Иммунитет против рака

Лев Александрович Зильбер. Раковые антигены и онкогены

Первым к обязательным условием для рассмотрения роли иммунной системы в противораковой защите является наличие у раковых клеток чуждых данному организму антигенов. Это очевидно, потому что в противном случае иммунной системе нечего будет уничтожать, ибо она уничтожает только чужеродные субстанции. Поэтому вся проблема иммунологии опухолей началась с поисков раковых антигенов. Пионером в этой области был советский иммунолог Лев Александрович Зильбер.

Еще в 1949 году Зильбер разработал метод, доказывающий антигенные различия между раковыми и нормальными клетками. Сообщение об этом было встречено скептически или "в штыки".

Скептически — это понятно. В науке никогда не достаточно одного аргумента. Нужны дополнительные доказательства, подтверждения другими методами и другими авторами. "В штыки" — потому, что сообщение Зильбера было воспринято как попытка доказать вирусную теорию возникновения рака. Впрочем, Зильбер был склонен считать именно так: коль скоро в опухоли обнаружены чужеродные белки — значит, это вирусы.

Многие исследователи и врачи не могли принять такую точку зрения. Все знали, что рак не заразная болезнь и говорить о вирусе — возбудителе рака, подобном вирусу — возбудителю оспы, кори или гриппа, — немыслимо. Ведь возникает же рак под влиянием внешних воздействий, например рак губы у курильщиков.

Пятнадцать лет спустя, когда Зильбер разработал вирусо-генетическую теорию возникновения опухолей, дискуссия о существовании раковых антигенов подходила к концу. Их больше не оспаривали даже в самом простом варианте: для некоторых опухолей уже были открыты вирусы-возбудители.

Вирусы, вызывающие развитие опухолей, получили название онкогенных, рождающих опухоли. Оказалось, однако, что вирус не просто заражает нормальную клетку. Он должен проникнуть в ядро и расположить свою нуклеиновую кислоту (свои гены) среди нуклеиновой кислоты (среди генов) этой клетки. Генетический код клетки, приказы, по которым строятся белки, изменяется. Она начинает строить свое тело по измененным схемам, по измененным приказам.

Лев Александрович Зильбер. Раковые антигены и онкогены


И вот что интересно. Для ряда вирусов, несомненно вызывающих опухоли, доказано, что эти "раковые гены" не являются их собственными. Они заимствованы ранее от клеток человека или животного. Онкогены как бы "бродячие" гены, которые путешествуют в природе, прицепившись к вирусам. Но если с этим вирусом онкоген добредет до клетки тела человека или животного и встроится в подходящий участок ее генома, то клетка превращается в раковую. Начинает строиться раковый белок по приказу этого бродячего гена-онкогена. А так как ген-бродяга пришел из чужих краев, то и белок не совсем свой.

В раковых клетках были выявлены и вирусные антигены, и антигены самих клеток, но построенные по измененным приказам. Это было подтверждением вирусо-генетической теории, которая предполагает не простое заражение вирусом, а сочетание вирусной инфекции с врожденными или приобретенными условиями, при которых вирус встраивается в святыню клетки — в ее генетический аппарат. Клетка становится генетически чужеродной. Не вирус, а клетка!

Но если есть генетическая чужеродность, мы знаем, должен включаться иммунитет. Ибо для него все чуждое — чуждо. Такую клетку необходимо уничтожить.

Это не значит, что вирусная природа рака признана всеми, да иммунологи и не настаивают на этом. Им, собственно, "безразлично", отчего изменяется клетка. Важен факт: раковая клетка несет признаки генетической чужеродности в виде так называемых раковых антигенов. Тем более что существуют раковые антигены невирусной природы.

Когда онкогенный вирус внедряет свой генетический код (нуклеиновую кислоту) в аппарат наследственности той или иной клетки, она начинает синтезировать новый, необычный для нее белок. Она вырабатывает его "под диктовку" вирусной нуклеиновой кислоты. В результате у всех клеток образуется один и тот же раковый белок. Одинаковый.

Опухоль под влиянием вируса может возникнуть в разных местах тела, у разных индивидуумов одного и того же вида и даже у разных видов животных, а раковый антиген будет один и тот же. Это антиген, который "продиктован" генами вируса.

Совсем иная картина наблюдается при индукции опухолей некоторыми химическими веществами. Вещества эти получили название канцерогенов от слов "канцер" (рак) и "ген" (рождать). Такими веществами являются метилхолантрен, бензпирен и много-много других. К физическим канцерогенам относятся все виды ионизирующих излучений.

Если действию одного и того же канцерогена подвергнуть десяток совершенно одинаковых организмов, например мышей одной и той же чистой линии, то каждая из 10 возникших опухолей будет иметь свой раковый антиген. Иначе говоря, один и тот же химический агент вызывает разные генетические изменения в разных клетках.

Онкогенный вирус навязывает всем клеткам одинаковую программу. Канцероген действует по законам случайностей. У одних клеток — одни изменения, у других — другие. Генетики и онкологи изучают механизмы этого явления. Для иммунологов самое главное в том; что раковые клетки всегда несут на себе признаки чужеродности в виде раковых антигенов.

Эта двуликая противораковая защита

По-видимому, Горер — английский исследователь — был первым человеком, который еще в 1942 году доказал появление в крови животных-опухоленосителей антител против клеток опухолей. Конечно, сам по себе этот факт не доказывал, что иммунная система защищает организм от возможности возникновения опухолей. Тем более что в 1952 году молодой исследователь из Бар-Харбора Натан Каллис вместе со своим учителем Жоржем Снеллом — создателем многих пород чистолинейных мышей, столь необходимых для изучения проблемы опухолей, продемонстрировал весьма парадоксальную закономерность. Оказалось, что после прививки животным опухоли в их крови действительно появляются противоопухолевые антитела. Но если взять эту кровь и ввести другому животному, то потом ему легче привить опухоль и она быстрее растет. Антитела не тормозят, а усиливают рост опухоли. Этот феномен они назвали феноменом иммунологического усиления.

Вот так противоопухолевая защита!

Возникла весьма странная ситуация. С одной стороны, был доказан иммунный ответ на опухолевые клетки. С другой стороны, этот ответ не защищает от опухоли, а содействует ее росту. Часть исследователей потеряла интерес к противоопухолевому иммунитету. Другая часть осталась в сомнении: коль скоро иммунный ответ есть, должна быть и защита. И продолжала искать защитный иммунный ответ на прививку опухоли.

Больше всех и наиболее убедительно преуспели американцы Ричмонд Прэн и Джоан Мэйн. У мышей они индуцировали химическим канцерогеном опухоль. Взяли кусочки этой опухоли и привили группе мышей той же генетически чистой линии, то есть тождественной по всем антигенам. Опухоли стали расти.

Другой группе мышей той же линии привили предварительно убитые кусочки опухоли. Кусочки через неделю рассосались. После того как кусочки рассосались, мышам ввели живые клетки этой же опухоли. Они рассосались тоже. Рак не возник. Значит, иммунитет все-таки создается! И как раз именно против опухолевых антигенов, потому что по всем другим антигенам клетки животных одной чистой линии идентичны.

Проблема приобрела уверенную поступь. В нее включились тысячи исследователей. И следующая увлекательная история была рассказана миру шведскими иммунологами супругами Карлом и Ингегард Хеллстрем. Они разработали метод ингибиции (подавления роста) опухолевых клеток лимфоцитами in vitro, то есть в пробирке.

Суть метода состоит в следующем. У животного-опухоленосителя берется кусочек опухоли, размельчается и приготавливается взвесь из отдельных опухолевых клеток. Эти клетки можно поместить в питательный раствор в пробирку или в специальную склянку (чашку с плоским дном). Микроскопические клетки садятся на дно и начинают размножаться. Через несколько дней невооруженным глазом видны колонии раковых клеток, которые так разрастаются, что сливаются вместе и затягивают дно чашки сплошным слоем, как пруд тиной. Только это не невинные водоросли, а рак...

Хеллстремы добавили к этой культуре раковых клеток лимфоциты здорового животного. Ничего существенного не произошло. Лимфоциты не проявили никакой иммунной активности. Раковые клетки размножались и росли обычно. Тогда они решили испытать лимфоциты от опухоленосителя. Если иммунная система сопротивляется росту опухоли, то лимфоциты должны обладать убивающей активностью.

Хеллстремы были в более выгодном положении, чем предшествующие исследователи. Они вели эти работы в 1969-1971 годах, когда уже было известно, что именно Т-лимфоциты после иммунизации приобретают способность убивать чужеродные клетки. Хеллстремы вводили мышам химическое соединение, вызывающее рак, — метилхолантрен до тех пор, пока не возникла саркома, одна из форм самого злокачественного рака. Клетки этой саркомы они посеяли в чашки с питательной средой. Затем туда же добавили лимфоциты от нормальных мышей и мышей-опухоленосителей. Лимфоциты от последних оказались иммунными, они проявили противораковую активность — рост опухолевых клеток был значительно подавлен.

Получив такие результаты, Хеллстремы провели серию исследований с раком кожи у кроликов. Особенность этой опухоли состоит в том, что у большинства животных она разрастается (персистирует), превращается в очень злокачественную карциному и убивает опухоленосителя. У части животных опухоль сама по себе уменьшается (регрессирует) и исчезает. Первая группа кроликов получила название персисторов, вторая — регрессоров. Оказалось, что лимфоциты обеих групп животных в равной мере активны против опухолевых клеток и подавляют их рост. Однако если в ту же чашку добавить, помимо лимфоцитов, кровяную сыворотку, то результаты будут разными. Сыворотка от животных-персисторов отменяет подавляющее действие лимфоцитов, сыворотка от животных-регрессоров его не отменяет.

Авторы доказали, что сывороточный фактор, мешающий работать лимфоцитам, — противоопухолевые антитела. Хеллстремы назвали их блокирующими и сформулировали очень популярную гипотезу блокирующих антител. Согласно гипотезе выработка антител, зависящая от деятельности Б-системы иммунитета, и клеточная форма иммунного ответа, связанная с деятельностью Т-лимфоцитов, находятся в своеобразных конкурентных взаимоотношениях. Иммунные лимфоциты распознают опухолевые клетки и уничтожают их. Антитела не способны оказать вредное влияние на опухолевые клетки, но, соединяясь с ними, загораживают, блокируют их от губительного действия иммунных лимфоцитов. В соответствии с гипотезой судьба опухоли и опухоленосителя зависит от соотношения выработки и накопления иммунных лимфоцитов. Перетянет первое — опухоль будет расти, перетянет второе — будет разрушена.

Система Т-лимфоцитов — главная система противораковой обороны. А тимус — центральный орган Т-системы — штаб противоопухолевого иммунитета. К такому выводу пришли почти все исследователи. Почти, но не все. Однако аргументы сомневающихся долгое время были очень слабыми. Пока не создали особую породу мышей.

Это дефектные мыши. Они несут порочный ген, из-за которого не развивается тимус. Если скрестить самца и самку этой породы, то, как и положено по Менделю, 25 процентов детенышей родятся уродами — у них не будет тимуса. Селекционеры так изловчились, что "прицепили" этим мышам еще одну наследственную особенность — ген безволосости. Поэтому 25 процентов бестимусных мышат одновременно лысые. Их легко обнаруживать. Они голые. В научной литературе бестимусные мыши так и называются — "нюд", то есть голые. Конечно, они не жильцы на земле. В течение нескольких дней или недель гибнут от инфекции. Иммунитет этих мышей столь слаб, что они даже пересаженную чужую кожу не отторгают. Чтобы бестимусные мыши жили долго, их надо содержать в особых, лучше всего в стерильных условиях.

Так вот, неверующие в Т-лимфоцитарную противораковую защиту исследователи сделали ставку на голых мышей. Они содержали их в стерильных условиях до естественной старости. Если бы без Т-лимфоцитов отсутствовала противоопухолевая защита, то все бестимусные мыши погибли бы от рака. Однако этого не произошло. Часть опухолей у голых была такой же, как у нормальных. Значит, сделали вывод скептики, не лимфоциты предотвращают развитие опухоли; в лучшем случае они включаются в борьбу позже, когда опухоль уже выросла.

Не лимфоциты или не Т-лимфоциты? — возник в иммунологии вопрос.

NK — натуральные убийцы

Как интересно развиваются идеи. В 1967 году в нашей лаборатории было открыто взаимодействие лимфоцитов с кроветворными стволовыми клетками. Об этом было рассказано в главе "Диктатура лимфоцита". Суть открытия в том, что лимфоциты, взаимодействуя с размножающейся стволовой клеткой, определяют путь ее развития, если это своя клетка, и убивают, если она чужая. Убивают сразу, при первом же контакте, без предварительного знакомства, без предварительной иммунизации.

Это естественная, самая первая линия защиты от чужеродных, в том числе раковых, клеток. Линия обороны, которая существует еще до включения классических форм иммунного ответа с накоплением иммунных Т-лимфоцитов или антителообразующих Б-клеток.

Так вот, иммунные лимфоциты, накапливающиеся после иммунизации и обладающие способностью убивать чужие, в том числе раковые, клетки, возникают в организме как бы искусственно, после предварительного контакта с чужеродными антигенами. Помимо них, действительно существуют изначальные убийцы чужих клеток. Им не надо накапливаться, они, естественно, существуют, их функция убить размножающуюся раковую клетку при первом же контакте, до развития иммунного ответа, до накопления Т-лимфоцитов-убийц. Эти предсуществующие, естественные, то есть натуральные, лимфоциты — убийцы раковых клеток были обнаружены в большом количестве у бестимусных мышей. Их так и назвали Natural Killers (NK) — натуральные убийцы. NK-лимфоциты — первая линия обороны против рака. Вторая линия обороны Т-лимфоциты.

По своим характеристикам NK-лимфоциты не могут быть отнесены ни к Т-, ни к Б-лимфоцитам. Тимус для их возникновения не нужен. У бестимусных мышей нет Т-лимфоцитов, зато переизбыток NK-лимфоцитов. Отсутствует вторая линия противораковой защиты, зато усилена первая.

NK-клетки обнаружены теперь уже не только у мышей, но и у других животных, и у человека. Их количество оценивают у больных для ориентации об эффективности терапии. Ищут пути их стимуляции.

Вот так идея, возникшая весьма отвлеченно в 1967 году, преобразовалась через десяток лет в конкретный механизм противоракового иммунитета.

Почему иммунитет при раке неэффективен

Этот стандартный вопрос несправедлив, потому что все мы с вами живы-здоровы и не имеем опухолей благодаря каждодневной эффективной, именно эффективной, работе иммунной системы, убирающей все изменившиеся клетки. Так что ее неэффективность — это не правило, а исключение. Исключение, которое очень дорого обходится.

В чем причины этих роковых исключений?

Образование и рост опухоли (совокупности клеток, отличающихся в антигенном отношении от организма-носителя) представляют собой иммунологическую загадку. Главный вопрос этой загадки в том, что антигенно-чужеродная ткань не отторгается. Ситуация, прямо противоположная той, которая наблюдается при пересадке чужеродных тканей или органов. Ведь мы знаем, что минимального генетического отличия пересаживаемой кожи или почки достаточно, чтобы она была распознана как чужая и отторгнута или разрушена.

Задача иммунологии при пересадке органов — отменить или подавить систему иммунологического надзора. Необходимо добиться ситуации, подобной существующей в организме опухоленосителя, когда антигенно-чужеродная ткань не отторгается вследствие неполноценности иммунологического надзора.

Задача иммунологии при раке обратная: восстановить или усилить систему иммунологического надзора. Вполне возможно, что обе эти задачи едины в своей основе и будут решены одновременно. Придет решение из области трансплантационной иммунологии или иммунологии рака, не столь существенно.

Каковы же причины неполноценности иммунного ответа против растущей опухоли?

Если говорить честно, никто не знает. Существуют только предположения, более или менее правдоподобные гипотезы. Вот некоторые из них.

Гипотеза иммунологической толерантности. Для опухолей, вирусная природа которых доказана, предполагается, что вирусные частицы постоянно есть в клетках этого животного в скрытой, дремлющей форме. Следует подчеркнуть, что они находятся в самом "сердце" клеток, среди ее наследственного материала, среди генов, и делятся вместе с хромосомами при размножении клеток. Таким образом, они оказываются и в половых клетках, передаются по наследству возникающему зародышу нового организма.

А так как чужеродные вещества, попадающие в организм во время эмбрионального развития, обеспечивают развитие толерантности, иммунологической неотвечаемости, то рождается организм, который не может реагировать на эти вирусы. И вот, если под влиянием каких-либо факторов эти вирусы активируются, выходят из дремлющего состояния и начинают превращать нормальные клетки в раковые, иммунная система не замечает этого. Она толерантна.

Гипотеза иммунодепрессивного влияния опухоли. Предполагается выделение раковыми клетками неизвестных веществ, подавляющих иммунный ответ. Это предположение не имеет серьезных экспериментальных подтверждений. Однако известно, что раковые антигены могут угнетать активность лимфоцитов, блокируя лимфоцитарные рецепторы, как бы ослепляя их. Окруженный антигенами лимфоцит не может найти раковую клетку.

Очень популярна гипотеза дисбаланса между скоростью развития иммунного ответа и ростом опухоли. В соответствии с этой гипотезой рост опухолевой массы постоянно опережает интенсивность развития и размножения реагирующих на нее лимфоидных клеток, Происходит истощение той части лимфоцитов, которые могут реагировать на эту опухоль, и развивается иммунная беззащитность против нее.

Почему иммунитет при раке неэффективен


Еще одна гипотеза кладет в основу закономерности генетического контроля иммунного ответа. Суть ее в том, что у каждого организма есть свой набор генов иммунного ответа. Где-то в самом начале книги уже говорилось о них. Эти гены называются IR-генами от слов Immunal Response — иммунный ответ. Гены обозначаются цифрами IR-1, IR-2 и т. д.

Никто еще точно не знает, сколько их. Но каждый из них заведует способностью реагировать на тот или иной конкретный антиген. Если у какого-то человека "сильный" ген IR-1, он прекрасно и эффективно реагирует на некий антиген X. Но если ген у него в "слабой" форме, этот человек не сможет реагировать на антиген X. В то же самое время ген IR-2 может быть у этого человека "сильным", и он, несмотря на свою слабость в отношении антигена X, великолепно справится с антигеном Y.

Генов много, большинство из них "сильные", и каждый из нас не боится микробов, несущих несколько антигенов. Допустим, микроб несет антигены X, Y, Z. А взятый для примера человек по причине "слабости" гена IR-1 не может реагировать против антигена X. Его лимфоциты распознают чужеродного пришельца и убьют его за счет реакции на антигены Y и Z.

Ну а если представить себе чуждую клетку, у которой всего один чужеродный антиген? Что будет с нашим героем? Его иммунная система не заметит чужака и не помешает ему жить и размножаться.

Мы с вами живем благополучно. Набор IR-генов работает исправно. Но у каждого из нас есть несколько генов, относящихся к категории "слабых". Это такой пустяк, что никто его не замечает. В организм проникают микробы и вирусы, они уничтожаются. Среди клеток тела возникают мутации. Изменившиеся клетки тоже уничтожаются. До тех пор пока не появится такая мутация, благодаря которой возникает антиген, невидимый для иммунной системы конкретного индивидуума. Невидимый потому, что его IR-ген, обеспечивающий реакцию на этот (и только на этот) антиген, относится к категории "слабых". Тогда возникшая раковая клетка не уничтожается, размножается и дает опухоль.

Вот почему у одного человека раковые антигены одни, у другого другие, у третьего — третьи. Вот почему перед иммунологией стоит огромной важности задача научиться превращать генетически слабореагирующую особь в сильнореагирующую.

Как стимулировать противораковый иммунитет?

Когда произносишь слово "история", возникают представления о веках или, по крайней мере, десятилетиях. Например, история борьбы с оспой. Вспоминаются древние китайские медики, которые растирают в ступке струпья с язв больных для вдувания порошка в нос здоровым людям. Потом Эдуард Дженнер, который 200 лет назад приготовил вакцину для людей, использовав коровью оспу. Декреты 1918 года об обязательной вакцинации всего населения страны. История завершилась победой. История большая. Оспы нет.

Иммунотерапия рака делает сейчас свои первые шаги. Пока еще больше надежд, чем реальных успехов. Но надежды большие.

Самый первый логический шаг опирается на доказательство того факта, что противоопухолевую защиту обеспечивают Т-лимфоциты и NK-лимфоциты — естественные убийцы. Следовательно, для лечения необходимо стимулировать клеточные реакции иммунитета.

Как это сделать?

Вначале показалось, что это очень легко. Есть микробы, которые стимулируют именно Т-систему, есть интерферон, который стимулирует NK-клетки. К микробам, стимулирующим Т-лимфоциты, относятся возбудители туберкулеза. Конечно, заражать туберкулезом больного раком нельзя. Но ведь есть туберкулезная вакцина, знаменитая БЦЖ, которая состоит из ослабленных туберкулезных палочек и которой безопасно прививают в родильных домах всех новорожденных. Эту вакцину можно вводить людям любых возрастов. Туберкулез не начнется, но стимуляция Т-лимфоцитов будет.

Многие современные схемы лечения раковых больных включают в себя многократные инъекции вакцины БЦЖ или других стимуляторов Т-системы. Несколько таких схем апробируются совместно американскими и советскими онкологами во Всесоюзном онкологическом центре Академии медицинских наук СССР. Специальное советско-американское соглашение предусматривает такое проведение исследований, которое исключает ошибку. Лучшая схема покажет себя наилучшим образом на обоих континентах.

Второй путь показался вначале гораздо более реальным. Необходимо извлечь из крови все лимфоциты. А это при современной технике совсем не сложно. Существуют специальные сепараторы крови. Они работают по тому же принципу, что и сепараторы для разделения молока на сливки и обезжиренную часть. Сепараторы крови делят ее на сыворотку, эритроциты, лейкоциты, лимфоциты.

Можно сделать так, чтобы кровь протекала через прибор и возвращалась в организм больного без лимфоцитов. Через некоторое время все лимфоциты соберутся в одном стеклянном сосуде. К ним можно добавить стимулятор, который активирует Т-клетки. Давно известно, что таким стимулятором служит фитогемагглютинин — химическое вещество, выделенное из фасоли. А затем вернуть стимулированные лимфоциты в русло крови больного. И они, подстегнутые, набросятся на опухолевые клетки.

Казалось, такой прием должен действовать без осечки. Но нет, в простейшем варианте, который только что описан, ничего не получилось. Врач извлекает все Т-лимфоциты, подстегивает их всех, а лечебный эффект сомнительный.

Эта работа, хоть и не дала метода лечения рака, оказалась очень важной. Она продемонстрировала, что у человека, как и у других млекопитающих лимфоциты клонированы. Разделены, так сказать, по многочисленным родам войск. Один отряд (клон) лимфоцитов нацелен на одного врага, второй клон на другого и т. д.

Среди миллиардов лимфоцитов существуют тысячи клонов. Друг друга заменять они не могут. Если клон против опухоли мал, ослаб или был слаб по причине слабого IR-гена, или такого клона вовсе нет, тогда что же стимулировать. Простимулируются все до одного клоны, против всего на свете, а этого-то клона нет. А может, такой неполноценный клон под влиянием слишком резкой стимуляции совсем зачахнет. Фитогемагглютинин действительно резкий стимулятор. Гонит всех, а куда — неясно.

С интерфероном, стимулятором NK-лимфоцитов естественных убийц, тоже не все просто. Интерферон — это такой белок, который вырабатывается лимфоцитами и некоторыми другими клетками в ответ на стимуляцию различными веществами, так называемыми индукторами интерферона. Это могут быть вирусы, чужеродные антигены, тот же фитогем агглютинин, чужеродные нуклеиновые кислоты, ряд искусственных полиэлектролитов и т. д. Выработавшийся интерферон так влияет на NK-клетки, что они активизируют свою противораковую деятельность. Но вот беда, мышиный интерферон помогает только мышиным клеткам, свиной — свиным. Человеческим NK-лимфоцитам требуется только человеческий интерферон. Вторая беда в том, что лечебный противораковый эффект достигается только при применении очень больших доз интерферона. А где его взять? Человеческий, да еще в очень больших дозах.

Научились культивировать в питательной среде клетки крови людей для получения интерферона. Но для накопления лечебных количеств не хватит никаких доноров. Надежды на биотехнологию — иммунную и генно-инженерную. Надежды большие. Оба биотехнологических направления на пороге выдачи неограниченных количеств препарата. Ген интерферона уже выделен из клеток-продуцентов, изучен, синтезирован и введен в кишечную палочку. Теперь она продуцент. А это такой микроб, что может неограниченно размножаться. Остается только выделять препарат и чистить его.

Вакцины против рака

Конечно же, остается и классический путь — создание противораковой вакцины, прививка которой предохранит организм от развития или роста опухоли.

Идея вакцинации опухолевым антигеном — одна из самых старых в молодой истории иммунотерапии рака. Расчет таков. У человека обнаруживается опухоль. Ее можно удалить хирургически. Но коварство рака в том, что опухоль дает метастазы: прорастает соседние ткани, расселяется по другим органам. Это расселение бывает еще до операции, но случается и после, из-за того что раковые клетки уже циркулировали в крови и где-то осели. Проходит несколько месяцев после операции, и метастазы обнаруживаются в легких, печени.

Многие исследователи надеются научиться готовить из удаленной опухоли вакцину и вводить ее после операции. Простимулированные прививкой лимфоциты расправятся с метастазами. Но как готовить вакцину, какие антигены извлекать, каким образом быстро и точно увидеть, что лимфоциты больного на эту индивидуально изготовленную вакцину реагируют?

Один такой подход к оценке реакции лимфоцитов предлагают супруги Черчики из Бирмингама. Любопытен их путь к созданию методики, которую они опубликовали в 1974 году.

Лет десять назад Черчики и не помышляли об онкологии. Они, ботаники, изучали геотропизм корешков растений, стремление корешков к земле. Можно положить выкопанное растение или даже перевернуть его вверх корнями, все тоненькие корешки начнут расти в сторону земли. Клетки будут размножаться так, что каждая дочерняя клетка расположится по направлению к центру земли. Словно какая-то тяжесть перекатывается на нижнюю сторону клетки и указывает направление деления.

Так исследователи и предположили: перед делением, когда происходит расструктурирование клеточного тела, специальные гранулы смещаются вниз. Если это верно, то воздействия, увеличивающие расструктурированность, должны увеличивать геотропизм корешков. Это подтвердилось. Облучение корешков рентгеновскими лучами, разрушающее многие клеточные структуры, усилило геотропизм.

Тогда для регистрации степени расструктурированности тела клеток они приспособили оптический прибор, измеряющий рассеивание поляризованного света. Наладив метод, они задались вопросом: у всех ли клеток перед делением происходит расструктурирование тела? Оказалось, у всех: и у растительных и у животных. А как у человека?

Чтобы ответить на этот вопрос, необходимо взять у испытуемого какие-либо клетки, которые способны делиться. Такими могут быть лимфоциты, если их простимулировать фигогемагглютинином. Супруги Черники добавили к лимфоцитам здорового человека стимулятор и поместили клетки в прибор. Через 20 минут зарегистрировали расструктурирование. Ясно, лимфоциты восприняли сигнал и в течение 20 минут приготовились к размножению.

Вот тут-то и родился последний вопрос: как поведут себя лимфоциты раковых больных? Оказалось, что за 20 минут под влиянием фитогемагглютинина, этого сильного, но неспецифического стимулятора, расструктурирования тела лимфоцитов не происходит. Но оно возникает у "раковых" лимфоцитов под влиянием белков, выделенных из опухолей.

Может, с помощью этого метода, может, с помощью другого, но путь будет найден. Онкологи научатся стимулировать Т-лимфоциты целенаправленно против опухоли. Надежды на это большие. Но не только на это. Исследуются и другие пути. Начали испытывать в клинике тимозин, тимарин, Т-активин и другие гормоны тимуса, от которых зависит нормальная работа Т-лимфоцитов. Испытываются другие медиаторы иммунной системы. Совершенствуются способы сочетания методов иммунной терапии с лучевой и химиотерапией.

Во многих случаях иммунологические методы помогают обнаружить рак, поставить правильный диагноз.

Поставить диагноз "рак печени", "рак кишечника", "рак мозга" — это не только страшно, но и трудно. Не так-то легко обнаружить опухоль, спрятанную внутри тела. А для успешного лечения или хирургической операции ее надо выявить рано, пока она еще не разрослась, не расселилась в виде метастазов по всем органам тела. Идеальный случай — выявление в самом начале развития. Вот тут-то иммунологические методы вне конкуренции.

Самый яркий пример иммунодиагностики касается первичного рака печени.

Работами советских исследователей — Гарри Израилевича Абелева и Юрия Семеновича Татаринова — показано, что клетки рака печени вырабатывают особый антиген, относящийся к эмбриональным белкам. Он назван альфа-фетопротеин. Обнаружение этого белка в крови с помощью специальной иммунной сыворотки, бесспорно, ставит диагноз: рак печени.

Продукция эмбриональных антигенов оказалась непременным качеством большинства раковых клеток. Особый эмбриональный антиген, обозначенный КЭА, обнаруживают иммунологи в крови больных раком кишечника. Еще один при раке желудка. Не меньшее значение имеет иммунодиагностика опухолей почек и нервной системы.

Помимо выявления раковых антигенов, диагностическую ценность имеют исследования лимфоцитов. Например, при нейробластоме (опухоль нервной системы) у детей лимфоциты приобретают способность разрушать нервные клетки. Это выявляется методом Хеллстремов, о котором уже было рассказано. Иммунодиагностика опухолей совершенствуется с каждым годом.

Когда меня спрашивают, верю ли я в то, что иммунологи будут не только ставить диагноз рака, но и научатся лечить его? Я твердо отвечаю: да, верю. Я думаю, что это будет их совместный успех с онкологами, хирургами, биохимиками, генетиками.

Загрузка...