Глава 5 Рождение плана тела

Как многие эмбриологи, я в долгу перед свирепыми отпрысками Тифона и Ехидны, этой парочки чудовищ, наводнивших кошмарами сны древних греков. Согласно мифологии, верхняя часть Ехидны была телом молодой нимфы, а нижняя — хвостом огромной змеи. Ее супруг Тифон был леденящим душу монстром с сотней драконьих голов.

Союз этих смешанных созданий подарил греческой мифологии многих фантастических чудищ, таких как трехглавый пес Цербер, охраняющий врата Аида, многоголовая змея Гидра или Сфинкс с головой женщины и телом крылатого льва (смотря какому источнику верить). Сегодня Цербером вполне уместно называют ген, принимающий участие в формировании головы. Это один из генов, который я отслеживала долгие годы, и до сих пор отслеживаю с помощью GFP, чтобы понять, как развивается ось голова—хвост [1]. Но из всего этого странного и страшноватого потомства неожиданно значимым и полезным существом оказалась Химера.

Ее именем названа мощная концепция гетерогенного существа, получившая огромный резонанс не только среди ученых, но и среди обычных людей. Гомер описывал Химеру как «существо бессмертное, не человеческое, спереди лев, сзади змея и коза посередине» [2]. Среди ученых термин «химера» был впервые использован в 1907 году ботаником Гансом Винклером в контексте селекции растений.

Сама идея химеры бросает вызов представлениям об идентичности, видовой принадлежности и личности, и такая провокация просто бесценна для понимания устройства нашего тела. В современной эмбриологии этот пластичный и модульный взгляд позволяет экспериментировать с онтогенетическим развитием плана тела, смешивая и перетасовывая клетки раннего эмбриона.

В наш век клеточной алхимии, когда мы можем прочитать ДНК отдельных клеток и трансформировать их в любой желаемый тип, химерами являются и эмбрионы, ведь они состоят из смеси тонко различающихся клеток. Но различия не обязательно должны быть настолько тонкими. На самом деле строительные блоки химер могут принадлежать разным видам животных. Более того, подобные существа знаменуют начало долгого пути к созданию искусственных эмбрионов (тема, к которой я вернусь в главе 9).

Создание химер может выглядеть неестественным. Однако я, вы и все остальные люди в каком-то смысле являемся химерами: все клетки нашего организма считаются результатом слияния неродственных и более примитивных древних клеток — слияния, которое произошло 1,5 миллиарда лет назад [3]. Среди нас разгуливают и другие виды химер. Когда женщина беременеет, в ее крови и внутренних органах обнаруживается небольшое количество клеток ее нерожденного малыша. Подобный микрохимеризм можно рассматривать как символ прочной связи между матерью и ребенком. Человек может считаться химерой, если ему пересадили костный мозг, из-за чего клетки его крови генетически идентичны клеткам донора. Есть еще более редкие случаи, когда эмбрион в процессе развития сливается со своим братом, возникшим из другой оплодотворенной яйцеклетки.

Химеры могут выглядеть странными и фантастическими, но они ни в коем случае не противоречат природе. И если первопроходцы механики развития[12] XIX века сделали множество открытий, разделяя эмбрионы на части, мы тоже можем узнать много нового, собирая их из отдельных клеток. Химеры могли бы предоставить важную информацию о нарушении симметрии эмбриона. Мне повезло, что искусство создания химерных эмбрионов я постигала под руководством ученого, который одним из первых проделал этот трюк на млекопитающих.

Героические мыши

Систематическое изучение химер млекопитающих началось с экспериментов моего покойного наставника Анджея Тарковского, создавшего в 1960 году в Уэльсе свою первую химерную мышь [4]. Защитив в Польше докторскую диссертацию на стипендию Фонда Рокфеллера, Тарковский несколько недель спустя отправился в Уэльс, чтобы работать в лаборатории Фрэнсиса Брамбела на кафедре зоологии Университета Бангора. Через сорок лет он написал: «В те годы идея создания млекопитающего путем объединения двух дробящихся эмбрионов наверняка выглядела абсурдной» [5].

Эксперимент Тарковского показал, что после слияния клеток ранних эмбрионов они продолжают развиваться в химерный эмбрион [6]. Пересадив такой эмбрион в самку, он получил новорожденных с явными признаками химеризма, а именно — мозаичностью внешнего слоя сетчатки, где каждый «лоскуток» был потомком клеток разных эмбрионов [7]. Тарковский признал, что таким образом экспериментальная эмбриология отплатила древней мифологии, создавшей чудовищ из двух, трех и даже множества разных существ.

Тем временем другие ученые проводили собственные версии экспериментов. Беатрис Минц из онкологического центра Фокс Чейз в Филадельфии тоже была пионером создания химер млекопитающих. А позже Ричард Гарднер в Кембриджском университете и Ральф Бринстер в Пенсильванском университете придумали новый способ их конструирования — инъекции клеток в бластоцисту [8].

В 1976 году Энн Макларен отметила, что лишь несколько десятков человек во всем мире, работающих с экспериментальными химерами, «разделяют мое восхищение их красотой, способностью преподносить сюрпризы и давать ответы на старые вопросы, но прежде всего теми новыми вопросами, которые они непрерывно поднимают, вопросами, что и во сне не привидятся в мире, где индивидуум имеет только двух родителей» [9].

В то время все химеры млекопитающих были помесью разных индивидуумов, принадлежащих к одному виду. В 1984 году Макларен опубликовала книгу «Chimeras in Developmental Biology» («Химеры в биологии развития») в соавторстве с великим французским биологом Николь Де Дуарен, которая в 1970-х создавала химеры курицы и перепелки [10]. Обнаружив, что перепелиные клетки имеют уникальную маркировку, легко отличающую их от куриных, она отслеживала перемещение и судьбу клеток внутри перепелино-куриных химерных эмбрионов.

Следующим шагом было смешивание клеток разных видов млекопитающих. Эта задача удалась Стину Вилладсену и его команде, работавшим в лаборатории Криса Полжа в подразделении Совета по сельскохозяйственным исследованиям в Кембридже (Англия). В 1984 году Вилладсен создал химеру овцы и козы, ГИП (geep[13]), состоящую из мозаики козьих и овечьих тканей [11]. Части химеры можно было отличить по шерсти: кучерявые участки были сформированы из овечьего эмбриона, а прямоволосые — из козьего. Этот эксперимент имел и практическую ценность, поскольку позволял понять механизм вынашиваемое™ плода во время беременности. Хотя овца не может выносить эмбрион козы, и наоборот, обе способны выносить ГИП-эмбрион.

Этот подход, например, может позволить исследователям создать химеру так, чтобы обычный вид мог выносить плод вида, находящегося под угрозой вымирания, при этом плацента может состоять из одного набора тканей (обычного вида), а плод — из другого (вымирающего).

Химеры являются ключевым элементом создания «нокаутных» мышей, объясняющих роль генов в организме. В данном случае берут клетки, например, серой мыши, со всеми нетронутыми генами и смешивают с эмбриональными клетками белой мыши, у которой один конкретный ген удален или «нокаутирован». Такие эмбрионы развиваются в химерных мышей с мозаичным мехом, состоящим из участков «серых» и «белых» «нокаутированных» стволовых клеток. Также у некоторых химер половые железы сформированы из «нокаутированных» стволовых клеток и продуцируют яйцеклетки или сперматозоиды без одного («нокаутированного») гена. Этих мозаичных мышей можно скрещивать с нормальными мышами и получать нормальных или «нокаутированных» мышей, а сегодня (благодаря созданию условий для проведения исследований, что принесли Мартину Эвансу, Марио Капеччи и Оливеру Смитису Нобелевскую премию в 2007 году) можно создавать мутантные гены, которые активируются в определенный момент или в пределах конкретных клеток или органов как у развивающихся, так и у взрослых животных [12].

Кроме того, существуют исследования химер людей и животных, где у последних имеются человеческие клеточные признаки, например неврологические расстройства вроде Паркинсона и Альцгеймера. Можно выращивать мышей с человеческими опухолевыми клетками для изучения раковых заболеваний. Такие «аватарные» мыши имеют опухоль пациента, поэтому на них можно тестировать противораковые препараты, чтобы подобрать наиболее эффективный. Это дает преимущество, но по понятным причинам выращивание человеческих органов внутри животных вызывает тревогу, например, овца с частично человеческой печенью или мыши с человеческими нейронами, которые, как говорят, обладают повышенной способностью к обучению [13]. Я еще вернусь к этой теме и расскажу о практическом применении подобных химер.

Пирамидальные химеры

Результаты наших исследований предполагали, что клетки раннего мышиного эмбриона не обязательно идентичны друг другу, как думали почти все (включая и меня поначалу). Нам удалось проследить судьбу этих клеток, и теперь я хотела пойти дальше и проследить их развитие. Для этого я решила построить химеру, которую никто еще не создавал.

Наши наблюдения за развивающимися эмбрионами выявили два фактора, из-за которых клетки эмбриона отличаются друг от друга. Первый фактор — порядок деления клеток, поскольку клетки в двухклеточном эмбрионе делятся асинхронно, одна задругой. Согласно экспериментам, описанным в предыдущей главе, первой зачастую делится та клетка, которая унаследовала точку проникновения сперматозоида.

Второй фактор, создающий различия между клетками эмбриона, — ориентация клеточного деления. Чаще всего, в 80% случаев, одна клетка делится меридионально (вдоль анимально-вегетативной оси), а вторая — экваториально (перпендикулярно анимально-вегетативной оси). Влияет ли на судьбу клеток порядок и ориентация деления, в результате которого двухклеточный эмбрион становится четырехклеточным?

Для ответа на этот вопрос я и хотела создать химерные эмбрионы, которые состояли бы из одного типа клеток, взятых из четырехклеточного эмбриона, и понаблюдать за их развитием. Теперь, если последовать примеру коллег и допустить, что все клетки четырехклеточного эмбриона одинаковые, тогда все мои химеры должны были развиваться одинаково. Но если предположить, что я права и эти клетки разные, то каждый тип химеры должен был развиваться по-разному. Однако следовало учесть один нюанс: у нас было всего три типа клеток, а не четыре, как вы могли сразу предположить. Позвольте мне объяснить подробнее.

Причина в том, что две клетки, после деления которых получается четырехклеточный эмбрион, имеют полярность (разные концы, или полюса) или, по крайней мере, мы так считали, хотя опять же многие наши коллеги придерживались тогда иного мнения. Если клетка делится вдоль анимально-вегетативной оси, обе дочерние клетки получают и анимальный, и вегетативный полюса. Но если клетка делится перпендикулярно этой оси, то одна дочерняя клетка получит анимальный, а вторая — вегетативный полюс. Мы могли отличить эти полюса по положению второго полярного тельца, которое оставалось прикрепленным к анимальному полюсу.

Чтобы вам было легче, взгляните на полярность эмбриона следующим образом. Представьте себе двухцветный — наполовину черный, наполовину белый — мяч, расколовшийся надвое. В одном случае (при экваториальном или перпендикулярном разделении) вы получите одну черную и одну белую половины, отделяющие полюса мяча. Но если расколоть мяч под прямым углом к экватору (то есть меридионально), вы получите две идентичные черно-белые половины, поскольку каждой достанется два полюса.

Дробящийся двухклеточный эмбрион является эквивалентом двух раскалывающихся мячей. В зависимости от того, расколются они меридионально или экваториально, получатся две черно-белые клетки плюс одна белая и одна черная; или четыре черно-белые клетки; или две белые клетки и две черные. Но в природе все гораздо сложнее. Клетки делятся не синхронно, поэтому сначала поделится одна, меридионально или экваториально, затем другая, опять же меридионально или экваториально (я вернусь к этому позже).

Это и есть важный нюанс симметрии, означающий, что при делении двухклеточного эмбриона на четыре клетки получаются не четыре, а три базовых клеточных типа [14]. Чтобы установить, действительно ли эти клетки отличаются друг от друга, мы строили химеры на основе каждого из трех клеточных типов. Если обратиться к метафоре с мячом, химеры состояли из одних белых, одних черных или одних черно-белых клеток. Раз уж мы собирались провести дополнительные исследования для изучения судьбы каждой клетки четырехклеточного эмбриона, требовался изнуряющий набор экспериментов с использованием флуоресцентных красителей вместо черных и белых маркеров, чтобы идентифицировать клетки химер.

Каждый день рано утром Каролина помечала красителем (красным или зеленым) одну клетку двухклеточного эмбриона. В тот же день она наблюдала за делением. Каждые полчаса она открывала инкубатор, доставала эмбрионы и помещала под микроскоп (это было до того, как у нас появилась возможность снимать фильмы), чтобы посмотреть, какая из двух клеток поделилась первой — меченая или немеченая, и было ли это деление меридиональным или экваториальным. В зависимости от типа деления она помечала еще одну клетку вторым цветом, зеленым или красным, чтобы на четырехклеточной стадии можно было узнать происхождение каждой клетки.

В процессе деликатных манипуляций под микроскопом Каролина сделала тревожное открытие: эти клетки порой вращались относительно второй клетки во время ее деления, из-за чего можно было перепутать полюса. Чтобы избежать ошибки, мы решили, что Каролина будет помечать флуоресцентной гранулой другой конец клетки (вегетативный полюс). Так можно было гарантировать правильную идентификацию каждой клетки на стадии четырехклеточного эмбриона. Под конец Каролина «раздевала» четырехклеточный эмбрион, разделяя его на составляющие клетки, а затем из каждой индивидуальной клетки (с общей историей) создавала химеру. Этот финальный шаг следовало выполнять в предрассветные часы, когда клетки достигали данной стадии развития. Как же хотелось сказать нашим эмбрионам: «Пожалуйста, развивайтесь чуть медленнее, чтобы я поспала подольше, а позже мы наверстаем упущенное». Увы, реальность была иной.

Работать приходилось тщательно и безостановочно, и это изматывало. Каждый эксперимент занимал день и ночь, требовал кропотливых действий со стопроцентной концентрацией, чтобы создать лишь несколько химер. И разумеется, для статистической достоверности мы были вынуждены все повторять. Каждый эксперимент по созданию всех анимальных, всех вегетативных или всех анимально-вегетативных химер требовал окрашивания и наблюдения сотен эмбрионов и создания многих химерных эмбрионов, чтобы получились надежные и весомые результаты. К пяти вечера мне надо было забирать Наташу из детского сада и отвозить домой, поэтому я оставляла Каролину и отправлялась в долгий путь.

Но однажды вечером кое-что произошло. У Каролины случился приступ ужасной головной боли, и мне пришлось самой продолжить эксперименты, хотя мои навыки слегка заржавели. Причиной боли была опухоль. Она разрослась так сильно, что потребовалась срочная операция. Хотя опухоль, к счастью, оказалась доброкачественной, она парализовала половину красивого лица Каролины, испортив ее теплую улыбку.

Несмотря на ужасное испытание, Каролина была полна решимости вернуться ко мне как можно скорее. Научные исследования были ее любимым делом. Сначала было сложно. Паралич затруднял работу Каролины; например, процесс всасывания эмбрионов через пипетку — ведь нужно было брать ртом открытый кончик стеклянного капилляра и с его помощью перемещать клетки между чашками Петри. Конусообразным кончиком капилляра крошечные эмбрионы выхватывались из питательной среды за счет пониженного давления воздуха, создаваемого (да-да) всасывающим движением и небольшим вдохом. Это требует ловкости. Чтобы выпустить драгоценный груз из пипетки, надо нежным выдохом увеличить давление. Для этого Каролине пришлось не просто улучшить мелкую моторику, а... развить заново.

В целом мы повторяли эти эксперименты на протяжении двух лет. Согласно догме об идентичности клеток, все эти разные химеры должны обладать одинаковым потенциалом превращения во взрослую мышь. Но мы с восхищением обнаружили, что это не так. Из всех разновидностей идеально развивались те, что были построены из двух типов клеток — только они были склонны превращаться в эмбрион. Вегетативные клетки (склонные генерировать клетки для формирования плаценты) в эмбрион вообще не развивались. Хотя эти клетки принимали участие в создании бластоцисты, в процессе индивидуального анализа мы обнаружили, что они генерировали меньше плюрипотентных (так называемых эпибластных) клеток, способных построить организм. Было ясно, что горстка клеток раннего эмбриона уже склонна к определенной судьбе.

Наши эксперименты с созданием химер из разных типов клеток были изящными и выразительными, или, по крайней мере, нам так казалось. Коллеги предположили, что мы представим результаты в авторитетный журнал — это внесло бы весомый вклад в разрешение дискуссии не только о наших предыдущих исследованиях, но и о работе Ричарда Гарднера. Каролина тоже об этом мечтала. Но учитывая консерватизм коллег, я предвидела неизбежную войну с анонимными рецензентами, поскольку эта статья еще сильнее рушила преобладающую догму о том, что в ранних эмбрионах млекопитающих нет никакого уклона, а значит, и никаких паттернов.

Чтобы еще больше усложнить нам процесс принятия решения, жизнь поманила Каролину новыми возможностями. За время проведения кембриджских исследований она вышла замуж и родила дочь. Ее мужу предложили работу в США, и ей, разумеется, хотелось быть рядом с ним. Я ее полностью в этом поддерживала. Мы были непобедимой научной командой, и мне требовалось время, чтобы найти кого-то, кто был бы таким же талантливым и увлеченным и в то же время простым и теплым, движимым не одними лишь карьерными устремлениями.

Зная о скором отъезде Каролины, мы представили работу с химерами в журнал Development. Рецензенты сказали, что материал слишком большой для одной статьи и предложили разбить его на две. Первая статья включала бы все исследования по отслеживанию клеточных линий, раскрывающие судьбу клеток четырехклеточного эмбриона и ее влияние на паттерны клеточного деления. Вторая статья содержала бы описание экспериментов с химерами. Идея показалась нам хорошей, и мы сделали все, как нам сказали, лишь для того, чтобы услышать от редактора, что журнал не может публиковать две статьи по «одинаковой» теме. Процесс публикации затормозился еще сильнее, и Каролина к тому времени покинула лабораторию. Мне пришлось поручить другому члену команды закончить работу и довести обе статьи до ума. После еще большего количества задержек, вызванных прохождением через две группы рецензентов, две взаимосвязанные статьи наконец-то появились на страницах журналов Development и Mechanisms of Development [15]. К тому моменту Каролина успела освоиться в США (сегодня она заместитель директора отдела трансгенных технологий в Университете Эмори в Атланте).

К 2005 году у нас было открытие в области нарушения симметрии, которое опиралось на огромный объем работ. Чтобы убедиться, что место проникновения сперматозоида действительно играло важную роль, мы экспериментировали с партенотами (неоплодотворенными яйцеклетками, которые можно заставить начать развитие с помощью электрошока или дозы химикатов). Мы отследили судьбу многих тысяч эмбриональных клеток. Мы создавали сотни и сотни химер, пытаясь раскрыть детали влияния на эмбрион экваториального и меридионального клеточного деления [16].

Например, Каролина обнаружила, что если обе клетки на двухклеточной стадии делятся экваториально, то большинство эмбрионов после имплантации не развиваются [17]. Приятно, что через несколько лет это наблюдение подтвердилось исследованиями на человеческих эмбрионах, развивающих так называемую сплюснутую форму.

Джон Гёрдон тайком от меня сказал соавтору данной книги Роджеру Хайфилду, что мое с Каролиной исследование хотя и спорное, однако заслуживает статьи в Daily Telegraph, где Роджер работал научным редактором. В июне 2005 года Роджер написал очерк под названием «Разгадает ли этот ученый одну из величайших загадок жизни?», где объяснил наше открытие и его потенциальную значимость. Впервые моя команда попала на страницы популярной прессы, и это было захватывающе. Благодаря этой прекрасной и аккуратно написанной статье я два года спустя приняла предложение Роджера превратить мою историю в книгу.

Ради этой статьи Роджер обратился за комментарием к пионеру технологии экстракорпорального оплодотворения (ЭКО) Роберту Эдвардсу. Тот рассказал, как сам собирал косвенные доказательства того, что клетки эмбриона могут приобретать индивидуальность гораздо раньше, чем предполагалось, и высказал подозрение, что у человеческих эмбрионов может быть то же самое. Для клинической практики это имело огромное значение. Согласно методике предимплантационной генетической диагностики (ПГД), после ЭКО генетические и хромосомные нарушения диагностируются путем извлечения клеток из раннего эмбриона. Эдвардс вместе с другими исследователями был обеспокоен тем, что извлечение «неправильных» клеток на этой стадии может нарушить способность эмбриона к развитию. Безусловно, наши химерные эксперименты невозможно повторить на сотнях человеческих эмбрионов, а значит, нельзя быть абсолютно уверенным, применимы ли наши результаты к человеку. Многие клиники ЭКО делают ПГД и не обрадуются такому утверждению. Я чувствовала, что не стоит увлекаться подозрениями Роберта Эдвардса, не собрав дополнительных доказательств.

Лучше один раз увидеть

В то время я была полностью уверена, что будущий успех кроется в наращивании наших съемочных усилий, от документальных короткометражек до чего-нибудь в стиле постановки Кшиштофа Кесьлёвского «Декалог: десять заповедей». Когда я приступила к тому, что считала огромным шагом вперед, я была беременна, на этот раз Саймоном, хотя еще не знала об этом.

Чтобы сделать такой шаг, мне пришлось подать заявку на финансирование; требовалось приобрести специальное оборудование — микроскоп Zeiss и светочувствительную (и дорогую) камеру Hamamatsu для съемки эмбрионов крупным планом, способную захватывать срезы через столько последовательных плоскостей (с такой чувствительной камерой не надо было направлять на эмбрионы слишком много света и беспокоить их). Наши кинозвезды-эмбрионы действительно сияли, ведь мы использовали генетически измененных мышей, клеточные ядра которых флуоресцировали во время производства GFP. Этот флуоресцентный сигнал имел решающее значение, поскольку помогал шаг за шагом отслеживать жизнь каждой отдельной клетки, и мы всегда могли определить, кто есть кто, даже когда клетки перемещались. Развитие мышиных (и человеческих) эмбрионов очень пластично, поэтому любое возмущение может сдвинуть эмбрион на совсем другую онтогенетическую траекторию. Чтобы установить для эмбрионов, находящихся под ежедневным наблюдением, постоянные условия среды, надо было снабдить микроскоп инкубатором, поддерживающим температуру 37 °С, как в теле матери. Полагаю, в этом плане наш режиссерский стиль был более реалистичным, скорее, в духе Джеймса Марша с его «Человеком на канате», чем Кесьлёвского. Наконец, нам требовалась съемочная команда.

Мне повезло отыскать двух фантастических людей. Одним из них был мой новый аспирант Эмлин Парфитт, другим — постдок Маркус Бишофф, временно перешедший к нам из команды Питера Лоренса. Маркус трудился «в две смены», часть времени посвящая эмбрионам плодовых мушек дрозофил и часть времени — работе со мной, подобно тому, как я сама в период постдокторских исследований разрывалась между мышиными и лягушачьими эмбрионами Мартина Эванса и лабораторией Джона Гёрдона. Получившиеся таймлапсы точно отслеживали окончательное местонахождение каждой клетки на двух-, четырех- и восьмиклеточных стадиях развития. Фильмы показывали судьбу клеток на протяжении нескольких дней, включавших несколько клеточных делений на стадии бластоцисты — полого шарика из клеток, почти готового к имплантации в матку.

В отличие от предыдущих работ, мы пользовались не только глазами и мозгом, но и специальным программным обеспечением для отслеживания клеток. Что было важно, поскольку исключало любую предвзятость, даже неосознанную, при оценке судьбы индивидуальных клеток, когда мы анализировали наши фильмы. Это также сильно облегчало слежение за отдельными клетками. Анализ выполнялся Маркусом и Эмлином, которые независимо друг от друга оценивали каждый эмбрион и положение каждой клетки.

Это было огромное командное усилие, Маркус с Эмлином полностью вложились в проект. Для меня это означало воплощение долгожданной мечты, и мне не терпелось узнать, что они обнаружили. Сама я не могла помочь с анализом данных, поскольку моя вторая беременность оказалась не такой легкой, как первая.

Точные трехмерные фильмы выявили множество важных деталей развития от момента, когда эмбрион состоит всего из двух клеток, до превращения в бластоцисту. Яркие флуоресцентные следы подтвердили все наши предыдущие результаты. Они поддержали идею о том, что одна клетка двухклеточного эмбриона склонна развиваться в эмбриональную часть бластоцисты, из которой формируется собственно эмбрион, а вторая склонна генерировать внеэмбриональные ткани. Они показали, что этот уклон зависит от ориентации и порядка деления, начиная с двухклеточной и заканчивая четырехклеточной стадией, и влияет на последующие паттерны клеточного деления. Мы считали, что это потрясающее исследование, и представили наши документальные фильмы вместе с подробным анализом в Nature.

Они были отправлены на рецензию, но пока мы подготавливали наш манускрипт к публикации, в журнале Science вышла статья, тоже содержащая таймлапсы с мышиными эмбрионами, однако эти фильмы предлагали альтернативное объяснение, что эмбриональный паттерн завит от формы zona pellucida [18]. Как следовало ожидать, наш материал отклонили.

Я только что родила Саймона, и понадобилось время, чтобы расширить исследования и понять, почему наши результаты отличались от опубликованных в Science. (Позже это конкретное открытие было опровергнуто Ричардом Гарднером [19].) Со временем мы расширили исследования и в 2008 году представили дополнительные доказательства в поддержку нашей работы. Отслеживая по таймлапсам родословную каждой клетки, мы увидели, что по пути к бластоцисте на паттерн симметричных/асимметричных клеточных делений влияло происхождение клеток относительно анимально-вегетативной оси оплодотворенной яйцеклетки и плоскости первого дробления [20]. Я употребляю слово «влияло» не без причины, снова подчеркивая, что это скорее, тенденция, чем предопределенность, поскольку развитие мыши пластично.

Для получения действительно связной истории о причинах нарушения симметрии нам, помимо экспериментов с отслеживанием клеток, требовалось разобраться в деталях фундаментальных генетических инструкций, направляющих этот танец.

Каков же механизм?

Со временем коллеги начали открыто признавать, что за результатами наших исследований структуры ранних эмбрионов скрывается нечто важное. Однако у них возникали вопросы. В чем заключается механизм? Существуют ли ген или какие-то эпигенетические изменения, которые запускают процесс, влияющий на судьбу клеток в начале развития? Если да, можно ли их обнаружить?

Для проведения исследований по идентификации механизма мы нуждались в финансовой поддержке. Которую так и не получили. Всякий раз при подаче заявки на финансирование тот или иной анонимный рецензент отвечал, что у нас нет доказательств того, что клетки на такой ранней стадии отличаются друг от друга, следовательно, нет необходимости искать механизм. Трудно поверить, сколько заявок на грант было отклонено таким образом и сколько месяцев было впустую потрачено на их написание. Продвинуться вперед мы смогли только благодаря случайному открытию, автором которого была потсдокторский исследователь Мария-Елена Торрес-Падилья, присоединившаяся к моей группе после защиты диссертации в Институте Пастера в Париже.

В то время моя лаборатория соседствовала с лабораторией моего друга, выдающегося биолога-онколога Тони Кузаридеса, который открыл несколько эпигенетических модификаций гистоновых белков, помогающих упаковывать в хромосомы клеточную ДНК. Эти изменения влияют на то, какие гены будут считываться, и потенциально способны изменить клеточные характеристики. Под влиянием Тони (как косвенным, так и непосредственным) мы смогли установить важные эпигенетические различия между индивидуальными клетками эмбриона на четырехклеточной стадии.

Мария-Елена обнаружила разницу в метилировании двух специфических аргининовых (аргинин — это аминокислота, один из строительных блоков белка) остатков в гистоне H3 (типе гистоновых белков). Поначалу мы думали, что эта разница отражает различные фазы клеточного цикла, ведь клетки не делятся строго в такт. Но, к счастью для нас, эта разница оказалась действительно важной: наименьший уровень специфического метилирования присутствовал в клетке, которая, согласно нашим предыдущим результатам, была склонна дифференцироваться в трофэктодерму (формирующую плаценту, а не ребенка).

Но корреляция, какой бы идеальной она ни была, не подтверждает причинно-следственную связь. Чтобы убедиться, Мария-Елена ввела в одну из клеток двухклеточного эмбриона послание для фермента CARM1, прикрепляющего метальные группы к аргининовым остаткам на гистоне H3. Это единичное изменение сделало клетку более плюрипотентной, имеющей наивысший потенциал развития. Оно привело к повышенной экспрессии генов, кодирующих факторы плюрипотентности, — молекулярные переключатели SOX2 и NANOG, которые повышают способность клетки к дифференцировке. В результате клетка с повышенным уровнем CARM1 порождала клетки, превращающиеся в собственно эмбрион.

Это молекулярное переключение было просто поразительным. Наша работа предоставила первые сведения о механизме, склоняющем клетку эмбриона к дифференциации в трофэктодерму. Такая клетка обладала наименьшей активностью фермента CARM1. В 2007 году журнал Nature опубликовал наше открытие [21].

Исследование впервые приоткрыло молекулярный механизм, скрывающийся за неоднородностью мышиного эмбриона и нарушением его симметрии [22]. Оно показало, что клетки соревнуются за свою судьбу, а значит, некоторые клетки лучше других предрасположены к формированию собственно эмбриона, и это склоняет их на определенный путь развития. По чистой случайности статья была опубликована в тот самый день, когда в кембриджской больнице Рози родился мой сын Саймон. Это был еще один невероятно счастливый момент в моей жизни.

Истории одной клетки

Поскольку тогда меня заинтересовали другие темы, в моих поисках молекулярного механизма начального нарушения симметрии наступил многолетний перерыв. Однако несколько лет назад, когда у нас появилась возможность взглянуть на ранний эмбрион под новым и очень информативным углом, наш интерес к симметрии снова пробудился. Нас подстегнул успех коллег в области секвенирования нуклеиновых кислот, позволяющий прочитать все послания иРНК[14] индивидуальной клетки. Послания содержат инструкции по созданию белков, полученные от ДНК (клеточного хранилища генетической информации). Чтобы превратить код РНК-посланника в белок, клетка нанимает другой тип РНК — транспортную РНК, которая переносит строительные блоки белков, называемые аминокислотами. Зная о присутствии конкретных посланий, можно понять, какие гены в каждой клетке включаются и выключаются на ранних этапах жизни эмбриона.

В 2014 и 2015 годах сообщалось, что в целом генетические инструкции, переписанные с «рецептов» ДНК в послания РНК, различаются между клетками двухклеточного эмбриона [23]. Эти исследования подтвердили, что только одна из двух клеток действительно тотипотентна, то есть способна развиться в мышь, как впервые было показано в экспериментах Энн Макларен и Джинни Папайоану.

С помощью такой высокочувствительной методики мы могли выяснить, какие гены последовательно используются в клетках, склонных развиваться в собственно эмбрион, а какие — в клетках, формирующих трофэктодерму, а затем сравнить полученные данные. К тому времени Мария-Елена, занятая решением других задач, вынуждена была переехать в Германию в лабораторию в Мюнхене. Но у меня уже был новый аспирант, Мубин Гулам из Южной Африки, любознательный и, что важно, полный энтузиазма пересмотреть весь этот затянувшийся спорный вопрос.

Мубин помнит, как ему часами приходилось наблюдать за каждым отдельным эмбрионом, пока тот дробился поздно ночью, переходя от двухклеточной стадии к четырехклеточной. Затем надо было изолировать каждую клетку. И если бы хоть одна оказалась повреждена, «пришлось бы уничтожить весь эмбрион». Несмотря на трудности, это время ему запомнилось как захватывающее [24].

Нам снова предстояло много работы, требующей тщательного выполнения, наряду с экспериментами, которые могли продолжаться с вечера до следующего утра. По моей просьбе Мубину пришли на помощь два превосходных эмбриолога: Агнешка Едрусик родом из Польши и Сара Грэхем из Новой Зеландии, которые когда-то готовили диссертации на базе моей лаборатории, после чего остались в ней работать. Я же, со своей стороны, купила в офис кофеварку и диван, на котором можно было спать.

Вычислительным анализом данных занималась лучшая группа во всем Кембридже команда Джона Мариони из соседнего Европейского института биоинформатики и, в частности, Антонио Шиалдоне [25]. Анализируя каждую клетку четырехклеточного эмбриона, Антонио обнаружил множество генов, значительно отличающихся своей активностью. Их было слишком много для исследования. Ему пришла в голову гениальная мысль сосредоточиться лишь на тех, что были мишенями для двух ключевых и уже изученных факторов транскрипции, ОСТ4 и SOX2, регулирующих активность генов, критически важных для клеточной потентности и гибкости. Мы могли продемонстрировать разницу в паттернах активности таких генов.

Обнаружив множество генов-мишеней, мы для начала сфокусировались на одном, кодирующем транскрипционный фактор SOX21, и сделали это не без причины. Во-первых, фактор SOX21 использовался как раз на четырехклеточной стадии, а во-вторых, клетки на этой стадии производили его в разных количествах.

Для проверки функций SOX21 Мубин создавал эмбрионы, клетки которых обладали либо повышенным, либо пониженным уровнем этого фактора. Клетки с измененным уровнем SOX21 он промаркировал, чтобы иметь возможность проследить их судьбу. Оказалось, что SOX21 при дифференцировке в трофэктодерму регулирует экспрессию другого ключевого фактора транскрипции, CDX2. Именно ему посвящалась докторская диссертация Агнешки, и мы много знали о его роли благодаря работе как нашей, так и других научных команд [26].

Мубин обнаружил, что высокий уровень SOX21 склонял клетки развиваться в эпибласт, поскольку приводил к снижению уровня CDX2. И наоборот, низкий уровень SOX21 приводил к повышенной экспрессии CDX2, склоняя клетки на постройку трофэктодермы. Примечательно, что на уровень экспрессии SOX21 влияла активность фермента CARM1 — того самого, который мы раньше изучали с Марией-Еленой.

Наконец-то мы раскрыли механизм, сдвигающий онтогенетический потенциал клеток четырехклеточного эмбриона, — механизм, который объяснял, почему клетки на очень ранней стадии не идентичны друг другу.

Хотя открытие было поразительным, нашу статью приняли не сразу. Одному из трех анонимных рецензентов не понравилось, что мы опять затронули концепцию неидентичности клеток на заре жизни мышиного эмбриона. Редактор журнала, тем не менее, остался непредвзятым и перенаправил нашу рукопись со всеми комментариями рецензентов и нашими на них ответами одному очень уважаемому эксперту, который, как нам сказали, не принимал участия в прежних дебатах и мог судить беспристрастно.

Мы понятия не имели, кем был этот независимый эксперт, но, к нашему облегчению, ему понравилась наша работа, и он рекомендовал статью к публикации. После столь долгого для меня и моих коллег пути мы отпраздновали новость большим количеством шампанского. Исследование было опубликовано в 2016 году в престижном журнале Cell [27].

Невероятно, но в том же мартовском номере Cell вышла еще одна статья с аналогичными выводами. Группа из Института молекулярной и клеточной биологии при Агентстве науки, технологии и исследований[15] в Сингапуре, возглавляемая Нико Плахтой, творчески подошла к изучению взаимодействий ДНК и транскрипционных факторов клеток четырехклеточного эмбриона. Они узнали, что в индивидуальных клетках SOX2 связывается с ДНК в разные периоды и что продолжительность этой связи коррелирует с судьбой клеток. Следовательно, по длительности связи SOX2—ДНК можно предсказать судьбу клеток на четырехклеточной стадии развития. Изумлял и тот факт, что Нико установил зависимость связи SOX2—ДНК от активности фермента CARM1, которая у клеток четырехклеточного эмбриона была вовсе не одинаковой [28].

Выполненная группой Нико красивая и замысловатая работа поведала все ту же историю о том, что клетки мышиного эмбриона не идентичны друг другу и их судьба на четырехклеточной стадии развития подвластна активности фермента CARM1 [29]. Тот самый номер журнала Cell содержал комментарий по поводу обеих статей и их актуальности, написанный Хуаном Карлосом Исписуа Бельмонте — главой лаборатории регуляции экспрессии генов в Институте Солка (Ла-Хойя, Калифорния) и автором впечатляющей работы по программированию и перепрограммированию клеточной судьбы.

Накопленные доказательства подтверждали гипотезу о том, что клетки и в самом деле отличаются уже на очень ранней, четырехклеточной, стадии развития эмбриона. Понадобилось много времени, но мы наконец-то поняли принципиальные основы того, как возникают первоначальные уклоны и выступают движущей силой, шаг за шагом очерчивающей судьбы клеток на заре жизни.

Как сделать близнецов

С тех пор как мы обнаружили доказательства уклона в онтогенетическом развитии, нам захотелось узнать, как этот уклон может быть настолько сильным, что лишь одна из двух клеток, разделенных на двухклеточной стадии, развивается должным образом? Связано ли это с генерацией плюрипотентных клеток в организме?

Выдающийся британский биолог Льюис Уолперт часто спрашивал меня: сколько плюрипотентных клеток нужно при имплантации, чтобы беременность была успешной? Определенно для создания мыши требуется минимальный набор клеток, но какой именно?

Ответ, как это бывает в науке, пришел неожиданно в ходе экспериментов с видеовизуализацией, проводимых Сэм Моррис из моей команды. Сэм разделила клетки двухклеточного эмбриона и оставила их развиваться в половинчатые бластоцисты. После подсчета количества эпибластных клеток в каждой из близнецов-бластоцист Сэм перенесла их в матку приемных матерей. Это был ответ на вопрос Льюиса: чтобы получился мышонок, при имплантации нужны как минимум четыре плюрипотентные клетки. Если на двухклеточной стадии отделить две клетки друг от друга, только одна сможет генерировать это количество, а ее сестра — нет.

Сэм продвинулась еще дальше. Она задалась вопросом: какая из двух клеток может, а какая не может совершить этот онтогенетический подвиг превращения в индивидуум? Чтобы ответить на вопрос, она создала химеры из того же типа клеток, который когда-то использовала Каролина. Оказалось, что клетка, не развивающаяся после разделения со своей сестрой, — это та самая клетка, которой суждено стать вегетативной на четырехклеточной стадии, своего рода материнская клетка вегетативной клетки.

Более того, Сэм помогла клетке с меньшей тотипотентностью генерировать больше плюрипотентных клеток. Она использовала для этого специальный препарат, воздействующий на два семейства сигнальных белков: факторы роста фибробластов (FGFs) и белки Wnt. Этот трюк позволил Сэм создать мышей-близнецов из двух отдельных клеток двухклеточного эмбриона. Ее исследование было опубликовано в 2012 году [30]. Сэм была одним из лучших участников моей команды и вложила всю свою душу во многие наши проекты, но эта работа была, наверное, ее наивысшим достижением. Так полвека спустя догма, настаивающая на одинаковости клеток двухклеточного эмбриона, была окончательно опровергнута.

Репликация

В 2004 году, в самом начале потасовки с Хиираги и Сольтером, Джон Гёрдон предупредил меня, что с учетом осторожного темпа научного прогресса пройдут десятилетия, прежде чем споры так или иначе улягутся. Он оказался совершенно прав, хотя скептики попадаются до сих пор. Через десять лет мы действительно обнаружили механизм, лежащий в основе паттернов, которые запускаются на гораздо более ранних этапах развития. Более того, другие ученые, устоявшие перед бурей и натиском дебатов, воспользовались мощными новейшими технологиями и получили те же результаты.

Несмотря на оппозицию, наши исследования были независимо воспроизведены коллегами по научной области. Например, команда физика Скотта Фрейзера (одного из наиболее выдающихся ученых, занимающихся эмбриональной визуализацией) из Калифорнийского технологического института продемонстрировала динамику транскрипционного фактора ОСТ4, контролирующего развитие мышиного эмбриона. Их превосходные эксперименты показали, что индивидуальные клетки четырехклеточного эмбриона имеют разную скорость перемещения ОСТ4 между ядром и цитоплазмой. Выяснилось, что чем дольше ОСТ4 задерживается в клеточном ядре, тем больше растет плюрипотентность данной клетки [31]. Или, говоря другими словами, чем медленнее ОСТ4 перемещается по клетке, тем выше вероятность того, что эта клетка разовьется в собственно эмбрион, в то время как клетки с более подвижным ОСТ4 больше вкладываются в развитие трофэктодермы.

Уже упомянутый мною Нико Плахта, первый автор этого исследования, вместе со своей командой продвинулся еще дальше. Используя метод визуализации взаимодействий факторов транскрипции и ДНК, он обнаружил, что критически важный для клеточной плюрипотентности SOX2 дольше всего остается связанным с ДНК в тех клетках четырехклеточного эмбриона, которые склонны формировать собственно эмбрион [32]. Команда Нико также выяснила, что эта разница обусловлена активностью фермента CARM1.

Еще одно доказательство ранних эмбриональных паттернов поступило от группы Кевина Эггана, получателя «Гранта для гениев» от Фонда Макартуров, чья команда использовала генетически маркированные клетки «радужных» мышей, где разные клеточные линии помечены разными цветами. Отслеживая судьбу клеток, группа Кевина подтвердила, что клетки четырехклеточного эмбриона не одинаковы и приобретают предрасположенность к определенному пути развития гораздо раньше, чем принято считать [33]. Эта работа была опубликована в журнале Current Biology, и я помню слова Кевина о том, как трудно ему пришлось из-за критики анонимных рецензентов, хотя результаты эксперимента были ясны как божий день.

Кроме того, они сделали важный шаг вперед и показали, что судьба клеток различается как на стадии бластоцисты, так и после имплантации эмбриона. Они заключили, что «уклон, наблюдаемый в бластоцисте, сохраняется на постимплантационных стадиях, а следовательно, имеет значение для всего последующего развития» [34]. Вместе с работами Скотта Фрейзера и Нико Плахты мы получаем превосходный пример непротиворечивости, когда независимые и несвязанные между собой исследователи приходят к одному и тому же выводу.

Хотя нам удалось мельком взглянуть на хронологию и механизм нарушения симметрии, многие вопросы остались без ответа. Один из них касается поляризации клеток на восьмиклеточной стадии: что является триггером и какой механизм гарантирует, что это случится именно на восьмиклеточной стадии, когда развитие эмбриона настолько гибкое? Есть ли у клеток какой-нибудь часовой механизм, говорящий им, что делать? Природа этого эмбрионального таймера — нынешняя страсть моей коллеги Мэн Чжу.

Но важнее всего то, что мы до сих пор ищем источник асимметрии, возникающей на четырехклеточной стадии. Похоже, на него влияет асимметрия на двухклеточной стадии, но откуда берется она? Имеет ли отношение ко всему этому асимметрия яйцеклетки вдоль анимально-вегетативной оси? Связана ли она с проникновением сперматозоида? Имеет ли значение переносимый сперматозоидом генетический груз в форме маленьких РНК? Или все перечисленные факторы оказывают влияние в различной степени, и именно поэтому источник асимметрии так трудно установить?

Во время перерыва в наших исследованиях развития четырехклеточных эмбрионов и до того, как мы занялись изучением молекулярных свойств отдельных клеток, я переключила интерес своей команды на более поздние стадии развития — те, что всегда были покрыты мраком тайны из-за невозможности наблюдать и экспериментировать с имплантированными эмбрионами, так называемым черным ящиком онтогенеза млекопитающих.

Раз мы затеяли эту научную авантюру, единственный способ отследить клеточную судьбу состоял в том, чтобы имплантировать приемной самке эмбрион с клеткой, помеченной GFP, а через несколько дней извлечь его и посмотреть, где окажутся потомки промаркированной клетки. Продолжает ли первый акт нарушения симметрии воздействовать на развитие эмбриона после имплантации, как предполагало исследование Кевина Эггана? Или вся память об этом событии стирается при создании плана тела?

Решением этого вопроса я занималась в середине 1990-х, однако в процессе интенсивного роста эмбриона после имплантации маркеры в большинстве случаев не сохранялись. Чтобы получить достаточное количество информации, эксперименты приходилось повторять снова и снова. Мне не хотелось возвращаться к этому расточительному методу. Более того, для понимания процесса важно непосредственное наблюдение, которое невозможно, когда эмбрион спрятан в теле матери.

Но если бы нам удалось это проследить, мы смогли бы понять, почему некоторые эмбрионы процветают, несмотря на клетки с аномальным набором хромосом. В том, что касается Саймона и обнаружения аномалий в пробах ворсинок хориона (CVS), взятых с соединяющей нас плаценты, в ходе экспериментов я могла бы найти им объяснение. Для изучения этой стадии развития надо было придумать такой способ, который позволил бы эмбрионам развиваться в лабораторных условиях дольше, чем когда-либо, в течение того периода, который они обычно проводят в теле матери.

Загрузка...