Глава 3 Раскрашивая клетки

Чтобы проследить судьбу каждой клетки развивающегося эмбриона, я обратилась было к распространенной медузе, дрейфующей в холодных водах западного побережья Северной Америки. Хотя диаметр этой медузы не превышает десяти сантиметров, ее способность к биолюминесценции — самая выдающаяся в Мировом океане.

Потревоженная, она генерирует световые вспышки по краям колокола. Изначально они выглядят как голубые искры, созданные люминесцентным белком экворином. Но мы не видим их, потому что внутри медузы они проникают в белок с маленькой структурой в центре под названием «хромофор», который поглощает синий свет и переходит в возбужденное состояние, а по мере выхода из него светится зеленым. Осаму Симомура из Принстона выделил этот белок в 1960-х, назвав его зеленым флуоресцентным белком (green fluorescence protein, GFP) [1]. Поскольку этот белок важен для проведения широкого спектра исследований, Симомура в 2008 году получил за его открытие Нобелевскую премию.

Сегодня этот белок можно использовать для самых разных целей, например, чтобы отследить распространение вирусных инфекций в организме, понаблюдать за регенерацией поврежденных тканей в организме аксолотля (амфибии) или в подробностях увидеть, как переплетаются нервные пути в мозге мыши. С помощью генетических трюков и флуоресцентных белков можно покрасить сотни нервных клеток в десятки различных оттенков и создать мозговую радугу (brainbow), проявляя калейдоскопом цвета всю красоту нейронных связей [2].

С помощью множества флуоресцентных меток можно представить разные стадии жизни в форме яркой мозаики синего, розового, зеленого и других цветов. Значимость подобных исследований сопоставима с их красотой.

Однако оригинальный белок медузы, выделенный Симомурой, не работал в теплокровном организме. Мне нужен был мощный флуоресцентный маркер, чтобы проследить, как активируются гены в клетках живых эмбрионов млекопитающих по мере развития или установить время рождения отдельных клеток и окончательного решения их судьбы.

GFP начали использовать в качестве маркера еще в 1994 году, когда Мартин Чалфи из Колумбийского университета в Нью-Йорке сообщил, что с помощью флуоресцентного белка можно продемонстрировать активацию гена, за что и разделил Нобелевскую премию с Симомурой [3].

Мне тоже хотелось побаловаться этой светящейся зеленой краской. Это был год, когда Мартин Эванс и я получили стипендию Европейской организации молекулярной биологии, что привело меня в Кембридж, где я могла доработать GFP, чтобы проследить действия генов в живом эмбрионе млекопитающего и в стволовых клетках. Ген GFP можно было встроить в ДНК млекопитающего и тем самым пометить белок флуоресцентным маркером. Если бы клетка использовала ген для производства этого белкового компонента, то под ультрафиолетом, благодаря GFP, она светилась бы зеленым.

В то время меня глубоко интересовало нарушение симметрии, полярность и структурные детали развития эмбриона. Именно поэтому я загорелась концепцией самоорганизации и идеями великого английского математика Алана Тьюринга, который в 1936 году создал теорию алгоритмов, а во Вторую мировую войну взломал код нацистской шифровальной машины Enigma [4]. Тьюринга интересовали узоры, созданные самой природой: он хотел опровергнуть представление о том, что только Бог способен творить чудеса. Мне нравилась его идея, что в природных узорах нет ничего сверхъестественного.

Я знала, что клеткам мышиных и человеческих эмбрионов присуща пластичность в вопросах окончательного превращения в конкретный тип клеток. Я хотела понять базовые механизмы этой пластичности, чтобы посмотреть, соответствуют ли они математическим моделям формирования узоров, предложенных Тьюрингом.

Для этого мне надо было пометить клетки, чтобы несколько дней следить за ними и их потомками в развивающемся мышином эмбрионе. Раньше такого никто не делал, и GFP казался мне идеальным помощником. Но прежде всего мне нужно было заставить его светиться в эмбрионе млекопитающего. Тогда этот подвиг еще никому не удавался, поэтому у меня не было готового решения. И как обычно бывает, когда пытаешься сделать что-то в первый раз, у меня ничего не вышло.

Примерно в то время на мою работу обратил внимание Джон Гёрдон. Он был руководителем института, в котором я работала, — Британского института клеточной биологии и онкологии под патронажем благотворительных фондов Wellcome Trust и Cancer Research (переименованного в 2004 году в Институт имени Джона Гёрдона). Считалось, что Джон бился над биологическими загадками еще в школьные годы в Итоне, а к исследованиям приступил в Оксфордском университете в 1950-х, задавшись одним из важнейших фундаментальных вопросов: действительно ли все клетки тела имеют одинаковый набор генов [5]? В 1966 году Джон сообщил, что, пересадив ДНК из ядра клетки молодой лягушки в энуклеированные (лишенные ядер) яйцеклетки, он создал еще одну лягушку. Позже он написал: «Среди всех проведенных нами экспериментов этот, вероятно, является самым важным, ведь он доказывает, что клетка может пройти специализацию и все-таки... [сохранить] весь генетический материал, необходимый для создания полноценного, половозрелого индивидуума... Клонирование дифференцированных и, по всей видимости, даже зрелых клеток как минимум теоретически возможно» [6].

На мой взгляд, это был один из важнейших онтогенетических экспериментов двадцатого века, поскольку он показывал, что дифференциацию клетки можно обратить вспять. Помимо разных научных последствий, этот факт, несомненно, означает, что Джон был пионером клонирования. Учитывая его высокое звание и мой низкий статус, наша встреча, не говоря уже о беседе, казалась маловероятной.

Но однажды, когда я выходила из аудитории, Джон вежливо спросил, над чем я работаю. Я описала ему свои попытки заставить GFP светиться в организме мыши, чтобы с его помощью можно было увидеть активацию отдельных генов и проследить, каюте клетки становятся частью мышиного эмбриона.

Джон был заинтересован. Ему понравилась задача, и он тоже считал ее важной. Кроме того, он уже знал, как заставить продукты гена работать в организме лягушки: суть в том, чтобы вводить в клетку не сам ген, а синтетическую РНК — транскрипт гена, используемый клеткой для синтеза белка. Имплантированная РНК через несколько часов давала нужный эффект. Эта короткая случайная встреча стала поворотным моментом в моем исследовании.

На следующее утро, придя в лабораторию Мартина, я обнаружила на столе записку. В ней Джон просил меня встретиться и за чашкой чая обсудить GFP. Можем ли мы «настроить» GFP и для его лягушачьих эмбрионов? Так началась наша совместная работа, утомительная рутина которой переходила изо дня в ночь.

Моя жизнь распределилась между исследованием клеток мышиных эмбрионов в лаборатории Мартина Эванса и ночными исследованиями лягушачьих эмбрионов в лаборатории Джона Гёрдона. У обоих проектов была одна цель: найти такой способ окрашивания клеток, который не мешал бы нормальному развитию эмбриона и в то же время действовал как маркер, позволяющий отследить превращение клеток эмбриона в разные типы.

В Кембридже мне посчастливилось трудиться бок о бок со многими выдающимися учеными. Я познакомилась с Джоном Пайнзом и Джимом Хэйзелоффом, которые пытались сделать GFP более устойчивым, изменив участок гена, отвечающий за скорость разрушения этого белка. Я помню долгие часы, которые провела в лаборатории Джона, обсуждая способы преодоления последней неудачи и стараясь научиться у него мастерству разрезания и сшивания ДНК. В итоге мы создали такой вариант GFP, который флуоресцировал при более высоких температурах, характерных для организма млекопитающих. Когда я ввела его в клетки мышиного эмбриона, они засветились зеленым. Джон назвал этот белок Magda-modified GFP (GFP, модифицированный Магдой), а в научных статьях мы упоминали его как MmGFP. Но, разумеется, правильнее было назвать его JJmGFP, то есть Jim-and-Jon-modified GFP (GFP, модифицированный Джимом и Джоном).

Бывало, закончив работу с мышиными эмбрионами в лаборатории Мартина, когда большинство моих коллег расходились по домам, я спускалась вниз, в лабораторию Джона Гёрдона, чтобы проанализировать лягушачьи эмбрионы, в которые он уже ввел разные варианты GFP для проверки. Поскольку в то время он был Магистром колледжа Магдалины, он исчезал в полседьмого вечера, чтобы возглавить ужин за Высоким столом[4].

И пока Джон сидел на официальном ужине с коллегами, я рассматривала его лягушачьи эмбрионы под конфокальным микроскопом, который увеличивал разрешение, собирая на специальной фокальной плоскости свет от изучаемых образцов. Здесь это был первый и единственный такой микроскоп, поэтому он находился в постоянном использовании, и я резервировала его на вечернее время. После ужина Джон заходил посмотреть на наши результаты. Иногда он был в красном костюме с черным галстуком или огромной красной бабочкой. Учитывая его рыжеватую шевелюру, в таком наряде он был похож на инопланетянина.

Так мы сотрудничали многие месяцы. Мы хорошо ладили, хотя наши жизненные истории сильно отличались. Джон Гёрдон получил образование в Итоне и был родом из привилегированной семьи. Ну а я, хотя и происходила из благородной польской семьи (так называемой шляхты), мои родные все потеряли во время войны, я училась в государственной школе коммунистической страны, где все должны были быть одинаковыми, без всяких богатств или привилегий. Джон был не только добрым и мыслящим, но и авантюрным. Однажды утром он повез меня на красном спортивном автомобиле любоваться природными красотами весенней Англии, и я внезапно обнаружила себя в дендрарии, гуляющей по чудесному ковру из колокольчиков. В другой раз я уговорила Джона сходить на понравившийся мне фильм, который посмотрела предыдущим вечером. Думаю, он согласился просто из вежливости. Позже он признался, что это был его первый поход в кинотеатр. Мы посмеялись над этим случаем, который был еще одним примером того, насколько мы были разными. Но мы интересовались жизнью друг друга и поэтому подружились. Вспоминая те годы, я осознаю, что Джон был моим наставником. Он несколько раз по-отечески вмешивался, спасая меня от ошибок и помогая принять многие трудные решения, не только научные, но и личные. Я очень эмоциональный человек (как говорится, нельзя покорить поляка силой, только сердцем), в то время как Джон был довольно рациональным [7]. Порой мы бесконечно дискутировали, пытаясь понять друг друга.

Хотя моей основной работой было использование GFP для изучения развития эмбрионов мышей, своим первым реальным прогрессом в Кембридже я обязана подработкам с лягушачьими эмбрионами. В рамках нашего соглашения Джон показал мне, как имплантировать GFP путем введения в лягушачьи клетки синтетических посланников для соответствующих генов. Его персональное попечительство было чрезвычайно полезным. В работе эмбриолога много искусства и ловкости. Наблюдать выполнение технического приема (и на гораздо более крупных лягушачьих клетках) намного полезнее, чем попытки представить весь процесс по сухим книжным указаниям, зачастую лишенным важных подробностей.

В конце концов нам удалось получить зеленый флуоресцентный маркер и применить его для визуализации развития мышц лягушки. Джон увлекся этой работой (к тому же проложившей путь к успешному использованию GFP у млекопитающих) и прямо во время службы в университетской часовне набросал карандашом подробный план научной статьи, описывающей наши результаты.

Думаю, это был подходящий фон для наших откровений о сотворении лягушки, наполненных ранее неизвестными деталями онтогенетического развития. Привычная к неспешному ритму описания научных результатов в Польше, я удивилась тому нетерпению, с которым Джон хотел опубликовать статью раньше всех. Как он сказал, «когда речь идет об открытии, нет никакой второй статьи, только первая». Статья, словно подарок, появилась на страницах журнала Development на Рождество 1996 года [8]. Она ознаменовала конец наших совместных экспериментов, но не нашей дружбы.

Затем я успешно применила GFP в исследовании мышиных эмбрионов, хотя к тому времени другие ученые без моего ведома успели опробовать этот маркер на клетках млекопитающих [9]. Наверное, из-за того, что они не использовали GFP для изучения яйцеклеток или эмбрионов, я и Мартин ничего не знали об их работах.

Джон Пайнз первым показал мне, как улучшить текст моих научных работ. Наша первая совместная статья описывала применение MmGFP для отслеживания клеток в живых эмбрионах мышей и была опубликована в 1997 году в Development — там же, где вышла наша с Джоном Гёрдоном статья о лягушачьих эмбрионах [10]. Неудивительно, что Development стал моим любимым журналом.

Но статья не рассказывала обо всем, что мы обнаружили. Эта первая работа по отслеживанию клеток в живом эмбрионе вызвала не только изумление, но и тревогу. Когда я маркировала в случайном порядке клетки эмбрионов на двух- или четырехклеточной стадиях, я видела, что клетки не вели себя как идентичные друг другу. Они противоречили общепринятому представлению о том, что «разум» первых клеток эмбриона совершенно одинаков и чист. Я предусмотрительно не включила свое открытие в статью для Development и сосредоточилась на описании новой технологии отслеживания.

Но я не могла забыть об этих неожиданных результатах и обсудила их с Джоном. Если обе клетки в эмбрионе двухклеточной стадии и все четыре клетки в эмбрионе четырехклеточной стадии являются идентичными, они должны случайным образом вносить вклад в создание разных частей эмбриона на последующих стадиях. Именно так мой наставник Тарковский интерпретировал результаты новаторского эксперимента 1959 года. Однако это никак не вязалось с моими результатами.

А потом я нашла зацепку, факт, которым пренебрегали при объяснении более ранней работы. Если разделить двухклеточный эмбрион на две отдельные клетки, только одна будет развиваться в целую мышь. Многие пытались превратить две половинки двухклеточного эмбриона в двух мышей, включая ведущих онтогенетиков Энн Макларен и Джинни Папайоану, к которым я вернусь позже. Их эксперименты либо провалились, либо имели крайне низкие показатели успеха. Мы все думали, что проблема была в технике выполнения, а не в различиях между этими ранними клетками. Но что, если мы упустили нечто большее? Что, если в двухклеточном эмбрионе только одна клетка является действительно тотипотентной и поэтому, в отличие от второй клетки, может создать как плаценту, так и сам эмбрион? Если все правда, то изучение этих клеток позволит понять саму тотипотентность и то, когда и как она утрачивается в первый раз.

Подчеркну, что этот эффект не детерминирован — ни в коем случае, ведь эмбрион пластичен: мои эксперименты по отслеживанию «родословной» клеток эмбриона выявили уклон, толчок в определенном направлении развития, а недетерминированный процесс. Что еще проблематичнее — не в каждом эмбрионе этот уклон был таким очевидным. Но тот факт, что это происходило у подавляющего большинства эмбрионов, говорил о наличии закономерности. Как и мой герой-ученый Алан Тьюринг, я была очарована так называемым нарушением симметрии в раннем эмбрионе. Встретив меня в то время, вы бы поняли, что мысли о нарушении симметрии захватили меня целиком и полностью.

Полярные тельца

Существовавшее в те годы сопротивление идее о том, что эмбрион утрачивает идеальную симметрию на ранней стадии развития, вызывало недоумение еще и потому, что оплодотворенная яйцеклетка уже содержит намек на асимметрию. Все дело в истории ее созревания. К каждой оплодотворенной яйцеклетке прикреплены две маленькие клетки, одна из которых создана до, а вторая после слияния яйцеклетки и сперматозоида. Эти клетки появляются в результате особого вида клеточных делений — мейоза. По этим маленьким клеткам традиционно различают два конца яйцеклетки: так называемые анимальный и вегетативный полюса, где первый содержит ядро с ДНК, а второй наполнен желтком. Крошечную клетку анимального полюса когда-то называли направительным тельцем за то, что она обозначает место, где в дальнейшем произойдет первое дробление. Сегодня эти скромные клеточки именуют полярными тельцами [11].

Они нужны для того, чтобы положить начало созданию нового индивидуума, позаимствовав в равной степени ДНК матери и отца. В каждом из нас есть генетическая смесь из ДНК обоих родителей, упакованная в клетках в виде двадцати трех пар хромосом. Как отражение этой избыточности, наши клетки называются диплоидными и ежедневно размножаются путем клеточного деления митоза, при котором их хромосомы копируются и с помощью белковых «двигателей» распределяются между двумя дочерними клетками. Но чтобы сперматозоид и яйцеклетка скомбинировали свою ДНК для создания новой жизни, им нужен противоположный процесс, где каждому достается только половина хромосомного набора, в сумме дающая норму из сорока шести (двадцати трех пар) хромосом в оплодотворенной яйцеклетке.

Чтобы подготовить почву для новой жизни, сперматозоид и яйцеклетка создаются из клеток, утративших набор хромосом и в результате превратившихся в гаплоидные клетки, которые содержат двадцать три хромосомы (а не двадцать три пары). Этот процесс хромосомной хореографии называется мейозом и включает сначала удвоение хромосомной ДНК, а затем два мейотических клеточных деления. В итоге получаются четыре гаплоидные клетки с половиной нормального количества хромосом. В мужском организме все эти гаплоидные клетки являются сперматозоидами.

Но в женском организме мейоз происходит иначе — еще одна асимметрия между полами, отражающая важность яйцеклетки, которая развивается из клеток-предшественниц, ооцитов, накапливающихся в яичниках девочки до ее рождения. Ооцит по мере созревания претерпевает два мейотических деления, но каждое из них в высшей степени асимметрично: одна клетка (яйцо) сохраняет изначальный размер, а остальные «отбракованные» клетки получаются крошечными, представляя собой те самые полярные тельца.

При первом мейотическом делении ооцит имеет двадцать три пары хромосом, ДНК которых продублирована в виде сестринских копий и перетасована между хромосомами матери. При первом мейотическом делении хромосомные пары распределяются между ооцитом и первым полярным тельцем. Удвоенные нити ДНК называются хроматидами, каждая из них представляет одну из двух копий реплицированной (удвоенной) хромосомы. Во время второго деления сестринские хроматиды снова распределяются между ооцитом и еще одним полярным тельцем. Результатом двух делений являются два маленьких полярных тельца[5], первое из которых дегенерирует, и одна большая яйцеклетка с двадцатью тремя хроматидами.

В целом женский мейоз создает одну яйцеклетку (и два полярных тельца), а мужской — четыре сперматозоида. Один сперматозоид добавляет свои двадцать три хроматиды к тем, что есть в яйцеклетке, и они вместе будут претерпевать циклы репликации ДНК и митоза в процессе развития эмбриона.

Судьба полярных телец решается по-разному. Первое полярное тельце отделяется от яйцеклетки и дегенерирует. Второе остается привязанным к ней и выживает, спрятанное в ее «скорлупе» (zona pellucida) на протяжении нескольких дней развития.

Второе полярное тельце может быть очень полезным. Его можно отобрать в качестве «представителя» яйцеклетки для диагностики, чтобы оценить аномальное распределение хромосом между яйцеклеткой и полярным тельцем, распространенное среди матерей старшего возраста[12].

Кроме того, второе полярное тельце служит навигационным маячком. Мы пользовались им как маркером, когда пытались понять, действительно ли все клетки эмбриона идентичны друг другу.

Трудный выбор

Моя двухлетняя стипендия подходила к концу, и я планировала вернуться в Варшаву. К тому моменту я обзавелась в Кембридже настоящими друзьями. Одним из них был Питер Лоренс, проводивший исследование формирования узоров и полярности у плодовых мушек дрозофил, — Питер был мне как отец. Мой коллега Джон Пайнз, изучавший клеточное деление и помогавший мне «укротить» GFP, тоже стал моим лучшим другом. Вместе с Джоном Гёрдоном и Мартином Эвансом они помогли мне решиться на то, чтобы остаться в Кембридже и продолжить изучение нарушения симметрии на мышиных эмбрионах. Они подозревали, что если я вернусь в Варшаву, в лабораторию Тарковского, то не смогу заниматься отслеживанием клеток в живом эмбрионе, поскольку там эту затею в лучшем случае посчитают бессмысленной, в худшем — еретической, ведь догма гласила, что клетки эмбриона идентичны, а их судьба — случайна.

Именно Джон указал мне на три стипендии, которые могли бы поддержать меня в Кембридже. Поскольку за них была высокая конкуренция, разбрасывать ставки казалось рискованным, Джон посоветовал мне подать заявку на все три стипендии, которые счел подходящими.

Я не поверила своей удаче, когда в 1997 году меня удостоили всех трех. Первая предназначалась для старших научных сотрудников и выдавалась Институтом профилактической медицины имени Листера. На нее можно было собрать в Кембриджском университете собственную команду. Я изумилась, ведь изначально меня даже не пригласили на собеседование, просто внесли в короткий список тех, кто был недостаточно хорош для этой стипендии. Тогда я решила забыть о заявке и пойти дальше.

Одним ранним утром я спала как убитая после ночных экспериментов в лаборатории. Сквозь сон прорвался телефонный звонок. На другом конце провода была знаменитая эмбриолог Энн Макларен, которая сообщила, что один из кандидатов на листерскую стипендию выбыл и мне надо сейчас же быть в Лондоне, чтобы успеть на собеседование для оставшихся претендентов.

Неподготовленная и измученная тем, что всю ночь всматривалась в микроскоп, я приехала на собеседование сразу после того, как получила положительные результаты, означавшие, что я успешно могу использовать GFP для отслеживания судьбы клеток не только перед имплантацией, но даже после нее. Быть может, эйфория от успеха с GFP и полное отсутствие претензий помогли мне завоевать расположение.

Мое второе собеседование было с комитетом Сидни-Сассекс-колледжа, и я помню, как с энтузиазмом делилась своей мечтой о возможности впервые отследить клетки в живом эмбрионе мыши и, разумеется, поведала о своих усилиях по превращению GFP в маркер для живых клеток. Мне казалось, они считают мой взгляд нереалистичным, поскольку я только начала использовать GFP таким образом. Однако нейробиологу Габриэлю Хорну, магистру Сидни-Сассекс-колледжа, понравился мой проект, и стипендию отдали мне. Она обеспечила меня замечательным обществом, а также местом для проживания.

Источником третьей стипендии был фонд Wellcome Trust, и я смогла превратить ее в грант, чтобы нанять себе первого в жизни ассистента и купить первый собственный микроскоп. Удостоиться всех трех стипендий — это слишком хорошо, чтобы быть правдой, и так оно и было. Однако действительность оказалась более неловкой.

После всех трех собеседований я приехала в Польшу, чтобы вместе с Кшисом отдохнуть в Татрах. Передо мной встал выбор: остаться в Польше или вернуться в Кембридж. Было нелегко принять решение. Я обожала Кшиса, нашу совместную жизнь и спасенного нами кота Хоки. Но я была также поглощена значением своих неожиданных результатов. Не знаю, на что я тогда решилась бы, если бы не случайное совпадение: примерно в то время я оказалась во власти мощной силы, влюбившись на одной конференции в Колд-Спринг-Харбор. Этот ненаучный фактор ввел меня в замешательство, но помог не отступиться от моих исследований.

Был и еще один сложный профессиональный аспект, о котором я в ту пору даже не подозревала. Выиграв все три стипендии, я все равно не могла создать свою исследовательскую группу. В то время в институте не было официальных назначений. И даже если бы меня сочли достойной звания руководителя группы, ни для моей группы, ни для хотя бы моего микроскопа не было свободного места. Джон был сильно обеспокоен, ведь ему казалось, что мое первое столкновение с офисной политикой отобьет у меня охоту заниматься наукой.

Мартину и Джону удалось выделить мне место в Институте Гёрдона в одном из помещений для микроскопа, чтобы я могла продолжить эксперименты, но из-за оппозиции (я не была «настоящим руководителем группы») мы в конечном итоге убрали мой микроскоп. Сказать, что мне было тяжело, значит ничего не сказать. Я хотела уехать, и когда мне предложили возможность собрать группу в Оксфорде, я почти собрала вещи.

Но моя судьба вновь изменилась. Энн Макларен взялась меня «опекать». Она поделилась со мной кабинетом и небольшой лабораторией в Институте Гёрдона, а также одолжила мне ключи от своего дома, чтобы мне было куда приглашать гостей. Будучи секретарем по иностранным делам в Королевском обществе и членом Наффилдского совета по биоэтике, она много путешествовала, продвигая ученых, которые исследовали человеческие эмбрионы, поэтому я помогала ей управлять лабораторией.

Оглядываясь назад, я жалею, что мы редко с ней виделись. Я была слишком молода и не понимала, что она не всегда будет рядом, и, разумеется, не занимаясь человеческими эмбрионами и даже не интересуясь ими, я имела лишь смутные представления о том, какой влиятельной фигурой она была в дебатах о человеческой эмбриологии. Позже мы поговорим о ее наследии.

Энн погибла в автокатастрофе в 2007 году по дороге со свадьбы Роджера Педерсена (важной фигуры в области исследования стволовых клеток, вместе с которым довелось поработать) и Лиз Уинтер (которая со временем стала моим близким другом). Смерть Энн обозначила конец деятельности, изменившей направление человеческой репродукции. Даже в детстве Энн произвела впечатление, сыграв в 1936 году в британском научно-фантастическом фильме «Облик грядущего» по роману Герберта Дж. Уэллса. Как онтогенетик, она пошла по стопам Тарковского и тоже скрещивала эмбрионы, создавая химеры. Она возглавляла подразделение Совета по медицинским исследованиям и разработала новаторскую методику, которая привела к появлению экстракорпорального оплодотворения (ЭКО). Эта методика показала, что мышиный эмбрион можно сначала растить в пробирке, а затем, имплантировав его в матку суррогатной самки, получить молодую мышь.

Энн была одаренным коммуникатором и серьезно влияла на дебаты в Соединенном Королевстве, в ходе которых оттачивалась и разрабатывалась государственная политика в области регулирования репродуктологии. На момент своей смерти Энн консультировала Европейскую комиссию по вопросам социального и этического влияния новой технологии. Как Энн любила подчеркивать, ее интересовало «все, что связано с преемственностью поколений» [13].

Мировоззрение Энн сформировалось до Второй мировой войны, когда она симпатизировала коммунистам и даже была членом Коммунистической партии Великобритании [14]. Думаю, ей бы понравился тот факт, что я продолжила исследования человеческих эмбрионов, важные для понимания человеческого индивидуального развития и способные в один прекрасный день привести к решению проблем пороков развития и невынашивания беременности. Хотя при жизни Энн мне не приходило в голову заниматься человеческими эмбрионами, приятно думать, что ее наследие сыграло важную роль в моих исследованиях.

Первая вылазка за пределы имплантации

На фоне всего происходящего в личной жизни я не переставала думать о том, что если действительно существует связь между клетками раннего эмбриона и их судьбой на стадии бластоцисты, что происходит с этими клетками после имплантации, когда очерчивается план будущего организма? Серьезный вопрос, ответить на который не так просто. Чтобы хоть что-то понять, надо было пометить маленькие клетки бластоцисты и отследить их потомков вплоть до стадии гаструляции — критического момента в развитии, когда клетки перегруппировываются и превращаются в форму, из которой и будет развиваться животное. Как любил повторять онтогенетик Льюис Уолперт, «не рождение, свадьба или смерть, а гаструляция является самым важным событием в жизни» [15].

Проблема в том, что в лаборатории Мартина не было подходящего оборудования для того, чтобы поместить GFP в такие маленькие клетки (хотя зигота достигает 90 микрон в поперечнике, размер клеток бластоцисты равен примерно 10 микронам). Мы хотели изменить электрические свойства клеточной мембраны, чтобы ввести GFP внутрь клетки, не повреждая ее иглой. Для изучения развития бластоцисты я обратилась к Ричарду Гарднеру из Оксфорда, у которого были схожие идеи наряду с нужными навыками и оборудованием.

Я ездила на автобусе туда-сюда между университетскими городами (по три часа в каждом направлении), таская с собой большой белый ящик с сухим льдом, охлаждающим мРНК моего модифицированного GFP (мРНК очень нестабильна и должна храниться в холоде). Когда я приезжала в лабораторию Ричарда, он вводил MmGFP в качестве маркера в клетки, которые выбирал точно на обоих концах оси симметрии бластоцисты, определяя анимальный полюс по второму полярному тельцу — прочной связи между яйцеклеткой и бластоцистой, которую сам же и обнаружил [16].

Промаркировав бластоцисты, Ричард переносил их в приемных матерей, позволяя там развиваться, а через несколько дней извлекал. Эти эмбрионы я забирала в Кембридж и проверяла под конфокальным микроскопом расположение MmGFP-меченых клеток относительно передне-задней оси эмбриона прямо на входе в стадию гаструляции.

Результат деликатного труда по созданию многих десятков эмбрионов нас разочаровал. Мой MmGFP-маркер не работал. По мере деления клеток он «разбавлялся» из-за высокой скорости роста эмбриона между стадиями бластулы и гаструлы. К моменту гаструляции ни одна клетка уже не светилась зеленым. Ричард потерял надежду, да и я тоже. Но не окончательно.

Я вернулась к этой проблеме, когда случайно познакомилась с Роджером Педерсеном на конференции в Юте, где представляла свои первые результаты отслеживания клеток. Роджеру понравилась моя мечта подсмотреть за клетками на протяжении всей стадии имплантации, потому что он сам когда-то исследовал клеточные линии в Калифорнийском университете в Сан-Франциско. Ему настолько понравилась идея, что он одолжил мне недостающую часть оборудования из своей лаборатории и, что примечательно, пожелал взять творческий отпуск и поработать вместе со мной в моей недавно сформированной группе в Кембридже.

После многих неудачных недель мы наконец-то добились успеха. Секрет состоял в том, чтобы вводить маркер в строго определенном количестве — не слишком мало, чтобы он не «разбавился» на заключительном этапе эксперимента (гаструляции), и не слишком много, чтобы он не перегрузил клетку и не привел к ее гибели. Так, благодаря принципу Златовласки[6] мы смогли проследить, где оказались помеченные нами клетки.

Интерпретировать результаты было нелегко, поскольку у меченых клеток было множество потомков, которые не всегда выполняли те же функции. Нас так и подмывало сделать вывод о том, что клетки растут случайным образом, и прекратить дальнейшие поиски доказательств. Но мы решили продолжить. В тот момент Роджер внес еще один значимый вклад в наш проект. Он убедил Роберту Вебер, занимавшую штатную должность в Калифорнийском университете в Сан-Франциско, поработать техником в моей лаборатории.

Но даже с помощью Роберты и подходящего оборудования понадобился год, чтобы произвести достаточное количество меченых эмбрионов для распознавания связи между полярностью бластоцисты и полярностью эмбриона после имплантации. Эта связь не была детерминированной и поэтому всегда похожей, но все-таки мы добыли много информации. Мы с Роджером написали статью и опубликовали ее в 1999 году все в том же Development [17]. В дальнейшем эти результаты подтвердили мою гипотезу о том, что причины нарушения симметрии возникают в процессе развития раньше, чем предполагалось.

Эмбриологическое искусство

У меня по-прежнему польский акцент, и мне нравится думать о том, что я его сохраняю ради Джона Гёрдона, который просил меня никогда его не терять. Из-за дислексии я долго осваивала английский язык, чтобы знать его в совершенстве. Может, поэтому я до сих пор люблю открывать мир искусства, от живописи и фотографии до дизайна, театра и кино. Художественное мышление по-разному отразилось на моих исследованиях, от раскрашивания клеток, позволяющего разобраться в сложных клеточных узорах эмбриона, до создания из стволовых клеток эмбрионоподобных структур.

Этот вид искусства подарил мне не только завораживающие рисунки, но и новые идеи, а также раскрыл детали онтогенеза, превратив молекулярные процессы в яркие цвета, видимые невооруженным глазом.

Оттачиваемое моей командой искусство маркировки и перемещения клеток изменило мое представление о танце жизни. Увидев, что клетки в четырехклеточном эмбрионе и, вероятно, в двухклеточном не идентичны друг другу (как утверждают учебники), я поняла, что придется приложить много усилий, чтобы убедить себя в реальности увиденного, и еще больше усилий, чтобы убедить в этом своих коллег. Мне надо было довести до совершенства свою работу и свое эмбриологическое искусство.

Загрузка...