Глава 4 Нарушение симметрии

История любой новой жизни — это история роста, развития и преобразования. Оплодотворенная яйцеклетка имеет необыкновенную способность делиться на множество клеток, самостоятельно выстраивающихся в уникально организованную материю — эмбрион, который со временем создаст организм человека. Каким образом некоторые клетки эмбриона становятся настолько непохожими на соседние, что создают организм, пока другие формируют плаценту? Все дело в нарушении симметрии.

Как только симметрия развивающегося эмбриона нарушается, клетки делают выбор, развиваясь в разных направлениях. Но почему? Из какой клетки раннего эмбриона появится плацента? Какая клетка проложит путь ребенку? У человеческого эмбриона есть и питающий его желток — так какая же клетка превратится в желточный мешок, внутри которого будет расти эмбрион?

Ко времени имплантации эмбриона все эти решения должны быть приняты. И каждое сопровождается событием, нарушающим симметрию.

Дальше предстоит еще больше таких событий. Например, из какой клетки эмбриона вырастет голова, а из какой сердце? Где будет верх, а где низ? Как отличить правую часть от левой? Заднюю от передней? Нарушение симметрии эмбриона является одним из важнейших процессов ранней жизни и основополагающих процессов для создания плана тела. Большая часть моих исследований в той или иной степени посвящена попыткам понять, когда и как по мере развития новой жизни эмбрион нарушает свою симметрию. Мне это кажется волшебством.

В этом великом деле партнерство и сотрудничество были моими помощниками. На пороге нового тысячелетия к нашей команде в качестве постдока[7] присоединилась Каролина Пиотровска из Польши. Каролина была необыкновенно одаренной в отношении манипуляций с эмбрионами, эдакий эмбриологический вариант тех, кого в Великобритании называют green fingers, или зеленые пальцы (возможно, они и вправду флуоресцировали зеленым свечением GFP). Для выполнения серии сложных экспериментов нужны легкая рука и ловкость. У Каролины были все эти навыки, а еще правильный ментальный настрой, ведь такая утомительная работа легко могла привести к ошибке.

Большинство аспирантов оказываются шокированы переходом от той мизерной информации, что преподается на курсе, к настоящей научной работе в лаборатории, где важна ловкость рук и где приходится осваивать новые навыки. Для многих является сюрпризом тот факт, что большая часть новаторских экспериментов, проводимых для подтверждения новых фактов и проверки новых идей, никогда не проходит гладко, по крайней мере, не сразу — понадобится терпение, чтобы создать правильные условия. Провал для исследовательских работ в порядке вещей. Мы учимся на ошибках и идем дальше. У Каролины было идеальное сочетание терпения, выдержки, целеустремленности и неиссякаемого оптимизма, позволявшее ей не сдаваться, если эксперимент не показывал ничего путного, и работать до тех пор, пока она не убеждалась, что все сделано правильно и что все контрольные эксперименты указывают на то, что результаты не являются артефактом (следствием эксперимента как такового) и потому заслуживают доверия.

Идеи, возникшие в результате нашей совместной работы, привели к моей первой публикации в Nature. Поскольку это престижный журнал, коллеги по-настоящему обратили на мою группу внимание. Наша работа произвела фурор. Но не в том смысле, в котором я ожидала.

Симметрия стала центром отвратительных дискуссий. Оглядываясь на прошлое с научной точки зрения, могу сказать, что это был самый тяжелый этап моей научной жизни, казавшийся бесконечным. Джон Гёрдон помог мне своей спасительной дружбой и поддержкой. В свое время он предупреждал, что, если мы обнаружим нечто действительно важное, но противоречащее существующей догме, пройдет десять лет, прежде чем наше открытие будет подтверждено и принято другими группами, и еще десять, прежде чем оно получит признание. Я оказалась просто еще одним человеком, пострадавшим в долгой борьбе за понимание премудростей симметрии. Это событие на годы стало моим тяжким бременем.

Оплодотворение

По прибытии Каролины в Кембридж мы начали с изучения зарождения — Большого взрыва[8] индивидуального развития, момента встречи сперматозоида и яйцеклетки. Последняя — не заурядная клетка, а та, что преисполнена потенциалом и уникально экипирована для создания новой жизни. Это клетка, которая может расти и делиться, чтобы создавать историю, записывать ее и даже менять.

Когда на одном конце развивающейся клетки раннего эмбриона накапливается конкретный набор белков (PAR-белков, о которых я уже упоминала), делающий его непохожим на другой конец, клетка приобретает полярность. К моменту имплантации эмбриона в теле матери в нем уже сформированы из клеток с разной судьбой первые три ткани, значительно отличающиеся друг от друга. Образуются новые оси, вроде тех, что идут в трех взаимно перпендикулярных направлениях: передне-задняя (голова-хвост), дорсально-вентральная (спина-живот) и саггитальная (право-лево) оси. После почти двух десятков лет исследований мы по-прежнему удивительно мало разбираемся в том, как решается судьба клеток и как закладываются оси, самые ранние признаки ключевых изменений, а также в том, как они определяют наше будущее.

Некоторые элементы жизненной истории оказываются более симметричными, чем принято считать.

После изучения старых учебников по биологии может сложиться сильное впечатление, что яйцеклетка сидит на месте, словно высокомерная принцесса, и ждет, когда ее оплодотворят, а в это время сперматозоиды расталкивают друг друга в борьбе за ее руку и сердце.

Однако чтобы получить шанс на оплодотворение, яйцеклетка, зеркально отражая тяжелую участь сперматозоидов, вынуждена сначала соревноваться с множеством других яйцеклеток. К моменту рождения девочки в ее яичниках есть все яйцеклетки, которые будут высвобождаться на протяжении репродуктивного периода. Таких клеток примерно четыреста тысяч. Некоторые из них могут не созревать сорок лет, другие — дегенерировать, так и не созрев. Яйцеклетки находятся в спящем состоянии вплоть до овуляции, когда клетка получает от жизни первый приз и высвобождается под давлением из заполненной жидкостью структуры яичника.

Другие же аспекты первого танца жизни не так симметричны, как их описывают. Многие считают яйцеклетку и сперматозоид равными партнерами в деле создания новой жизни. По одному очень важному пункту — вкладу генетического материала матери и отца — они действительно равны. Но в подобном восприятии недооценивается человеческая яйцеклетка как мощный генератор потенциала, трансформации и перемен.

Крошечный сперматозоид и могучая яйцеклетка

Яйцеклетка — это могучая биохимическая вселенная, уникально оснащенная ДНК, РНК и белками, а также митохондриями (клеточными аккумуляторами) и многими другими органеллами. У нее даже есть «скорлупа» — умный защитный барьер под названием zona pellucida, избирательно проницаемый для сперматозоидов.

Хотя яйцеклетка — самая крупная клетка человеческого организма, она невидима глазу и составляет у человека всего одну десятую миллиметра в поперечнике. Тем не менее она является чудесной машиной сотворения, которая миллионы лет совершенствовала свои навыки моделирования нового индивидуума из генов матери и отца.

После оплодотворения в яйцеклетке закипает активность. Она освобождает ДНК сперматозоида от молекулярных меток — метильных групп, контролирующих включение и отключение генов. Эти паттерны метилирования (эпигенетические модификации) — одна из причин того, почему все клетки организма имеют одинаковый набор генов, но отличаются друг от друга, как, например, нервная клетка от мышечной. Молекулярные метки гарантируют, что клеточный оркестр будет играть одну конкретную мелодию, где каждая нота — это ген, ответственный за синтез белка. Без этих меток онтогенетический таймер обнуляется. Закладывая новые мелодии (онтогенетические паттерны), ранний эмбрион способен создать любую клетку организма.

Механизм яйцеклетки настолько всесилен, что можно поместить в нее ядро зрелой клетки и создать нового полноценного индивидуума. При этом яйцеклетка, словно машина времени, уберет с ядерной ДНКвсе химические модификации, произошедшие в течение жизни, и возвратит ее в эмбриональное состояние. Вот в чем фокус, позволивший Джону Гёрдону клонировать лягушек (а также позволивший команде Яна Вилмута из Рослинского института в Шотландии клонировать овечку Долли из зрелых клеток овечьего вымени).

Сперматозоиды более динамичны. У них есть хвост, который благодаря динеиновому белковому мотору может извиваться. Динеин, как все белки, состоит из аминокислотных цепочек, уложенных в слои, спирали и прочие сложные фигуры, которые в данном случае образуют молекулярный мотор, способный превращать химическую энергию в кинетическую, прямо как автомобильный двигатель. Это и приводит сперматозоид в движение.

Будучи в этом отношении эффектным, в остальном сперматозоид не такой примечательный и является самой мелкой человеческой клеткой — в 50 раз меньше яйцеклетки. Так себе размер. Другое дело — плодовая мушка Drosophila bifurca. Когда самец мушки продуцирует сперматозоиды, каждая клетка свернута в клубок, при разматывании которого получается почти 6 сантиметров — в 20 раз длиннее самого самца [1]. У человека длина сперматозоидов всего 0,005 сантиметра. Они содержат лишь программное обеспечение ДНК, привязанное к динеиновому молекулярному мотору, наряду с дополнительным и более древним генетическим материалом в форме РНК, а также центриоль — крошечное тельце, которое помогает организовать веретенообразный скелет из нитей, обеспечивающих сегрегацию хромосом при клеточных делениях после оплодотворения.

Инструкции РНК охватывают оплодотворенную яйцеклетку раньше ДНК, чтобы заставить нового индивидуума действовать, а не ждать, словно компьютер во время загрузки операционной системы, и тем самым внести изменения в следующее поколение. Например, повышенное количество одного из многочисленных типов маленьких РНК в сперматозоидах мышей, подвергнутых стрессу, может привести к изменению стрессовой реакции у взрослого потомства. Более того, на PHК сперматозоидов влияет характер питания, который может изменить регуляцию генов у потомства и вызвать нарушение обмена веществ [2].

Когда появляется индивидуум

Многие думают, что жизнь начинается со встречи сперматозоида и яйцеклетки. Это не совсем так, если представить индивидуума как смесь ДНК матери и отца, ведь окончательное смешение родительских генов происходит не в момент оплодотворения, а через несколько часов, во время первого клеточного деления.

До него мужская и женская ДНК лежат отдельно в двух сферических структурах — пронуклеусах. Оба генетических набора мигрируют к центру яйцеклетки, но не собираются вместе до тех пор, пока молекулы ДНК, общая длина которых в районе двух метров, не сконденсируются[9] в хромосомы, которые можно перемещать с помощью так называемого веретена — нитей из микротрубочек.

Запертый внутри оболочки zona pellucida, эмбрион первоначально создает все больше и больше клеток путем дробления — простого деления на две, потом четыре, потом восемь клеток и так далее. Скорость деления совпадает не у всех дочерних клеток. Кто-то вырывается вперед, а кто-то отстает.

Во время дробления эмбрион не растет. Тем самым он откладывает стимулирующее рост питание, пока не станет многоклеточным и не сможет выделить для приема пищи отдельные части. В ходе этой важной прелюдии он вкладывает ресурсы в одну из самых существенных задач, поручая своим клеткам превратиться в три разные группы стволовых клеток, необходимых для формирования зачатков всех типов клеток, что будут развиваться в дальнейшем.

Первая группа стволовых клеток (эпибласт) может показаться самой ценной, поскольку из нее будет формироваться ребенок. Вторая группа стволовых клеток (трофэктодерма) будет создавать плаценту — орган, через который ребенок получает от матери питательные вещества. Третья группа (примитивная энтодерма) сформирует мешок, в котором ребенок будет расти. Больше вкладываясь в нарушение симметрии, ведущее к дифференциации, а не увеличению размера, эмбрион, к счастью, может отложить ускоряющее рост питание, пока не сформирует у себя отдельные части, которым и отведет функцию «закупки продовольствия».

Генерация трех типов стволовых клеток из одной оплодотворенной яйцеклетки обозначает ключевой этап нарушения симметрии, начало клеточной специализации. В ходе онтогенеза судьба клеток будет решаться еще не раз, пока не сформируется взрослый организм, состоящий из сотен типов клеток, которые выполняют самые разные функции, чтобы сохранить нам жизнь и сделать нас теми, кто мы есть.

Когда в процессе работы с GFP у меня сложилось заманчивое предположение о возможном источнике нарушения симметрии, прокладывающем путь для клеточной специализации, я удивилась, насколько рано это путешествие начинается. Мы с Каролиной решили глубже исследовать наше открытие, задав себе один простой вопрос: зависит ли хоть как-то первое нарушение симметрии в эмбрионе от места проникновения сперматозоида в яйцеклетку? У других животных зависит, например у лягушек и нематод, но как обстоят дела у млекопитающих вроде мышей?

Искусство симметрии

Описывая зарождение жизни, обычно рисуют картину, где сперматозоид устремляется вперед, чтобы прикрепиться, а затем слиться с ровной округлой яйцеклеткой. Если все верно, то было бы бессмысленно спрашивать о том, влияет ли на будущее развитие место проникновения сперматозоида. Все места на поверхности такой идеализированной яйцеклетки были бы одинаковы. Однако, безусловно, существует точка отсчета, эквивалент знака «проход здесь» в виде полярного тельца.

Полярное тельце образуется в результате асимметричного процесса мейоза, когда клеточный «скелет» (веретено), сформировавшийся для содействия делению, движется от центра клетки к ее краю, чтобы получилось большое яйцо и маленькое полярное (направительное) тельце. Можно предположить, что симметрию яйцеклетки нарушает именно миграция веретена с хромосомами, помогающая выделению полярного тельца. И действительно, многие замечали, что оно располагается в плоскости деления оплодотворенной яйцеклетки. Уже знакомый нам Ричард Гарднер обнаружил, что полярное тельце остается привязанным к яйцеклетке и не только намечает плоскость первого дробления, где яйцеклетка расщепляется надвое, но и через несколько дней определяет ось симметрии бластоцисты [3]. Его открытие вдохновило нас. Может ли информация о расположении оси сохраняться в яйцеклетке вплоть до стадии бластоцисты и есть ли другие факторы, влияющие на онтогенетическую симметрию? На этом этапе мы с Каролиной решили посмотреть, является ли место проникновения сперматозоида второй позиционной подсказкой.

Точно так же, как локализация на земной поверхности относительно Северного полюса определяет так называемую линию долготы, место проникновения сперматозоида могло бы служить еще одной точкой относительно положения полярного тельца, что мы с Каролиной и захотели выяснить. Если это правда, то плоскость первого дробления была бы определена еще точнее. Это казалось разумным, поскольку и образование полярного тельца, и проникновение сперматозоида перестраивают клеточный скелет, который позже будет использоваться при дроблении яйцеклетки. Если мы ошибались, то плоскость первого дробления закладывается как попало по отношению к месту, через которое проник сперматозоид.

Современные технологии значительно упростили бы нам задачу. Мы могли бы заснять весь процесс и посмотреть, что происходит между проникновением сперматозоида и последующими клеточными делениями. Однако в то время такой технологии не существовало. Нельзя было и заснять развитие мышиного эмбриона с момента оплодотворения до наступающей через несколько дней стадии бластоцисты. Вместо этого нам пришлось придумывать способ маркировки места проникновения сперматозоида, чтобы потом отследить, как оно соотносится с плоскостью, вдоль которой оплодотворенная яйцеклетка будет делиться несколькими часами позже.

Сначала я подумала о том, чтобы прилепить что-нибудь естественное и крохотное (вроде эмбриональной стволовой клетки) к месту проникновения сперматозоида сразу после оплодотворения, пока это место еще заметно, но затем мне пришла в голову простая идея использовать малюсенькие флуоресцентные гранулы, невидимые невооруженным глазом. Это сработало, но жаль, что я не дала им какое-нибудь затейливое научное название, например, «микросферы». Конечно, порицание со стороны коллег волновало меня больше, чем присвоение названий, но дело в том, что слово «гранулы» уж очень невзрачное, и этим, как мы с грустью обнаружили, не преминули воспользоваться критики, чтобы принизить нашу работу.

Поначалу место проникновения сперматозоида легко можно различить. Он оставляет за собой небольшой бугорок под названием «конус оплодотворения». Построенный из цитоскелета яйцеклетки и состоящий из нитей белка актина, этот бугорок сохраняется примерно полчаса. Этого хватит, чтобы вставить одну-две гранулы и промаркировать место. Чтобы прилепить гранулы, мы окунали их в смесь белков фитогемагглютининов, которые обычно используют для склеивания клеток друг с другом. Руки человека не вполне устойчивы, поэтому Каролина подбирала липкую гранулу с помощью робота-манипулятора и помещала ее на поверхность свежеоплодотворенной яйцеклетки, которая лежала совершенно неподвижно благодаря другой роботизированной «руке».

Хотя гранула и крошечная, всего 1-2 микрона в поперечнике, под ультрафиолетом она выглядит гораздо более крупным зеленым пятном, по которому ее легко отследить. Наблюдая развитие оплодотворенной яйцеклетки, мы обнаружили, что после первого дробления гранула оказывается на границе между двумя клетками или очень близко от нее.

Мы всегда должны подвергать сомнению наши мысли и открытия. Могло быть так, что гранула, помещенная на любую точку поверхности яйцеклетки, впоследствии просто проваливается в борозду дробления. Для проверки мы сделали контрольные эксперименты, в ходе которых Каролина помещала похожую гранулу на точку поверхности яйцеклетки, выбранную в случайном порядке. Результат обнадеживал: гранула не проваливалась в борозду, возникавшую при клеточном делении. Это позволяло предположить, что место проникновения сперматозоида каким-то образом «запоминалось» и становилось предпочитаемым местом деления оплодотворенной яйцеклетки. Другими словами, если мы правы, то яйцеклетка склонна дробиться вдоль определенной плоскости, а не как попало.

Догадки осеняли нас одна за другой. При переходе от двухклеточной стадии к четырехклеточной клетка, унаследовавшая маркер входа сперматозоида, была склонна делиться первой. Могло ли быть так, что полученный от сперматозоида молекулярный груз менял судьбу этой клетки? Через три дня после оплодотворения маркер входа сперматозоида находится на границе между двумя частями бластоцисты: эмбриональной частью, состоящей из стволовых клеток, которые будут формировать эмбрион, и внеэмбриональной. Это наводило на мысль о том, что одна из клеток двухклеточного эмбриона склонна превращаться в эмбриональную часть, а вторая — во внеэмбриональную. Мы были ошеломлены. В течение нескольких дней мы часами всматривались в изображения. Сначала я не могла поверить результатам и потому снова и снова просила Каролину повторить эксперимент. Доказательство раннего нарушения симметрии было таким простым, даже слишком.

Скептик вполне оправданно придрался бы и сказал, что не место проникновения сперматозоида определяет плоскость дробления, а сам акт введения гранулы через конкретное место. Чтобы проверить это, мы проводили множество контрольных экспериментов, о которых я расскажу позже. Мы уже выяснили, что для определения плоскости дробления мало просто поместить гранулу в любое место, кроме конуса оплодотворения. Но надо было проверить и перепроверить многие другие факторы. Мы должны были исключить все сомнения.

Математика жизни

Едва биологам начали открываться молекулярные подробности чуда нарушения симметрии (и не в последнюю очередь усилиями моей лаборатории), как математики тоже обратили взор на эту проблему. Возможно, самая знаменитая модель возникновения формы из бесформенного была предложена в прошлом веке Аланом Тьюрингом.

Хотя Тьюринг больше известен созданием основ современных компьютерных вычислений и не был ни биологом, ни химиком, он сильно повлиял на мои исследования своей статьей, которую опубликовал еще в 1952 году, работая в Массачусетском университете. Статья «Химические основы морфогенеза» предлагала глубокий взгляд на самоорганизацию живой материи в пространстве и времени, а также являлась, насколько я знаю, первым примером использования математической модели для описания того, как два взаимодействующих химических вещества, имеющих разную скорость диффузии, создают стабильный паттерн, хотя в начале Тьюринг подчеркнул: «Эта модель будет упрощением и идеализацией, а значит, фальсификацией» [4].

Тьюринг предполагает, что развитие клетки или ткани по определенному пути запускают соединения под названием «морфогены». Невероятно, чтобы такой человек вдруг заинтересовался, каким образом случайные флуктуации вызывают паттерны биологической симметрии. Но учитывая его гениальность, не стоит удивляться.

В четвертом разделе статьи Тьюринг рассматривает нарушение симметрии на примере стадии развития бластулы (бластоцисты, если говорить об эмбрионах млекопитающих вроде людей или мышей), которая двадцать лет была в центре внимания моей лаборатории. Но учитывая идеализированное представление об эмбрионе как о сферическом образовании, Тьюринг понял, что столкнулся с проблемой. Ведь можно подумать, что постоянная диффузия наружу через сферу входе биохимических реакций, направляющих развитие, сохранит симметрию, а потому каждый из нас должен быть круглым, как пузырь.

Поднятый Тьюрингом базовый вопрос был таким же, который не давал покоя мне самой. Что является источником нарушения симметрии? Выдвигая гипотезу об источнике нарушения симметрии, необходимом для развития бластоцисты, Тьюринг обращается к аналогии в виде мыши, карабкающейся по стержню маятника. Крохотные флуктуации (вызванные тепловой энергией, или броуновским движением) могут решить судьбу эмбриона, определив его путь. Можно, например, подбросить монетку — выпадет орел или решка. Эмбрион получает сигнал нарушить свойственную ему монотонность.

В следующем разделе Тьюринг обсуждает еще одну нестыковку в своей схеме симметрии: поскольку физические и химические законы, лежащие в основе его теории реакции-диффузии, не имеют никаких предпочтений касательно правой и левой сторон, то правши и левши должны появляться с одинаковой долей вероятности. Однако в биологии есть много примеров хиральности[10]. Даже сегодня ведутся разговоры, например, о том, почему у всех организмов двойная спираль ДНК закручена в правую сторону [5]. Тьюринг признает, что хиральность, преобладающая у данного биологического вида, создает проблему для его модели. И предлагает единственное объяснение: на нарушение симметрии может влиять хиральность морфогенов эмбриона.

Используя идеализированный пример кольца из клеток, тьюринговская схема создания паттернов показывает, как два вещества с разной скоростью диффузии могут взаимодействовать и создавать стационарные химические паттерны, что впоследствии стало называться теорией реакции-диффузии.

Одно соединение — это автокаталитический «активатор», обеспечивающий положительную обратную связь; другое — «ингибитор», подавляющий автокатализ активатора. Важно, чтобы они имели разную скорость диффузии, которая у ингибитора должна быть быстрее. По сути это значит, что самоусиливающийся активатор концентрируется в пределах «пятна», в то время как ингибитор не позволяет вырасти рядом еще одному «пятну».

Важный вывод из теории Тьюринга состоит в том, что, если несколько веществ разного цвета и скорости диффузии реагируют друг с другом в жидкой среде, их концентрации будут варьировать и образовывать устойчивые пространственные паттерны.

Идея о том, что различия в скоростях диффузии могут привести к неравномерному распределению компонентов, довольно нелогична, поскольку диффузия обычно уменьшает различия в концентрации. Однако в реакционно-диффузионном механизме Тьюринга все иначе. Система всего из двух молекул может, по крайней мере, теоретически, создать пятнистые или полосатые узоры, если они диффундируют и химически реагируют правильным образом.

Разобравшись со своим идеализированным кольцом клеток, Тьюринг возвращается к бластуле и рассматривает химические волны на сферах. «При определенных не очень строгих условиях... паттерн нарушения однородности имеет осевую симметрию». Это может «во многих случаях привести к гаструляции», в результате чего эмбрион превращается в трехслойную структуру, которую мы обсудим позже.

Тьюринг показал, что для создания природных закономерностей не нужен никакой витализм. К сожалению, Тьюрингу не суждено было и дальше развивать свои новаторские идеи о морфогенезе: через два года после выхода статьи он умер от отравления цианидом. Теория Тьюринга предложила возможное объяснение для широкого спектра природных узоров, от зебр до морских раковин [6].

Эмбриологи десятилетиями сопротивлялись тьюринговской схеме создания паттернов: биологи сторонились математических моделей как грубых упрощений. Но не больше. В 2006 году было обнаружено, что расположение волосяных фолликулов мышей обусловлено процессами активации и ингибирования [7]. Недавние исследования предполагают, что системы Тьюринга могут быть гораздо более гибкими генераторами паттернов, чем считалось ранее; например, пальцы рук и ног формируются механизмом Тьюринга, в котором участвуют белки Nodal и Lefty [8]. Когда дело дошло до разработки цифровых технологий, эта статья Тьюринга вызвала новый интерес.

Кухонная эмбриология

В наших с Каролиной поисках ответа на вопрос, что нарушает симметрию раннего эмбриона, нам требовалось много места, чтобы рассмотреть все полученные изображения, сравнить их и наконец-то разобраться, что происходит со всеми нашими маркерами и метками, когда сперматозоид состыковывается с яйцеклеткой. Вся эта выставка меченых мышиных эмбрионов не помещалась в моем крошечном кабинете в Институте Гёрдона, поэтому мы устроили ее на деревянном полу в моих апартаментах в Сидни-Сассекс-колледже.

На выходные выставка перекочевывала в дом, купленный мною и Дэвидом Гловером. В том году Дэвид переехал из Шотландии в Кембридж, чтобы стать шестым руководителем именной кафедры генетики Артура Бальфура и быть вместе со мной. Мы поженились в следующем году, первого апреля 2000-го.

У Дэвида не было иного выбора, кроме как присоединиться к изучению фотографий меченых эмбрионов. Они были по-своему красивы, но нас притягивало не это, а заключенный в них смысл. Когда мой отец приезжал в гости, он тоже не мог оторваться от цветных эмбрионов. Быть может, у него, как и у Дэвида, не было особого выбора: как только прием пищи заканчивался, кухонный стол — единственное достаточно большое место в доме — немедленно превращался в подиум для нашей кочевой эмбриологической выставки.

На данном этапе мы решили провести еще больше контрольных экспериментов. Например, измерив расстояние между полярным тельцем и гранулой, мы убедились в его неизменности, позволяющей предположить, что ни гранула, ни полярное тельце не соскальзывают со своего места. Лишь изредка гранула действительно отсоединялась. Когда Каролина с помощью своего метода вставки аккуратно переместила две-три гранулы в разные места на поверхности оплодотворенной яйцеклетки, она обнаружила, что их относительное положение не изменилось. Это придало нам уверенность в том, что гранулы (как минимум те, с которыми поработала Каролина) «помнили» точку проникновения сперматозоида в яйцеклетку.

Мы были обеспокоены, и не важно, сколько раз Каролина повторяла эксперимент, — наблюдался один и тот же сюжет: по-видимому, сперматозоид оказывает неожиданное влияние на развитие, выходящее за рамки простого представления об отцовской ДНК. Точка проникновения сперматозоида в яйцеклетку, похоже, предсказывает будущую симметрию эмбриона. Когда эмбрион впервые дробился на две части, точка проникновения соотносилась с плоскостью, вдоль которой проходило первое деление. Сначала я со скептицизмом решила, что гранула просто «проваливается» в борозду дробления. Чтобы проверить это, Каролина ночами просиживала в лаборатории, отлавливая момент деления эмбриона.

Порой гранула лежала прямо между двумя половинами дробящейся яйцеклетки, но если она оказывалась прикрепленной к одной из двух клеток, то меченая клетка обычно делилась раньше сестринской и вносила больше клеток в ту часть, которая впоследствии превращалась в собственно эмбрион.

Годами нам твердили, что клетки двухклеточного эмбриона идентичны друг другу. И все же наши эксперименты со сперматозоидной точкой проникновения опровергали эту идею и подтверждали мои ранние эксперименты с GFP. Учитывая господствующую догму, нам требовалось больше экспериментов, чтобы полностью убедиться в реальности увиденного.

Работа велась в беспощадном темпе; для наблюдения отдельных экспериментов мы оставались в лаборатории на всю ночь, чтобы не упустить ни одну деталь и ни один момент. На фотографии, где мы с Каролиной стоим рядом в саду колледжа после целой ночи особенно сложных экспериментов, она светится от возбуждения, а я еле выдавливаю из себя улыбку, — радуясь, но все-таки отчаянно желая спать. Мы молоды, но я уже беременна моей первой дочкой Наташей (названной в честь Наташи Ростовой из романа Льва Толстого «Война и мир»).

Для продолжения исследований требовалась финансовая поддержка; деньги нужны были для самих экспериментов, для моей команды и для нового микроскопа с камерой, позволяющей снимать процесс развития, пока мы спим. Большую часть года я провела за написанием исследовательских предложений в фонд Wellcome Trust, чтобы получить стипендию для старших научных сотрудников. Во время проведения последнего этапа собеседования я была на четвертом месяце; пришлось спрятать живот под одеждой, поскольку я опасалась, что беременность снизит мои шансы. Странно, но с этой комиссией я снова встречусь через пять лет — и снова беременной, хотя в тот момент еще и не зная о том, что идет второй месяц жизни моего сына Саймона.

Первое окрашивание раннего эмбриона

С учетом неожиданности наших результатов я захотела выяснить, получится ли то же самое, если проследить судьбу клеток неинвазивным методом, то есть не помещая в клетку GFP или гранулу. Идея состояла в том, чтобы снять фильм, однако в то время еще не было технологии, благодаря которой можно зафиксировать на видео многодневное развитие эмбрионов, не беспокоя их извлечением из инкубатора.

Однажды я озвучила эту проблему в институтской столовой, сидя за чашкой кофе с моим коллегой Ником Брауном, который проделал поразительную работу, продемонстрировав то, как клеточная адгезия определяет развитие эмбрионов дрозофил. Ник предложил мне простую альтернативу. Почему бы не взять маслорастворимый краситель и не растворить его в клеточных мембранах, ведь они сами маслянистые?

Какая изящная мысль! Наполняем пипетку маслом и одним нежным касанием масло окрашивает клетку флуоресцентной краской, светящейся под ультрафиолетом. Я попросила Каролину попробовать. И все получилось.

Перед нами предстала знакомая картина: одна из клеток двухклеточного эмбриона наделяется склонностью порождать клетки, которые в будущем станут частью собственно эмбриона, в то время как остальные будут строить внеэмбриональные вспомогательные структуры [9]. Это не детерминированное правило, а склонность, которая статистически не случайна.

Неважно, окрашивали мы место проникновения сперматозоида или сами клетки, исход был один: судьба первых клеток мышиного эмбриона была не случайна, как считали долгое время. Однако понадобились годы дополнительных исследований, чтобы понять причину этого легкого уклона в развитии, который так рано начинает определять судьбу эмбриона.

Угри, лягушки и люди

Предполагалось, что мышиным эмбрионам будет безразлично место стыковки сперматозоида с яйцеклеткой или расположение полярного тельца, которое зависело от клеточных (мейотических) делений, образующих яйцеклетку. Но, что интересно, наши находки в некоторых отношениях совпадали с тем, что наблюдалось у эмбрионов многих других животных, от нематод до лягушек. Возможно, эмбрионы млекопитающих не такие особенные.

Свидетельства раннего нарушения симметрии у других существ были найдены больше ста лет назад. Например, биолог Эрнест Джаст в 1912 году выяснил, что происходит, когда сперматозоид нереиса соединяется с яйцеклеткой в морской воде, окрашенной индийскими чернилами [10]. «Полоска чернил, словно кинжал или восклицательный знак, указывает на воспринимающий бугорок, над которым — присоединенный к мембране сперматозоид... Этот “восклицательный знак” помогает быстро установить, в какую из огромного множества яйцеклеток проник сперматозоид».

Ссылаясь на работу Вильгельма Ру 1885 года, раскрывшую влияние проникновения сперматозоида в яйцеклетку лягушки, а также на исследования ядовитых морских ежей и асцидий, Джаст пришел к следующему выводу: «Плоскость первого дробления яйцеклетки, чьи деления имеют разное значение и разное отношение к будущим продольным осям симметрии эмбриона, определяется проникновением сперматозоида». Мы с Каролиной подумали, что обнаружили что-то похожее в яйцеклетках млекопитающих, но только менее детерминированное.

Вы спросите, разве не странно полагать, что эмбрионы млекопитающих отличаются от эмбрионов других существ и не нарушают свою симметрию как минимум до поздней (относительно говоря) стадии развития? Однако в те годы, когда мы проводили свои эксперименты, подобный вопрос назвали бы ересью.

Тем не менее, покопавшись в научной литературе, мы нашли более ранние исследования эмбрионов млекопитающих, результаты которых совпадали с нашими. Их авторами были два замечательных ученых, и первое из этих исследований провела в Великобритании Энн Макларен [11], второе — Джинни Папайоану в США [12]. Независимо друг от друга, они обе обнаружили, что если клетки двухклеточного мышиного эмбриона отделить друг от друга или одну удалить, то примерно в 90% случаев только одна из клеток будет развиваться в течение всей беременности. Трудно было произвести на свет однояйцевых близнецов. По этим результатам уже можно было предположить, что клетки на двухклеточной стадии не идентичны друг другу не только по своей судьбе, но и по возможностям развития.

К счастью, наши результаты соответствовали работам Ричарда Гарднера в Оксфорде; он доказал асимметричность мышиного эмбриона относительно полярного тельца, о чем я говорила ранее [13]. Я не понаслышке знала, что Ричард был очень уважаемым и скрупулезным эмбриологом, воспитавшим нескольких замечательных женщин-ученых, включая моих кумиров Джинни Папайоану, Джанет Россант и Розу Беддингтон.

Вдохновленные коллегами, мы с Каролиной представили в журнал Nature исследование роли сперматозоида в нарушении симметрии и были в восторге, когда в 2001 году вышла наша статья [14]. Экспериментов было слишком много, чтобы вместить все в статью для Nature, поэтому вторая статья, подробно описывающая эксперименты с раскрашиванием клеток, была опубликована в том же году в Development [15].

Научные статьи описывают лишь методы и результаты; они не могут передать, каково это — долго блуждать в темноте, пока не увидишь яркий свет открытия. Жаль, что я не могу описать, как изначально сама скептически восприняла наши результаты, как от эксперимента к эксперименту запутывалась еще сильнее и как в моем сознании забрезжила мысль о том, что симметрия в эмбрионе может нарушаться гораздо раньше, чем принято считать. Научные журналы не содержат подробное описание того, как наши личные сомнения шаг за шагом перерастают в уверенность.

Да, мы сделали достаточно, чтобы убедить не только себя, но и наших рецензентов. Но после публикации наших исследований первоначальное удивление коллег испарилось, оставив лишь недоверие, которое в ряде случаях переходило в полное несогласие.

Кто-то может предположить, что у нас был союзник в лице Ричарда Гарднера, который в то время был единственным приверженцем нашей революционной идеи. Но Ричард сам раскритиковал нас за то, что мы промаркировали место входа сперматозоида микросферами (гранулами), поскольку полагал, что они могут смещаться. Это заставило нас задуматься. Весь следующий год мы изобретали альтернативу гранулам — зеленый флуоресцентный краситель, который химически связывался с некоторыми компонентами хвоста сперматозоида. К нашему облегчению, этот новый метод маркировки подтвердил то, что впервые показали гранулы [16].

Вся эта тяжелая работа по сбору доказательств, опровергающих прописные истины, требовала времени, а до тех пор, пока мы не провели множество других подтверждающих экспериментов, наши выводы часто искажались или утрировались, словно мы с Каролиной заявляли, что эмбрион с первого дня приговаривается к своей судьбе, а не приобретает склонность (о чем мы на самом деле говорили). Через несколько лет наше открытие подвергнется нападкам одной из крупнейших фигур в эмбриологии.

Менторство мужчин

На фоне всего происходящего в декабре 2001 года родилась Наташа. Это один из счастливейших моментов в моей жизни. В том же году я получила стипендию для старших научных сотрудников от фонда Wellcome Trust, и теперь у меня была зарплата для себя и команды, а также финансовое обеспечение экспериментов на пять лет. Наконец-то я могла превратиться из постдока в «настоящего» руководителя группы, три года пробыв между этими двумя мирами. Мы могли расширить свои исследования.

Наташа появилась именно тогда, когда я привыкала к новой роли руководителя. Сначала было сложно, потому что она ничего не ела, и нам пришлось несколько раз возвращаться в больницу под наблюдение врачей. Но едва ее режим питания наладился, я снова смогла заниматься работой. Дочка мне совсем не мешала, ведь любовь к ней заряжала меня дополнительной энергией. Помню, как проводила собеседование с кандидатом на должность в моей команде, а новорожденная малышка спала под столом в детском автокресле. Я удивлялась своей работоспособности в условиях недостатка сна. Я выяснила, что могу кормить ребенка и одновременно читать или даже писать статьи. Я могла брать ее в поездки. Практически везде она была рядом со мной. Несмотря на недосып, Наташа была чудесным компаньоном.

В начале следующего года я повезла Наташу в Польшу повидаться с моим отцом в первый и последний раз. Когда он приезжал полюбоваться моей кочевой выставкой эмбрионов, он не сказал, что его рак, который считался вошедшим в ремиссию, вернулся. Он откладывал эту жуткую новость и ждал, пока я рожу ребенка и закончу кормить грудью. Я узнала только тогда, когда у нас осталось совсем мало времени побыть вместе. Пока я вникала в хореографию клеточного танца на заре жизни, координация его собственных клеток ухудшалась.

У меня есть фото, где он улыбается с двухмесячной Наташей на руках. Прошло уже немало лет, а я по-прежнему не могу на него смотреть. От человека, в котором было так много сил и энтузиазма, чье лицо всегда излучало энергию, почти ничего не осталось. Даже сейчас, когда я пишу эти строки, мое сердце словно сжимает детская рука. Когда он сдался раку, я потеряла отца, лучшего друга и самого значимого наставника.

Перед смертью он сделал подарок — попросил маму помочь мне, поэтому она приехала к нам на полгода. И я была очень благодарна за возможность воссоединиться с ней и снова стать близкими.

В научном отношении в тот год я вышла на новый уровень, удостоившись премии Молодого исследователя от Европейской организации молекулярной биологии. Эту честь оказал мне наставник Давор Сольтер — выдающийся ученый из Югославии (ныне Хорватии), который стал директором престижного Института иммунобиологии Макса Планка в Германии. Сольтера почитали за исследования геномного импринтинга, суть которого в том, что экспрессия гена зависит от того, наследуется он от матери или от отца. Он также был известен статьей, опубликованной в 1984 году в журнале Science, где заключил, что клонирование млекопитающих путем ядерного переноса невозможно (клонирование овцы более десяти лет спустя докажет ошибочность его выводов) [17].

Короче говоря, Сольтер был очень влиятельной фигурой с твердым мнением и большой командой восхищенных людей. Когда я впервые разработала GFP в качестве маркера клеточной линии, я была лишь едва знакома с ним; мы виделись в летней школе, которую он организовал на юго-западе Германии во Фрайбурге, где сам работал. В течение многих лет после вручения премии мы по разным причинам не встретились на наставнической сессии, так что у меня не было шанса воспользоваться его мудростью.

В 2004 году, через три года после того как Сольтер стал моим наставником, он и его постдок Такаши Хиираги опубликовали статью, где заявили, что выводы, сделанные Каролиной, мной и Ричардом Гарднером, ошибочны. Они утверждали, что второе полярное тельце не остается прикрепленным к яйцеклетке и что эмбрионы «вертятся как йо-йо», что затрудняет отслеживание отдельных клеток. В этой статье, опубликованной в Nature, куда мы впервые представили свои результаты, они заключили, что плоскость первого деления яйцеклетки случайна, и придерживались традиционного мнения о том, что между клетками раннего эмбриона нет никакой разницы [18].

Подробно изучив их статью, мы осознали, что, если в их экспериментах полярное тельце отсоединилось от яйцеклетки, они не могли сделать никаких заключений (в поддержку полярности яйцеклетки или против нее) без надежного маркера. Но почему они сами не пришли к подобному выводу?

Желая разобраться в этих отличиях, мы пригласили Хиираги в нашу лабораторию, чтобы показать ему, что мы обнаружили, и узнать о подробностях его экспериментов. Мне казалось, что важно вести открытый и дружелюбный научный диалог, чтобы добраться до сути разногласий. И думаю, очень плохо, что эта встреча не состоялась. Меж тем другие ошибочно интерпретировали наши результаты и дискредитировали их.

Были ли мы расстроены? Разумеется. Мы хотели, чтобы наши результаты были представлены так, как есть — ни больше ни меньше. Наш вывод состоял не в том, что направление развития фиксируется с первого дня и тогда же определяется судьба клеток, а в том, что клетки могут отличаться друг от друга, и это отличие может влиять на нарушение симметрии и судьбу клеток [19]. В наших экспериментах полярное тельце оставалось прикрепленным к одной из клеток эмбриона и могло служить маркером для отслеживания клеточных линий.

Мы так и не смогли обменяться с критиками опытом наблюдений под микроскопом. Хотя через год они действительно пожелали встретиться и обсудить разногласия. Это был небольшой симпозиум под названием «Преимплантационные паттерны мышиного эмбриона», организованный Хиираги и Сольтером в сентябре 2005 года во Фрайбурге. Ричард Гарднер благоразумно отказался, но, даже будучи в меньшинстве, мы посчитали своим долгом принять приглашение. «Надежный ответ не получен» — так сказано в отчете, где критики подробно изложили свою точку зрения [20]. Мой муж Дэвид, к тому времени тоже ставший участником проекта, побывал с нами на этом симпозиуме. Он парировал короткой статьей под заголовком «Нечестные дебаты» [21]. Эта поддержка была очень трогательной, но я чувствовала — нужно идти дальше, чтобы дальнейшими экспериментами показать, кто из нас прав.

Из-за невероятного давления иногда я почти раскаивалась в публикации наших открытий, несмотря на твердую уверенность в правоте, — ведь мы проверяли и перепроверяли каждый результат так много раз и такими разными способами, ценой усилий стольких разных членов команды, что вероятность ошибки была почти ничтожной. Долгие годы при вбивании моей фамилии в поисковик первым всплывавшим словом было «противоречие». Я ощущала себя аутсайдером, «раскрашенной птицей» [22]. Оглядываясь назад, я понимаю, что не пошла ко дну, утащив за собой всю команду, только благодаря поддержке Дэвида, моих друзей и коллег, которые собственными глазами видели весь непомерный труд, вложенный в наше открытие. Этот эпизод поведал мне многое о людях и политике научного мира. Если я когда-нибудь найду время и силы рассказать всю историю целиком, она будет важным уроком для каждой молодой женщины, пробивающей себе дорогу в науку.

Без преувеличения скажу, что именно скептицизм подхлестнул меня вложиться в создание правильных условий и приобретение оборудования для съемки подробностей онтогенетического развития. Это не делается в одночасье, ведь мышиные эмбрионы, как и человеческие, крайне чувствительны к условиям окружающей среды. Но затраты того стоили. Как говорится, лучше один раз увидеть.

Наши первые фильмы были короткими таймлапсами[11], отснятыми за сутки. Однако они были достаточными, чтобы подтвердить наши результаты и, что еще важнее, предоставить новый материал для исследований. Они продемонстрировали механизм, с помощью которого сперматозоид может влиять на первое дробление оплодотворенной им яйцеклетки [23]. Оказалось, что первая встреча сперматозоида и яйцеклетки физически влияет — но, опять же, не окончательно, — на судьбу клеток. Мы обнаружили, что при проникновении сперматозоида яйцеклетка меняет форму и становится чуть более плоской. Место входа сперматозоида лежит на одном конце короткой оси, и именно там мы наблюдали деление яйцеклетки. Напрашивался очевидный вопрос: если мы искусственно изменим форму оплодотворенной яйцеклетки, изменится ли плоскость деления?

Для эксперимента мы осторожно сжимали яйцеклетки, засасывая их пипеткой, а затем выпускали в гель альгината натрия, чтобы зафиксировать их форму. Таким образом мы могли пренебречь местом проникновения сперматозоида и заставить яйцеклетку делиться вдоль искусственно сформированной короткой оси. Считается, что нарушение симметрии вызвано в основном химическими процессами, но этот процесс был механическим.

В 2005 году в статье для Nature и в 2004 году в статье для Current Biology мы ответили на критику Хиираги и Сольтера, опираясь на сделанные фильмы, которые показывали механизм деления эмбриона, в частности асимметричное распределение PAR-белков и регуляцию белка актина, формирующего клеточный «скелет» [24]. Но прежде всего эти фильмы подтвердили, что клетка двухклеточного эмбриона может порождать либо эмбриональную, либо внеэмбриональную часть бластоцисты, и поэтому первое деление не случайно и способствует нарушению симметрии эмбриона. Разумеется, важна не личная убежденность, а подтверждающие результаты экспериментов других ученых. Придется ждать долгие годы, но это произойдет.

Истоки перемен

В дополнение к лабораторным исследованиям я решила выяснить, не сказано ли в знаменитой статье Тьюринга что-нибудь о способности единственной клетки размножаться и дифференцироваться в клетки с определенной судьбой, чтобы сравнить это с нынешними представлениями. На этот раз я работала вместе с блестящим коллегой Ци Чэнем, постдоком из его команды Цзюньчао Ши, который теперь в Калифорнийском университете в Риверсайде, а также И Тао из Центра вычислительной и эволюционной биологии в Китае [25].

Мы знаем, что на третий день после оплодотворения неизбежно появляются две отдельные группы клеток: одна представляет собой внутреннюю клеточную массу, развивающуюся в собственно эмбрион, а вторая — трофоэктодерма, формирующая плаценту. Но что, по мнению Тьюринга, запускает эти изменения? Тьюринг показал, что даже крошечное возмущение в уровнях транскриптов или белков из-за внешнего сигнала либо небольшие различия между клетками в способе считывания генов потенциально могут усиливаться в паттерн. Шум или ошибки могут быть одной из причин. Наши результаты предполагали, что эти изменения присутствуют на ранней стадии, когда есть всего две или четыре клетки, и могут быть основаны на внутренних различиях между этими клетками.

У клеток тоже есть анатомия. Заглянув внутрь одной из них, можно увидеть различные компоненты, такие как ядро, где находится ДНК; лепешкообразные митохондрии — клеточные силовые станции; эндоплазматический ретикулум, где происходит укладка новых белков; и пероксисомы, внутри которых расщепляются жирные кислоты.

Нам пришла в голову новая идея: может ли анатомия клеток быть окончательным источником нарушения симметрии [26]? Может ли, например, одностороннее распределение органелл наподобие митохондрий повлиять на судьбу дочерних клеток? В самом деле, некоторые депонированные материнские белки, необходимые для жизнеспособности эмбрионов млекопитающих, такие как группа под названием «подкорковый материнский комплекс», смещены от центра клетки не только у мышей, но и у ранних человеческих эмбрионов. Предметом исследований, опубликованных нами в 2018 году в журнале Cell, был фермент CARM1 (связанный с коактиватором аргининметилтрансфераза, широко влияющий на экспрессию генов и количество производимого ими белка). Мы обнаружили, что в эмбрионе мыши он накапливается в основном в параспеклах (частицах, расположенных в ядре клетки) между двух- и четырехклеточной стадиями [27]. Параспеклы могли бы посылать химические сигналы, которые, согласно теории реакции-диффузии Тьюринга, после усиления способны влиять на судьбу клетки, причем не обязательно при следующем делении, а позже.

Я расскажу в следующей главе о том, как в течение десятилетия, последовавшего за нашим спорным открытием, другие научные команды подтвердили наши результаты и зашли еще дальше. Моя же команда продолжила отслеживать развитие сотен эмбрионов, чтобы выяснить, как решается судьба клеток классического эмбриона млекопитающих — эмбриона мыши. В итоге мы получили еще больше свидетельств существования легкого, но важного уклона, раскрыв новые необыкновенные детали нарушения симметрии на заре жизни.

Загрузка...