Если обратиться к географу с наивным вопросом "Есть ли еще неоткрытые острова?", то легко представить себе его отрицательный ответ. Последние романтические надежды обнаружить неизвестный человечеству остров исчезли после того, как спутники Земли сфотографировали и нанесли на систему координат все ее закоулки. Анатомия вроде географии, только описывает не Землю, а человеческое тело, его органы, ткани. Поэтому в анатомии, как в географии, казалось бы, все давно открыто. Первые сочинения по анатомии с описанием наружных и внутренних органов человеческого тела датированы V веком до нашей эры. Тысячи лет анатомы изучают человеческое тело. Все органы давно известны. И тем не менее открытие островов человеческого тела продолжается.
Бытовал в медицине прошлого века интересный метод диагностики, определения болезни. Называется метод "diagnosis ex juvantibus", диагностика посредством лечения. Когда другого выхода нет, пользуются этим методом и сейчас. Болен человек, а чем — неясно. Анализов сотня, а диагноза нет. Что делать? Врач высказывает предположение: у пациента нехватка витамина А. Назначает этот витамин... Болезнь не проходит. Ошибся. Делает вторичное предположение: туберкулез. Назначает противотуберкулезное лечение. Помогло! Диагноз правильный.
По такому принципу и функции органов определяли. И сейчас узнают. Опыты, конечно, на животных ставят. Удаляют щитовидную железу и наблюдают. Обмен веществ снижается, развиваются отеки. Значит, щитовидная железа регулирует обмен веществ и водный обмен. Удалят паращитовидные железы, маленькие "горошины" около щитовидной железы, в крови падает уровень кальция, наступают судороги. Значит, обмен кальция контролируют эти "горошины".
Заключения, однако, следует делать аккуратно, чтобы не получилось, как в анекдоте:
— Где у таракана уши?
— В ногах.
— Как доказывали?
— Он убегал от крика, а когда ноги оторвали, убегать перестал, сколько ни кричали.
У каждого органа своя функция, своя забота. Сердце перекачивает кровь. Легкие усваивают кислород. Глаза глядят. Уши слушают.
Но бывает и не так.
Давайте вспомним. Из желудка пища попадает в двенадцатиперстную кишку. Она совсем небольшая, двенадцать перстов, но очень важная. В нее, как ручьи, впадают протоки из двух органов. Справа — желчный проток из печени. Слева — проток из поджелудочной железы. Несет он пищеварительные соки, содержащие в основном ферменты для переваривания белков. Ферменты желчи переваривают жиры.
Съел человек кусок мяса, открылись протоки, печеночные ферменты занялись жиром, а ферменты поджелудочной железы — белками. Так и думали многие годы, что поджелудочная железа имеет одну заботу: вырабатывать пищеварительный сок и отправлять его по своему протоку в двенадцатиперстную кишку. До 1889 года.
А в 1889 году немецкие исследователи Оскар Минковский и Иоганн Меринг положили на операционный стол собаку и удалили поджелудочную железу. На следующий день в крови оперированного животного появилось избыточное количество сахара. Потом его уровень повысился, потом еще... Развилось состояние, подобное болезни человека, именуемой диабетом. Через две недели собака погибла.
Не сразу, конечно, сделали вывод о том, что в поджелудочной железе расположен специальный аппарат, регулирующий уровень сахара в крови. Если бы после опытов 1889 года это признали, то уподобились бы открывателям ушей у таракана. Мало ли почему подскочил уровень сахара и наступила смерть. Может быть, именно потому, что в двенадцатиперстную кишку перестал поступать пищеварительный сок. Или из-за тяжелой хирургической травмы, операция по удалению поджелудочной железы очень тяжелая.
Для доказательства удалили почти всю железу вместе с протоком. В теле собаки оставался маленький краешек органа, его 1/8 часть. Диабет не развивался. Но стоило изъять этот кусочек, уже без тяжелой операции, наступала болезнь и смерть. Значит, в проток, идущий к двенадцатиперстной кишке, поступают пищеварительные соки, а в кровь, минуя проток, что-то еще более важное.
Орган в органе
Русский исследователь Леонид Васильевич Соболев в 1900 году придумал остроумную операцию. Он перевязал проток. Железа раздулась и погибла. Она перестала вырабатывать пищеварительный сок. Клетки разрушились и рассосались. Но не все. Островки особых клеток, располагавшихся между тонкими ходами, из которых формируется проток, не погибли, а, наоборот, получив "жизненное пространство", разрослись.
Эти скопления клеток были описаны в 1869 году Лангергансом и называются с тех пор островками Лангерганса. Соболев предположил, что именно они вырабатывают не пищеварительный сок, а гормон, контролирующий уровень сахара в крови. Так и оказалось. Через несколько лет именно из этих островков, увеличившихся после перевязки протока, был выделен инсулин.
В учебниках теперь пишут: "Поджелудочная железа анатомически едина, однако в действительности здесь имеются два совершенно разных органа: один — пищеварительная железа с весьма активной внешней секрецией, другой — железа внутренней секреции".
Вот так открыли в свое время новый орган внутри старого. Открыли аппарат, вырабатывающий важнейший для жизни гормон — инсулин. Расстроится функция этого органа, расположенного в поджелудочной железе, не пищеварение страдает. Развивается ныне совсем не редкая болезнь — диабет.
Все знают, что такое аппендицит. Это заболевание, при котором воспаляется червеобразный отросток толстой кишки. Все знают, что необходима хирургическая операция для удаления этого самого аппендикса. Все знают, что ничего плохого после удаления не наблюдается, без аппендикса прекрасно можно жить. Получается, что он не нужен и создан природой только для того, чтобы болеть аппендицитом. Так ли это? Неизвестно. Все вроде знаем про червеобразный отросток. А этого не знаем. Никто не знает.
Еще один орган — тимус — таил свою тайну до 1961 года.
Рассказ про тимус надо начинать с Австралии. 1960 год. Мельбурн. Институт медицинских исследований имени Вальтера и Элизы Холл. Институт, который в течение нескольких лет приобрел мировую известность. В последующие годы его известность будет возрастать. Открытия в области иммунологии, совершаемые в Холл-институте, будут удивлять мир. Но уже и сейчас, в 1960 году, к институту приковано внимание. Не только его директор — Нобелевский лауреат за иммунологию Фрэнк Вернет, но и его ученики, начинающие исследователи Густав Носсал и Джек Миллер, уже заявили о себе. Через несколько лет они станут очень известны. Носсал займет пост директора Холл-института. Ему будет посвящена не одна страница книги. Заведующим крупнейшего отдела этого института станет Миллер. Но о его работах уже сейчас необходимо рассказать.
В 1960 году Джек Миллер был направлен в лондонский Национальный институт медицинских исследований, чтобы заняться выяснением роли тимуса в иммунитете. Почему тимуса, а не печени? Были ли какие-нибудь предпосылки, чтобы ставить такую цель?
Сейчас этот вопрос звучит наивно. Все знают, что тимус — центральный орган иммунной системы. Но в 1960 году о тимусе было известно совсем немного. Знали, что этот небольшой орган расположен в самой нижней части шеи, сразу же за грудиной; что он имеет форму двухконечной вилки, почему и называется по-русски вилочковой железой; что эта железа почти полностью атрофируется у взрослых, хотя у новорожденных она довольно большая.
Вес тимуса новорожденного ребенка — 15 граммов. Если младенец весит 3 килограмма, то тимус составляет 0,5 процента; у 40-летнего человека вес тимической ткани не превышает 3 граммов, то есть 0,005 процента веса тела. В 100 раз меньше! Его фактически нет. А иммунитет есть. И сорокалетние, пожалуй, наиболее устойчивы против всякой микробной нечисти.
Так что предпосылки скорее были против значения тимуса в работе иммунной системы. Но были и "за". Правда, теперь задним числом все видят эти предпосылки. А тогда их разглядел только Вернет.
В начале 1960 года он зашел в лабораторную комнату к Джеку Миллеру.
— У меня к вам просьба. Покопайтесь в литературе и подберите аргументы за и против того, что тимус играет роль в иммунитете. Если эти аргументы покажутся вам существенными, продумайте наиболее эффективный экспериментальный подход для подтверждения или опровержения идеи.
— Как скоро это нужно сделать? Я ведь через две недели еду в Лондон на стажировку, и у меня куча всяких срочных дел.
— А вы оставьте все дела. Я хочу, чтобы вашей темой во время стажировки была проверка "тимусной версии".
Через неделю Миллер выложил главные аргументы.
За: 1. Большинство тимоцитов, клеток тимуса, внешне ничем не отличаются от лимфоцитов — клеток лимфатических узлов. Эти последние являются главной фигурой иммунитета.
2. При развитии организма клетки, подобные лимфоцитам, раньше всего, еще до рождения, появляются в тимусе, а уже потом в лимфатических узлах, селезенке и в крови.
Против: 1. У взрослых тимус атрофируется и замещается жировой тканью.
2. Удаление тимуса не приводит ни к каким осложнениям, по крайней мере, в ближайшие месяцы после операции.
— У кого удаляли тимус? — спросил Бернет.
— У взрослых, — заулыбался Миллер и добавил: — Для проверки версии тимус надо удалять у новорожденных.
Им обоим было все понятно. Такой путь прямо вытекал из бернетовской теории иммунитета. По этой теории иммунитет созревает лишь после рождения. Может быть, у новорожденных этот орган большой потому, что запускает всю систему?
Еще через неделю Миллер уехал в Лондон.
Первые же опыты по удалению тимуса у новорожденных мышат подтверждают "тимусную версию". После тимэктомии — так называется операция по удалению этого органа — мышата остаются иммунологически неполноценными до самой смерти, которая наступает через 2-3 месяца. Они отстают в росте, у них постоянно воспалена кожа, нескончаемые поносы, чувствительность к инфекциям повышена. Антитела вырабатываются плохо. Лимфоцитов в крови почти нет. Иммунитет так подавлен, что чужеродная кожа, пересаженная от других мышей и даже от крыс, не отторгается.
Если таким иммунодефицитным мышам пересадить тимус или ввести в кровь тимические клетки, все нормализуется. Значит, действительно тимус необходим, чтобы запустить работу иммунной системы.
В 1961 году в журнале "Ланцет" появилась первая публикация Джека Миллера о тимусе. Статья называлась "Иммунологическая функция тимуса".
Так был открыт центральный орган иммунитета. Им оказалась давно известная анатомам вилочковая железа. Только раньше никто не знал, что делает в организме тимус. Теперь знают: без него не могут начать работать лимфоциты, которые расселены по всем лимфатическим узлам, в селезенке, циркулируют в крови, чтобы узнавать и уничтожать чужеродные клетки.
Когда-то мелвилловский капитан Ахав, смельчак и фанатик, бороздивший волны в поисках судьбы — белого кита Моби Дика, вышел на палубу и прибил на грот золотой дублон.
— Этот дублон достанется тому, кто первый увидит Моби Дика.
И сам день и ночь сидел в бочке, привязанной на верхушке мачты, высматривал Белого кита.
Моби Диком Миллера стал секрет, с помощью которого тимус включает иммунную систему.
Как он это делает?
Возможны по меньшей мере три способа. Возможны, следовательно, три гипотезы. Гуморальная (то есть жидкостная) гипотеза: это вещество обеспечивает созревание лимфоидной ткани в организме. Гипотеза выселения: из тимуса выходят и расселяются по всему телу лимфоциты. Наконец, гипотеза обучения: в тимус постоянно приходят клетки, не компетентные в иммунных делах, а выходят компетентные. В научной литературе их так и называют — иммунокомпетентные лимфоциты.
Так вот, Миллер, вслед за ним и многие другие, занялись поисками Моби Дика. Уже спорят, кто первый его увидел. Рассказ об этом споре впереди. Золотой дублон пока висит и, может быть, ждет тебя, читатель.
Надо сказать, что искатели Моби Дика весьма скоро обратили внимание на один факт и в связи с этим вспомнили другой.
После удаления тимуса у мышат из лимфатических узлов и селезенки исчезают самые главные клетки — лимфоциты. Иммунитет не имеет голоса. Однако не все формы иммунного реагирования в одинаковой мере лишены его.
Чужеродные трансплантаты не отторгаются. А их отторжение, как уже было сказано, зависит от накопления активированных лимфоцитов, которые уничтожают чужеродных пришельцев. Иначе говоря, активированные клетки выполняют работу сами. С этим вариантом иммунитета мы уже встречались. Он называется клеточным. Его солдаты — лимфоциты-киллеры. Клеточный иммунитет у тимэктомированных животных молчит полностью.
Другая форма ответа на чужеродные субстанции — выработка антител, вы помните, носит название гуморального иммунитета. Эта форма молчит не полностью. На одни чужеродные антигены выработка антител отменяется, на другие нет.
Может быть, тимус не все определяет?
Вот тут-то и вспомнили другой факт. Факт, известный за 5-6 лет до миллеровских опытов, описанный ветеринарными врачами во главе с доктором Чангом в 1956 году. Они работали в США в штате Висконсин и изучали развитие цыплят с удаленной сумкой Фабрициуса.
Сумка, описанная в XVIII веке Фабрициусом, представляет собой нечто подобное человеческому аппендиксу, слепому отростку кишечника. Только аппендикс располагается в середине кишечника, а Фабрициева сумка в самом конце. Этот орган (по-латыни Bursa Fabricius — бурса Фабрициуса) обнаружен только у птиц.
И что же?
Группа Чанга показала, что удаление бурсы у только что вылупившихся цыплят делает их неспособными вырабатывать антитела.
Вот это и вспомнили иммунологические Ахавы. Как же так, почему подавляется иммунный ответ у этих цыплят? Ведь их тимус на месте. И взялись за цыплят!
В 1963 году и австралийцы и американцы опубликовали дюжину работ в трудах Конференции по тимусу. Конференция эта была организована Робертом Гудом — известным детским врачом и иммунологом Соединенных Штатов. Я говорю об этом потому, что через несколько абзацев о Гуде необходимо будет рассказать. А через десяток страниц еще и еще.
Итак, тимус у цыплят на месте, а гуморальный иммунитет не работает. В чем тут дело? Может быть, это "уши таракана"? Или у птиц не тимус заведует иммунитетом? А может быть, вывод о выключении иммунитета у бурсэктомированных цыплят не совсем точен? Ведь исследователи из штата Висконсин описали только угнетение выработки антител. Но это не весь иммунитет. Это только гуморальная форма иммунного ответа. А клеточная?
После удаления бурсы подопытным цыплятам пересадили чужеродный кожный лоскут. Отторжение чужеродной ткани — дело клеточного иммунитета, а не гуморального. Оно происходит без антител. Если клеточный иммунитет тоже выключен, кожный лоскут не отторгается. Лоскут пересадили и стали наблюдать. Через 12 дней он отторгся. По этой форме иммунного ответа цыплята без бурсы ведут себя как нормальные.
Другой группе цыплят удаляли тимус. Все наоборот: чужеродная кожа у них не отторгается, а способность вырабатывать антитела сохраняется. Она снижена, неполноценна, но сохраняется.
Вывод бесспорен: тимус контролирует развитие той части лимфоидной системы, которая обеспечивает иммунный ответ клеточного типа; сумка Фабрициуса контролирует деятельность другой составной части иммунной системы — гуморальной, проявляющей себя выработкой антител.
Это у птиц. А как же у млекопитающих и у человека? Ведь у них нет сумки Фабрициуса. Или подобный ей орган где-то спрятался? А может быть, млекопитающие обходятся без такого органа, который контролирует развитие системы гуморального ответа? Может быть, все запускает тимус и не надо искать орган, выполняющий функцию птичьей бурсы?
Нет, надо. Есть такой орган! Неизвестно где, но есть.
Доказал это Роберт Гуд.
Как раз в эти годы детский врач и иммунолог Гуд изучал и старался вылечить детей с врожденными уродствами иммунной системы. И вот что оказалось. Бывают врожденные дефекты, когда полностью воспроизводится картина отсутствия тимуса. Клеточный иммунитет молчит, чужеродные трансплантаты не отторгаются, а выработка антител хоть и снижена, но есть. У таких детей действительно недоразвит тимус, они бестимусные. К счастью, таких уродств немного, 1 случай на 100 тысяч родившихся.
Другой тип уродства иммунной системы — точная аналогия бурсэктомированных цыплят. Клеточный иммунитет в порядке, но антител эти дети не вырабатывают. Никаких. Нет даже белков, которые могут быть защитными антителами. Гуд так и назвал эту болезнь агаммаглобулинемия, то есть отсутствие гаммаглобулинов в крови.
Самое главное для нашего рассказа то, что тимус при агаммаглобулинемии нормальный. У этих детей недоразвит или полностью отсутствует какой-то другой орган. Орган, подобный по своей сути сумке Фабрициуса птиц. Но что это за орган, никто не знает. Ясно, что он вырабатывает клетки, которые поселяются в лимфатических узлах и в селезенке, чтобы продуцировать антитела. Но где он?
Аналог сумки Фабрициуса еще предстоит открыть. Когда?
Может быть, завтра.
Итак, один орган, тимус, заведует выработкой лимфоцитов, способных превращаться в киллеры, а второй, сумка Фабрициуса или ее неоткрытый аналог, заведует выработкой лимфоцитов, способных продуцировать антитела. Но если тимус заведует клеточным типом иммунного ответа, то почему после его удаления нарушается выработка антител? Почему она снижена, неполноценна?
Именно этот вопрос в течение нескольких лет не давал покоя иммунологам. Именно он не позволял окончательно разделить иммунную систему на две подсистемы. Было ясно, что они существуют и как-то связаны. А как?..
Науку нередко сравнивают с искусством. Доклад крупнейшего иммуногенетика Жана Доссе на конгрессе трансплантологов в Гааге в 1969 году гак и назывался — "Наука и искусство".
Действительно эти два потока человеческой культуры имеют много общего. Наука, как и искусство, может быть классической и прикладной. И то и другое требует жертв, полной отдачи сил, заставляет посвятить всю жизнь. И тут и там необходимо озарение, чтобы по-новому решить еще нерешенную проблему. В обоих случаях много зависит от метода. Нередко нужно создать совершенно новый метод. И еще необходима образность. В искусстве больше, в науке меньше.
В науке — точность. Самое главное — точность. Она и отличает науку от искусства. Точность и воспроизводимость. Созданное одним исследователем в любой точке Земли может быть воспроизведено в другой точке на основании описания метода и использованных материалов. В искусстве это невозможно. Образность невоспроизводима. Джоконду не смог бы воспроизвести сам Леонардо да Винчи. Лилии Клода Моне и голубые танцовщицы Дега так же невоспроизводимы.
В 1970 году в канадском городе Торонто искусствоведами по инициативе ЮНЕСКО был проведен эксперимент. Несколько десятков тысяч жителей получили по десять прекрасно изготовленных больших цветных карт. На каждой были воспроизведены по десять репродукций известных и менее известных художников всех времен и направлений. Там были и картины эпохи Возрождения, и классики голландской школы, и кубисты, и сюрреалисты. Были представлены импрессионизм и абстракционизм. На каждой карте было и то, и другое, и третье. Имена художников и названия картин не указали, чтобы не гипнотизировать известными шедеврами.
Получивший десять карт человек должен был на каждой отметить картину, которая ему больше всего нравится. Каждый отметил десять самых лучших, с его точки зрения, картин. Получилось несколько сот тысяч ответов. Цифра более чем достаточная для статистики. И как вы думаете, что вышло на первое место? Импрессионизм: Моне, Дега, Ренуар, Матисс, Ван Гог и другие.
Образность, подача самого главного в одном сконцентрированном аккорде, столь свойственная импрессионизму, — нередкое качество лучших научных экспериментов, обобщений или теорий.
Японец по происхождению Таяши Мэйкинодан всю жизнь живет в США. В течение многих лет он работал в биологическом отделе Оук-Риджской национальной лаборатории. Именно там он вместе со своими сотрудниками создал очень плодотворный для иммунологии метод исследования. Называется этот метод культурой клеток ин виво. In vivo в переводе с латыни означает "в живом организме".
До Мэйкинодана знали, широко пользовались и пользуются сейчас культивированием клетки in vitro, то есть в стекле. Некоторые клетки крови, соединительной ткани, почки или раковые могут быть помещены в питательный раствор, налитый в специальные пробирки, в стекло. Они живут, функционируют и размножаются в культуре ин витро.
Но некоторые клетки не могут жить в пробирке. Питательные растворы, даже самые совершенные, недостаточно хороши для них. Воспроизвести все условия, весь комфорт жизни, который они имеют в омываемых кровью тканях целостного организма, невозможно ни в какой пробирке. К таким клеткам относятся лимфоидные иммунокомпетентные клетки.
Как же их культивировать? Как изучать их жизнь? Нужен какой-то специальный метод. Без такого метода невозможно познать закономерности их жизни, нельзя сравнить потенции клеток из разных тканей — из селезенки, из лимфатических узлов, из тимуса, из костного мозга.
Мэйкинодан создал такой метод. В качестве пробирки он использовал мышь. Живую мышь со всеми возможностями целостного организма обеспечивать жизнь помещенных в него клеток. А чтобы собственные клетки не работали и не мешали изучать жизнь помещенных в такую "пробирку" клеток, Мэйкинодан облучал мышь рентгеновскими лучами. Собственные клетки были убиты, а которые он культивировал (теперь уже в культуре ин виво), жили, функционировали, размножались.
Их деятельность можно изучать в изолированном виде! Живут и работают только они, никакие другие не мешают.
За десять лет экспериментирования Мэйкинодан и его сотрудники сделали, казалось бы, все, что можно. Все, чтобы узнать особенности функционирования иммунокомпетентных клеток, способных вырабатывать антитела. Они выяснили, что клетки селезенки самые активные продуценты антител, на втором месте стоят клетки из лимфатических узлов, совсем слабо работают клетки тимуса, а костно-мозговые вообще не могут синтезировать антитела.
Брали клетки новорожденных животных и описали особенности их работы. Потом клетки стариков, больных раком. Узнали, сколько иммунокомпетентных клеток в одной селезенке и во всей мыши, как на них действуют различные химические вещества и факторы физической природы. Определили темп их размножения и многое, многое другое.
Казалось бы, "выжали" из своего метода все. Поставили всевозможные варианты опытов, которые только могли придумать за десять лет. И все-таки самое интересное упустили! Упустили то, что сделали, пользуясь их методом, Джек Миллер и Грэхем Митчел в Австралии в 1968 году.
Опять тот же Джек Миллер, который начал удалять тимус у новорожденных и открыл его центральную роль. По-видимому, постоянно размышляя о роли тимуса и сумки Фабрициуса, о двух типах лимфоцитов, он оказался более подготовленным, чем Мэйкинодан, чтобы поставить решающий эксперимент.
Действительно, трудно понять, почему Мэйкинодан не проделал такой эксперимент, который поставили в Австралии. По-видимому; он был увлечен изучением работы каждого типа клеток в отдельности. Ему ни разу не пришло в голову смешать разные клетки.
Мэйкинодан работал в стиле истинного классицизма, Миллер — в стиле лучшего импрессионизма. Он вместе со своими австралийскими коллегами поступил следующим образом. В культуру ин виво поместили 10 миллионов тимусных клеток и подсчитали количество накопившихся клеток-продуцентов антител. Экспериментаторы знали о невысоких в этом отношении возможностях тимоцитов и не удивились, когда увидели, что накопилось всего 45 антителопродуцентов. Параллельно они поместили в такую же культуру 10 миллионов костномозговых клеток, которые и вовсе не умеют работать. Образовалось всего 22 антителопродуцента. В третьей (главной) группе опыта была смесь клеток тимуса и костного мозга, по 10 миллионов штук каждого типа. В культуре ин виво должно было накопиться 67 антителопродуцентов: 45 за счет тимоцитов и 22 за счет костного мозга.
А их оказалось 1250! Почти в двадцать раз больше, чем ожидалось!
Вот оно что: эти клетки работают только вместе, при тесном контакте. Кооперация клеток при иммунном ответе. Так это и было названо. Или они работают сообща, или одни клетки заставляют работать другие.
Этот вопрос австралийцы решили сами. В следующей же их публикации говорилось, что все антителопродуценты происходят из костномозговых клеток. Тимоциты всего лишь помощники, без непосредственного участия которых костномозговые клетки не включаются в работу.
Прошел год с момента выхода в свет статей Митчела и Миллера. Появилось еще два десятка публикаций. Круг замкнулся. Вся иммунная система организма прорисовалась в виде двух раздельно проживающих, но совместно работающих клеточных систем. Их стали обозначать буквами Т и Б.
Ввел в обиход эти символы известный английский профессор, председатель комитета по иммунологическому образованию международного Общества иммунологов Иван Ройт. В 1969 году он написал научный обзор о работах по взаимодействию клеток при иммунном ответе. Для удобства громоздкие слова "тимусзависимые" обозначил словом Т, а бурсозависимые — символом Б. Символы прижились, и теперь все ими пользуются. Т-клетки, или Т-лимфоциты, своим возникновением обязаны тимусу. Б-клетки, или Б-лимфоциты, не зависят от тимуса. Они возникают и живут в костном мозге, где Т-клеток нет. В тимусе нет Б-клеток, только Т, а в костном мозге только Б. Во всех остальных лимфоидных органах (в лимфатических узлах, селезенке и в крови) есть обе популяции. Там-то, в периферических лимфоидных органах, они встречаются, кооперируют и совместно работают. Поэтому, если хочешь восстановить пораженный болезнью иммунитет, позаботься об обеих клеточных системах, о Т- и Б-лимфоцитах.
В иммунологии несколько молекулярно-биологических проблем: строение молекулы иммуноглобулинов, расшифрованное в своей основе; структура активных ("узнающих") центров антител, которую сейчас успешно расшифровывают; строение рецепторов, которыми лимфоциты узнают чужеродные антигены и посредством которых взаимодействуют друг с другом. Последняя проблема особенно увлекательна.
Как кооперируют Т- и Б-лимфоциты? Что значит их взаимодействие? Они что-то друг другу передают? Известны ли эти события? Вот вопросы, благодаря которым взаимодействие клеток иммунной системы интересует не только иммунологов. Это общебиологическая загадка. И прорыв иммунологов в этом направлении способствовал популярности новой иммунологии, придал ей притягательную силу для специалистов разного профиля и для неспециалистов — медиков или биологов. А постановка таких проблем, как поддержание генетической индивидуальности организма, пересадка органов, лечение рака, взаимодействие клеток, вызвала общечеловеческий интерес.
Т- и Б-лимфоциты вступают в активное взаимодействие, когда в организм проникают чужеродные клетки или вещества — антигены. Эти чужеродные вещества служат сигналом для начала всего иммунного ответа, заканчивающегося превращением Б-лимфоцитов в плазматические клетки, вырабатывающие антитела. А взаимодействие клеток и есть самое начало всей цепи событий.
Любопытно, что для полноценного взаимодействия, начала кооперации Т- и Б-лимфоцитов, нужна еще третья клетка. Небезызвестный мечниковский макрофаг, о котором раньше думали, что он только пожиратель посторонних частиц. Теория Ильи Ильича Мечникова заиграла новым светом. Оказывается, выработка антител без макрофагов невозможна. Они необходимы при запуске всего процесса взаимодействия Т- и Б-лимфоцитов.
Молекулы антигенов очень разные, но у них есть и некоторые общие характеристики. Это обязательно крупные молекулы, или, как их называют, макромолекулы. Действительно, маленькая молекула не может нести на себе признаки работы чужеродной генетической системы. Помимо величины, антигенные молекулы отличаются и тем, что несут специфические группировки атомов, так называемые гаптенные группы. Именно против этих групп нацелены активные центры антител. Гаптенные группы расположены на несущей части молекулы как на каркасе. Несущая и гаптенная части молекулы антигена являются главными в нашем рассказе.
Одна из гипотез, объясняющих молекулярный механизм взаимодействия, выглядит так.
Т-лимфоциты соединяются с одной, скажем, несущей частью антигенной молекулы. Это соединение антигена с рецепторами Т-лимфоцита и является первым шагом во всем процессе взаимодействия клеток. Поскольку антигенных молекул много, появляется много оторванных "плавающих" рецепторов с присоединенными к ним антигенами.
Плавающие конструкции выглядят так. Рецептор представляет собой подобие иммуноглобулина, то есть ранее описанную "мальчишескую рогатку". Рукояткой она была связана с лимфоцитом, а к двум концам рогатины присоединились своими несущими частями антигены. Гаптенные части торчат наружу. Вот такие оторванные рогатины с выставленными наружу гаптенными участками чужеродных молекул и плавают.
На сцену выходит макрофаг, имеющий на своей поверхности участки, которые питают особое сродство к оторванному концу "рогатки". Рогатки присоединяются к нему и выстраиваются как солдаты, ощетинившиеся наружу гаптенными частями молекул антигенов.
Рецепторы Б-лимфоцитов не способны соединяться с несущей частью антигенной молекулы. Они имеют сродство именно к гаптенной ее части. И вот эта щетина рогатин, выстроившаяся на макрофаге, схлопывается с рецепторами Б-лимфоцита. Каждый рецептор соединяется с гаптенной группой. Происходит "короткое замыкание" одновременно через дюжину или сотню контактов. Эта встряска и служит сигналом включения Б-лимфоцитов в работу, состоящую в размножении и выделении антител со специфичностью собственных рецепторов, то есть антител против чужеродного антигена.
Только рядом обязательно должен быть Т-лимфоцит с оторванными рецепторами. Без него сигнал не сработает. Для Б-лимфоцита нужно подтверждение, и Т-лимфоцит дает его. Химическая природа подтверждения еще неизвестна. Окончательно не расшифрована. Известно только, что это белок, соединенный с углеводом, — гликопротеид. Его называют индуктором иммунопоэза, веществом, стимулирующим иммунный ответ у Б-лимфоцита. Или вторым сигналом, необходимым для начала выработки антител. Таковы молекулярные события, разыгрывающиеся между Т- и Б-лимфоцитами при участии макрофага. События, необходимые для запуска всего процесса выработки антител.
Для включения клеточного ответа, выражающегося, как вы помните, в накоплении лимфоцитов-киллеров, участия Б-лимфоцитов и макрофагов не требуется. Т-лимфоцитам достаточно общения друг с другом и одного сигнала, приходящего от присоединения чужеродного антигена. Они начинают размножаться, число их увеличивается. Их способность узнавать чужестранцев, соединяться с ними и уничтожать усиливается. Возникает армия лимфоцитов-эффекторов, лимфоцитов-убийц.
Любая машина, если она исправна и способна функционировать, должна иметь по крайней мере четыре управляющие системы — системы включения, систему разгона, систему торможения и систему остановки (выключения). Автомобиль мы запускаем стартером, скорость увеличиваем с помощью акселератора, снижаем тормозами, останавливаем двигатель ключом зажигания. Для биологических машин и механизмов системы выключения не существует. Выключение — это смерть. Системы усиления и торможения обязательны. Есть нервы, увеличивающие частоту сердечных сокращений, и нервы, уменьшающие ее. Зрачки в темноте расширяются, при ярком свете сужаются. И так все.
Иммунный ответ включается чужеродным антигеном. Три клетки работают сообща. Б-лимфоцит получает сигнал включения и готов к работе. Макрофаг подает антиген Т-лимфоциту, и тот начинает помогать Б-лимфоциту увеличить синтез антител. Поэтому он и получил название Т-помощник. Т-лимфоциты-помощники — это акселераторы иммунного ответа. Они разгоняют машину иммунитета. Выводят иммунный ответ на максимум благодаря размножению Б-лимфоцитов и их созреванию, то есть превращению в плазматические клетки-фабрики антител. Произошел разгон, началась выдача массовой продукции. Все больше фабрик, все больше продукции...
В течение многих лет иммунологи думали, что тормозящего механизма в иммунной системе нет. Происходит, считалось, запуск размножения и созревания клеток-продуцентов антител. Они накапливаются, созревают, стареют и погибают. А итогом является начало выработки антител, их накопление и исчезновение. Оставалось, конечно, непонятным, почему размножение клеток не происходит бесконечно? Что его останавливает? Почему в некоторых случаях, например при попадании большого количества чужеродных антигенов, иммунный ответ резко тормозится? Может быть, все-таки тормозная система есть?
В 1972 году тормозящие клетки были открыты. Они тоже оказались Т-лимфоцитами. Однако в противоположность Т-помощникам они угнетают иммунный ответ, за что и получили название Т-супрессоры, то есть Т-подавители. Основной способ действия супрессоров-блокировка, отмена или торможение активности клеток-помощников. Т-супрессоры имеют специальный аппарат узнавания — Т-помощников. Узнав, они нейтрализуют их активность. А ведь Б-лимфоцит не может функционировать без помощи. Иммунный ответ тормозится или останавливается.
В нормальных условиях клетки-супрессоры накапливаются на несколько дней позже клеток-помощников, чтобы в нужное время затормозить иммунный ответ. Не дать ему "разогнаться" беспредельно. В случаях расстройств иммунитета Т-супрессоры могут причинить немало неприятностей. Но об этом позже.
Здесь в заключение только одно — в иммунном ответе участвует не трио, а по крайней мере клеточный квартет: макрофаг, Б-лимфоцит, Т-помощник и Т-супрессор. В итоге возникает пятая клетка — плазматическая, которая и продуцирует антитела. Обратите внимание, макрофаг подает антиген, Б-лимфоцит порождает плазматические клетки, последние нарабатывают защитные белки. А Т-лимфоциты управляют этой работой! Они ее усиливают, тормозят, иначе говоря, регулируют. Поэтому в научной литературе лимфоциты тимусного происхождения (Т-лимфоциты) называют клетками-регуляторами. А сам тимус... В 1974 году на III Международном конгрессе иммунологов в Брайтоне один из первооткрывателей Т-супрессоров, американский профессор Гершон, в своем докладе назвал тимус дирижером иммунного оркестра.
Работают они сообща — Б-лимфоцит и Т-лимфоцит. Первый распознает микробную, вирусную или иную чужеродную частицу, чтобы против нее выработать антитела. Т-лимфоцит тоже распознает чуждую частицу, чтобы помочь Б-лимфоциту начать работу, включить его в размножение. Его так и называют Т-помощник. А макрофаг — третий участник коллективной работы — подает им эту чужеродную частицу, подает на "блюдечке с голубой каемочкой". В научной литературе макрофаг даже название соответствующее получил — антиген — подающая клетка. Он антигенную частицу подает, а Т- и Б-лимфоциты распознают, что она чужеродная. Узнают и начинают свою работу. Развивается то, что называется иммунным ответом. В течение многих лет считалось, что Т-, как и Б-лимфоциты, распознают саму чужеродную частицу, распознают чужое. А потом появился Рольф Цинкернагель, иммунолог из ФРГ, и обнаружил, что это не так. Он взял мышей и заразил их вирусом.
Вирус поселяется в клетках и лимфоцитах. Чтобы убить вирусы, приходится найти зараженные клетки, убедиться, что они содержат вирусные антигены, и убить их вместе с вирусами. Им приходится узнать, где вирус, то есть узнать чужеродные частицы.
Исследователь смешал зараженные клетки с Т-лимфоцитами и увидел, что лимфоциты узнают вирусные частицы только в том случае, если вирусы сидят на клетках того же самого организма. Если зараженные вирусом клетки принадлежат другому организму, то вирусы остаются нераспознанными и из-за этого неубитыми. Так было установлено, что чужеродные частицы-антигены, подаваемые Т-лимфоциту на "блюдечке с голубой каемочкой", распознаются им как чуждые, если "блюдечко" свое. Из чужого он брать не хочет. Следовательно, Т-лимфоцит видит не "чужое", а "свое", оскверненное чужим. Он узнает измененное свое. Разбирается, чем изменено, и развивает иммунный ответ против наглеца, посмевшего совершить это изменение.
Описанный способ работы Т-лимфоцита получил название двойного распознавания, распознавания комплекса, состоящего из двух компонентов — некой "своей" молекулы с молекулой чуждой. Он узнает комплекс "я" плюс "не я". В роли "я", или, как выше сказано, в роли "блюдечка с голубой каемочкой", выступают сложные молекулы, состоящие из белка и Сахаров. Их имя гликопротеиды. От них зависит несовместимость тканей при пересадках. Об этом будет рассказано позже. А сейчас повторим: когда макрофаг подает Т-лимфоциту-помощнику чужеродную частицу на гликопротеидном блюдечке, то лимфоцит должен быть убежден, что блюдечко свое, то есть подается своим макрофагом. Заявки от чужих не принимаются. Кооперирующие клетки должны принадлежать одному организму, быть генетически идентичными. Если этого нет, совместная работа не происходит или резко ограничивается. Поэтому двойное распознавание еще называют генетическим ограничением (рестрикцией).