саме це й зробили в 1960-х роках в Америці Сол Шпіґельман і його колеги. А потім вони помістили ці дві молекули разом у розчин, і сталася цікава річ. Молекули РНК у пробірці працювали як шаблони для синтезу копій самих себе, в чому їм допомагала присутність РНК-реплікази. «Верстати» і «креслення» були екстраговані й поміщені на зберігання в холодильник окремо одне від одного. Та щойно вони отримали доступ одне до одного, а також до дрібних молекул, необхідних як сировина, у воді, обидві повернулися до своїх старих фокусів, навіть попри те, що вони перебували вже не в живій клітині, а у пробірці.
Тут уже недалеко й до природного відбору та еволюції в лабораторії. Це лише хімічна версія комп’ютерних біоморфів. Здебільшого експериментальний метод полягає в тому, щоб вибудувати довгий ряд пробірок, кожна з яких містить розчин РНК-реплікази, а також сировини — дрібних молекул, які можна використовувати для синтезу РНК. Кожна пробірка містить у собі «верстати» й «сировину», але наразі все це простоює без роботи через брак необхідного «креслення». Аж ось у першу пробірку потрапляє крихітний об’єм самої РНК. Репліказний апарат одразу ж починає працювати й виробляє багато копій свіжододаних молекул РНК, що поширюються пробіркою. Тепер крапля розчину з першої пробірки переноситься в другу. Там процес повторюється, а потім крапля розчину використовується для засівання третьої пробірки, і т. д.
Час від часу через випадкові помилки в копіюванні спонтанно виникає трохи інша, мутантна молекула РНК. Якщо з якоїсь причини новий різновид є конкурентоздатнішим порівняно зі старим у тому сенсі, що, можливо через його низьку «липкість», він реплікується швидше чи якось іще ефективніше, новий різновид, очевидно, поширюватиметься пробіркою, в якій він виник, чисельно переважаючи батьківський тип, що його породив. Тоді під час перенесення краплі розчину до наступної пробірки її засіватиме вже новий, мутантний, різновид. Якщо дослідити РНК в довгій послідовності пробірок, ми побачимо те, що можна назвати лише еволюційною зміною. Конкурентоздатніші різновиди РНК, отримані після кількох «поколінь» у пробірці, можна розлити по пляшках і підписати для майбутнього використання. Один різновид, наприклад під назвою V2, реплікується значно швидше, ніж звичайна РНК Q-бета, мабуть через свій менший розмір. На відміну від РНК Q-бета, він не мусить «перейматися» наявністю планів для створення реплікази. Репліказа вільно надається експериментаторами. РНК V2 використовувалась як відправна точка для цікавого експерименту Леслі Орджела та його колег у Каліфорнії, в якому вони нав’язували їй «складні» умови навколишнього середовища.
Вони додавали до своїх пробірок отруту під назвою бромистий етидій, що пригнічує синтез РНК, ускладнюючи роботу «верстатів». Орджел із колегами почали зі слабкого розчину цієї отрути. Спочатку отрута знизила швидкість синтезу, але після еволюції приблизно впродовж дев’яти перехідних «поколінь» у пробірках був відібраний новий штам РНК, стійкий до отрути. Швидкість синтезу РНК тепер була порівнянною зі швидкістю для звичайної РНК V2 за відсутності отрути. Після цього Орджел із колегами подвоїли концентрацію отрути. Швидкість реплікації РНК знову впала, але приблизно ще через 10 перехідних пробірок з’явився штам РНК, що був імунним навіть до вищої концентрації отрути. Потім концентрацію отрути подвоїли знову. У такий спосіб, шляхом послідовних подвоєнь, експериментатори примудрилися вивести штам РНК, здатний до самореплікації за дуже високих концентрацій бромистого етидію, у 10 разів вищих за концентрацію отрути, що пригнічувала первинну, предкову РНК V2. Учені назвали цю нову стійку РНК V40. Еволюція V40 із V2 тривала приблизно 100 перехідних «поколінь» у пробірках (звісно, насправді багато поколінь реплікації РНК з’являється й усередині кожної перехідної пробірки).
Орджел також провів експерименти, під час яких не додавалося жодного ферменту. Він виявив, що молекули РНК здатні спонтанно реплікуватися за цих умов, хоча й дуже повільно. Їм, схоже, була потрібна якась інша каталітична речовина на кшталт цинку. Це важливо, бо важко припустити, що на зорі життя, коли вперше виникли реплікатори, існували ферменти, які допомагали їхній реплікації. Однак тоді, можливо, був цинк.
Років із десять тому в лабораторії впливового німецького університету, що під керівництвом Манфреда Ейґена працювала над вивченням походження життя, був проведений комплементарний експеримент. Співробітники лабораторії додавали в пробірку репліказу та будівельні блоки РНК, але розчин РНК не засівали. Тим не менш у пробірці спонтанно еволюціонувала конкретна велика молекула РНК, і така сама молекула повторно еволюціонувала знову й знову в наступних незалежних експериментах! Ретельна перевірка показала, що там не існувало жодної можливості випадкового занесення молекули РНК. Це дивовижний результат, якщо врахувати статистичну неймовірність спонтанного виникнення такої самої великої молекули двічі. Воно значно неймовірніше, ніж можливість спонтанно набрати фразу METHINKS IT IS LIKE A WEASEL. Подібно до цієї фрази з нашої комп’ютерної моделі, конкретна сприятлива молекула РНК створювалася шляхом поступової, накопичувальної еволюції.
Різновид РНК, неодноразово отриманий в цих експериментах, мав такий самий розмір і структуру, як і молекули, отримані Шпіґельманом. Але тоді як у Шпіґельмана вони еволюціонували шляхом «дегенерації» природної більшої вірусної РНК Q-бета, в експерименті групи Ейґена вони сформувалися майже з нічого. Ця конкретна формула добре адаптована до умов навколишнього середовища, що складаються з пробірок, забезпечених готовою репліказою. Таким чином, вона виникла шляхом конвергенції за допомогою накопичувального відбору з двох дуже різних відправних точок. Більша ж молекула РНК Q-бета гірше адаптована до умов середовища у пробірці, але краще — до умов навколишнього середовища, які забезпечують клітини E. coli.
Такі експерименти допомагають нам оцінити цілком автоматичну й ненавмисну суть природного відбору. Репліказні «машини» не «знають», чому вони виробляють молекули РНК, — це лише побічний продукт форми, яку вони створюють. А самі молекули РНК не розробляють стратегію самодуплікації. Навіть якби вони були здатні мислити, немає жодних очевидних причин, з яких будь-яка сутність, що мислить, має бути мотивована створювати копії самої себе. Якби я знав, як робити свої копії, то не впевнений, що надав би цьому проектові високий пріоритет у змаганні з усіма іншими речами, якими хочу займатися, — чого б це? Але мотивація не має стосунку до молекул. Структура вірусної РНК просто виявилася такою, що змушує клітинну машинерію потоком продукувати копії самої себе. І якщо виявиться, що будь-яка сутність у будь-якому місці Всесвіту має властивість ефективно створювати більше копій самої себе, то, очевидно, буде автоматично виникати дедалі більше копій цієї сутності. Крім того, оскільки вони автоматично формують спадкові лінії й час від часу копіюються з помилками, більш пізні версії, скоріш за все, будуть «краще» робити копії самих себе, ніж більш ранні, завдяки потужним процесам накопичувального відбору. Усе абсолютно просто й автоматично. Настільки передбачувано, що майже неминуче.
«Успішна» молекула РНК у пробірці є успішною через якусь безпосередню, притаманну їй властивість, щось аналогічне «липкості» в моєму гіпотетичному прикладі. Але властивості на кшталт «липкості» є доволі нудними. Вони є елементарними властивостями самого реплікатора — властивостями, що мають безпосередній вплив на ймовірність його реплікації. Що, коли реплікатор мав би якийсь вплив на щось іще, що впливає на щось іще, що впливає на щось іще, що… врешті-решт опосередковано впливає на шанс існування реплікатора, що реплікує? Неважко зрозуміти, що, якби такі довгі причиново-наслідкові ланцюжки існували, фундаментальний трюїзм залишався би чинним. Реплікатори, яким пощастило мати все необхідне для реплікації, почали б домінувати в світі, хоч яким би довгим і опосередкованим був ланцюжок причинно-наслідкових ланок, за допомогою якого вони впливають на свою ймовірність реплікації. І таким чином світ наповнився б ланками цього причинно-наслідкового ланцюжка. Ми побачили б ці ланки й захопилися б ними.
У сучасних організмів ми бачимо їх увесь час. Це очі та шкірні покриви, кістки й пальці, мізки та інстинкти. Це інструменти реплікації ДНК. Вони обумовлені ДНК — в тому сенсі, що відмінності очей, шкірних покривів, кісток, інстинктів тощо обумовлені відмінностями ДНК. Вони впливають на реплікацію ДНК, що їх обумовила, впливаючи на виживання та розмноження їхніх організмів, які містять ту саму ДНК, а отже, долю яких ДНК розділяє. Таким чином, ДНК сама впливає на свою реплікацію через властивості організмів. Можна сказати, що ДНК має владу над власним майбутнім, а організми, їхні органи та схеми поведінки є інструментами цієї влади.
Говорячи про владу, ми говоримо про наслідки роботи реплікаторів, що впливають на своє власне майбутнє, хоч якими б опосередкованими ці наслідки були. Не має значення, скільки саме ланок у ланцюжку від причини до наслідку. Якщо причина є сутністю, що самореплікує, наслідок (навіть дуже далекий і непрямий) може зазнавати природного відбору. Під кінець я узагальню цю думку, розповівши історію про бобрів. Щодо деяких деталей вона гіпотетична, але, безумовно, не може бути далекою від істини. Хоча ніхто й не вивчав розвиток мозкових з’єднань у бобрів, такі дослідження проводилися на інших тваринах на кшталт червів. Я запозичу їх висновки й застосую їх до бобрів, бо для багатьох людей бобри є цікавішими та ближчими за духом, аніж черви.
Мутантний ген у бобра є всього лише зміною однієї літери тексту, де їх мільярд, — зміною конкретного гена G. У міру того, як маленьке бобреня підростає, ця зміна копіюється разом з усіма іншими літерами тексту в усі його клітини. У більшості цих клітин ген G не читається; читаються інші гени, важливі для роботи інших типів клітин. Однак цей ген читається в деяких клітинах мозку, що розвивається. Він читається і транскрибується в копії РНК. Робочі копії РНК дрейфують усередині клітин, і рано чи пізно деякі з них врізаються в машини з виробництва білка під назвою рибосоми. Ці машини з виробництва білка зчитують робочі плани РНК й випускають нові білкові молекули згідно з їхніми специфікаціями. Ці білкові молекули скручуються в конкретну форму, визначену їхньою власною амінокислотною послідовністю, що, в свою чергу, обумовлюється послідовністю коду ДНК гена G. Коли ген G мутує, його зміна зумовлює важливу відмінність амінокислотної послідовності, що зазвичай задається геном G, а отже, й скрученої форми білкової молекули.
Ці трохи змінені білкові молекули масово продукуються машинами з виробництва білка всередині клітин мозку, що розвивається. Вони, у свою чергу, працюють як ферменти — машини, що виробляють інші сполуки клітин, продукти гена. Продукти гена G проникають у мембрану, що оточує клітину, і залучаються до процесів, за допомогою яких клітина утворює з’єднання з іншими клітинами. Через незначну зміну первинних планів ДНК змінюється швидкість виробництва деяких із цих мембранних сполук. Це, у свою чергу, змінює спосіб, яким певні клітини мозку, що розвивається, з’єднуються одна з одною. Відбувається тонка зміна схеми налаштування конкретної частини мозку бобра — опосередкований, справді далекий наслідок зміни тексту ДНК.
Тепер виходить, що ця конкретна частина мозку бобра через її положення в загальній схемі налаштування задіюється в специфічній поведінці бобра, пов’язаній із будівництвом загати. Звісно, великі частини мозку задіюються щоразу, як бобер будує греблю, але коли на цю конкретну частину схеми налаштування мозку впливає мутація гена G, ця зміна має специфічний вплив на поведінку. Вона спонукає бобра вище тримати голову у воді під час плавання з колодою в зубах. Вище, ніж це робить бобер без мутації. Це трохи знижує ймовірність того, що налипла на колоду багнюка змиється по дорозі. Це підвищує липкість колоди, а отже, означає, що, коли бобер прилаштує її в греблю, колода з більшою ймовірністю там і залишиться. Зазвичай це стосується всіх колод, які тягає будь-який бобер із такою мутацією. Більша липкість колод є наслідком (знову ж таки, дуже опосередкованим) зміни тексту ДНК.
Більша липкість колод робить греблю міцнішою конструкцією з меншою ймовірністю руйнування. Це, у свою чергу, збільшує розмір загати, створеної греблею, що робить хатку бобра в центрі загати більш захищеною від хижаків. Це зазвичай збільшує кількість потомства, яке успішно вирощує бобер. Якщо подивитися на всю популяцію бобрів, то ті особини, що мають мутантний ген, у середньому вирощуватимуть, таким чином, більше потомства, ніж ті, що його не мають. Це потомство зазвичай успадковуватиме від своїх батьків архівні копії того самого зміненого гена. Тому від покоління до покоління ця форма гена ставатиме в популяції чисельнішою. Урешті-решт вона стане нормою й більше не заслуговуватиме назви «мутантна». Боброві греблі загалом покращаться ще в одному сенсі.
Той факт, що ця конкретна історія є гіпотетичною й на практиці деталі можуть до певної міри варіювати, не має особливого значення. Боброва гребля виникла шляхом природного відбору, а отже, реальний стан справ просто не може сильно відрізнятися (крім окремих дрібних деталей) від того, що я описав. Загальні висновки з такого погляду на життя розкрито й ретельно розібрано в моїй книжці «Розширений фенотип», і тут я повторювати викладені в ній аргументи не буду. Ви помітите, що в цій гіпотетичній історії було не менше 11 ланок причинно-наслідкового ланцюжка, що з’єднує змінений ген із кращим виживанням. У реальному житті їх могло би бути ще більше. Усі ці ланки, чи то вплив на хімію всередині клітини, чи більш пізній — на з’єднання мозкових клітин, чи навіть іще пізніший — на поведінку, а чи завершальний вплив на розмір загати, правильно вважати спричиненими зміною ДНК. І якби там було 111 ланок, це не мало б значення. Будь-який вплив, який зміна гена справляє на його власну ймовірність реплікації, є чесною грою для природного відбору. Усе ідеально просто, напрочуд автоматично й ненавмисно. Після того, як виникли фундаментальні компоненти накопичувального відбору — реплікація, помилки та влада, — щось на кшталт цього є загалом майже неминучим. Але як же це сталося? Як вони виникли на Землі, коли там іще не було життя? Можливі відповіді на це складне запитання ми розглянемо в наступному розділі.