Иммунная биотехнология

Машина узнавания

Слово промышленность рождает образы заводов, шахт, машин... Слово технология рождает образы станков, точных измерительных приборов, физических и химических процессов... Технология — это способ промышленного создания продукции.

Слово "биология" рождает образы животных, растений, всяких инфузорий, микробов, клеток... И вот в наши дни родились и приковали к себе гигантское внимание ученых и практиков такие сочетания слов, как "биологическая промышленность" и "биологическая технология". Что это?

Прежде всего это отнюдь не невидаль для человечества. Виноделие — это биологическая промышленность, ибо вино — это результат сбраживания виноградного сока винными дрожжами. Технология производства вина — это биотехнология. Производство хлеба — это тоже биотехнология на основе муки и пекарских дрожжей. Силосование кормов, биологическая очистка сточных вод, производство сыров, кефира, простокваши — всюду биотехнология, основанная на использовании микроорганизмов в промышленности. Что же нового?

Новое, и это самое главное, в том, что человечество научилось использовать не только широко распространенные в природе дрожжи и бактерии, но и искусственно созданные микробные и немикробные клетки. Вдумайтесь в это. Искусственная живая клетка, которая делает то, что необходимо людям. Причем в промышленном масштабе.

Конечно, искусственный микроорганизм — это ни гомункулюс доктора Фауста, созданный в колбе с помощью таинственных сил из неживой материи. Под искусственным микроорганизмом современная наука понимает известный ранее микроб, скажем кишечную палочку, в генетический аппарат которой искусственно введены несвойственные ей гены. Благодаря работе этих генов кишечная палочка продуцирует несвойственный ей ранее продукт. Продукт, нужный людям. Например, инсулин — гормон, необходимый для лечения диабета. Поскольку в кишечную палочку ввели человеческий ген, то она продуцирует человеческий инсулин. Раньше больные не имели возможности лечиться человеческим инсулином. Его неоткуда было взять, так как он вырабатывается поджелудочной железой людей. Добыть его невозможно. Теперь производство такого биотехнического инсулина начато. Искусственная кишечная палочка нужного типа культивируется в питательной среде и нарабатывает нужный продукт.

Машина узнавания


Генная инженерия получила права гражданства в микробиологической промышленности для производства целого ряда белков и ферментов, для создания особенно быстро работающих дрожжей, для получения новых микробов — продуцентов антибиотиков и т. д.

Иммунология принесла технологии не менее удивительный метод. Метод клеточной инженерии. Метод создания искусственных клеток животного происхождения, а точнее — искусственных иммунокомпетентных клеток, работающих вне организма животного, человека. Эти искусственные клетки получили название гибридом. Работа с ними составляет самый передний фронт иммунной биотехнологии, то есть технологии производства диагностических и лечебных иммунных сывороток, а также защитных веществ, в том числе медиаторов, вырабатываемых клетками иммунной системы. Если спросить, какая продукция иммунокомпетентных клеток вызывает всеобщий интерес в медицине, микробиологии, вирусологии, в сельском хозяйстве и даже в химии, то ответ будет один — антитела.

Вы помните, что основной принцип работы иммунной системы состоит в том, что в ответ на внедрившиеся в организм чужеродные субстанции, будь то микроб, чужеродный белок, полисахарид и т. п., она вырабатывает антисубстанции высокой специфичности. Эти антисубстанции представляют собой белки определенного типа (иммуноглобулины), получившие название антител. Каждая молекула антитела имеет распознающие центры, которые узнают и соединяются с тем антигеном, той субстанцией, которая стимулировала образование этого антитела. Точность узнавания беспрецедентна. Антитела против антигена X узнают только X, антитела против Y узнают только Y, даже если X и Y различаются, скажем, всего лишь по одной аминокислоте, по поверхностной химической группе или даже по расположению такой группы.

Фактически иммунная система является уникальной по универсальности "машиной" для узнавания чужеродных биоорганических субстанций и выработки против них реагентов абсолютной специфичности — антител.

Технологическая цепочка

Технологическая цепочка в иммунной биотехнологии складывается из следующих трех звеньев. На вводе используется вещество, против которого необходимо наработать антитела в качестве специфического реагента или в качестве лечебного средства.

Продуцирующим звеном в течение десятилетий использовался живой организм — кролики, лошади, здоровые люди (доноры). Их иммунизировали, затем брали кровь, из крови выделяли сыворотку, а из нее антитела. Главный недостаток не только в том, что требуются большие фермы животных и отряды доноров, но и в том, что производимые целостным организмом антитела не полностью идентичны друг другу, не моноклональны, как говорят иммунологи.

Это технологическое звено в самое последнее время революционизировано благодаря разработке упомянутых выше гибридом — клеточных линий, которые вырабатывают антитела и важные медиаторы иммунитета вне организма — в пробирках, флаконах или клеточных реакторах. При этом продуцируемые биопродукты моноклональны, а это значит — стандартны и воспроизводимы.

Звено выхода биотехнологической цепочки характеризуется разработкой поразительно чувствительных иммунохимических методов обнаружения биоорганических соединений с помощью антител, а также использования антител для очистки искомого вещества посредством иммунной сорбции, то есть захвата нужного вещества антителами. В главе "Молекулярные курьеры иммунитета" говорилось об интерфероне — противовирусном агенте, вырабатываемом в организме и в культуре клеток. Так вот, однократное пропускание культуральной жидкости, содержащей интерферон, через колонку с антиинтерфероновыми антителами обеспечивает выход интерферона, за один этап в 5 тысяч раз более очищенного от примесей клеточного и культурального происхождения.

Реагенты высшей точности

Чтобы химическими методами отличить свиной инсулин от бычьего, необходимо иметь оба препарата в чистом виде, в достаточном количестве, провести определение аминокислотной последовательности полипептидной цепи и установить, что 8-й остаток треонина замещен у быка аланином. Легко представить себе сложность подобного анализа, его длительность и необходимость высококвалифицированных работников для его проведения. С помощью антител идентификация и количественное определение этих веществ производятся лаборантом в течение нескольких минут с высочайшей чувствительностью. При этом не нужно иметь очищенные препараты; они могут быть смешаны и находиться в составе сложнейших многокомпонентных систем, например, в сыворотке крови, в культуральной жидкости, в которой выращивались микроорганизмы, или в составе смеси на выходе сложных биохимических реакций.

Например, иммуноэлектрофоретический анализ белков крови человека одномоментно, качественно и количественно идентифицирует до 30 белков: альбумин, гликопротеин, липопротеины, трансферрин и т. д. Идентификация всех этих белковых соединений и их индивидуальных вариантов неиммунологическими способами невозможна, так же как невозможно без антител определить группы крови человека, подобрать донора для пересадки органов, определить количество того или иного гормона в крови, выявить одиночную искомую клетку и т. д.

Иммунная биотехнология способна обеспечить производство реагентов, необходимых не только для самой иммунологии и медицины, но и для всех научных или прикладных отраслей, в которых требуется индикация любых биоорганических субстанций, вирусов, бактерий, клеток и т. д. Точность и чувствительность иммунологических методов не имеют себе равных.

Реагенты высшей точности


Вот почему иммунная биотехнология необходима не только медицине, но и микробиологии, вирусологии, молекулярной биологии, биоорганической химии, она необходима производству гормонов, белков, ферментов, токсинов, вакцин, при разработке индикаторных методов выявления одиночных микроорганизмов, клеток или одиночных клонов микроорганизмов и клеток, что совершенно необходимо в генной инженерии и во многих отраслях микробиологической, пищевой и лекарственной промышленности.

Иммунная биотехнология добилась того, что пользоваться антителами-реагентами стало очень удобно и просто. Выпускаются кассеты с гелями (подобие студня), содержащими определенные антитела. Достаточно нанести каплю исследуемой жидкости на гель, чтобы появились кольца так называемой преципитации (реакции осаждения комплекса антигена с антителом), если в жидкости содержится искомый антиген. По диаметру кольца можно определить концентрацию антигена. Выпускаются приборы, которые автоматически регистрируют преципитацию антиген-антитело в токе жидкости, проходящей по капиллярным трубкам прибора. Прибор определяет миллиграммовые количества антигенов. В наиболее чувствительных и тонких методах исследования используются меченые антитела и антигены.

В 1955 году американский иммунолог Альберт Куне присоединил к антителам светящийся краситель. Приготовленные таким образом флуоресцирующие (светящиеся) антитела сделали видимыми места расположения интересующих его субстанций в клетках. Так, в частности, были обнаружены клетки, синтезирующие иммуноглобулины и клеточные структуры иммуноглобулиновой природы.

Методом флуоресцирующих антител разыскивается среди тысяч других бактерий и устанавливается "личность" микроорганизма-одиночки без предварительного посева его на питательную среду, а прямо в мазках. И не нужны для этого меченые антитела против всех искомых бактерий. Требуется лишь панель обычных кроличьих антител против интересующего нас микроба и одна меченная флуоресцином антисыворотка — против кроличьих иммуноглобулинов класса IgG. Она окрасит только те бактерии, к которым присоединились специфические кроличьи антитела.

Производственные лаборатории иммунобиотехнологического профиля выпускают наборы-укладки (КИТы), содержащие все необходимое, чтобы быстро исследовать любые смеси и субстраты и выявить в них искомый антиген. Скажем, яд колбасного отравления — ботулинический токсин (БТ).

В ячейках пластиковых панелей, имеющихся в КИТе, определенным образом фиксированы анти-БТ-антитела. В эти ячейки на несколько минут наливают жидкости, исследуемые на ботулин. Если в какую-то из ячеек попадает яд, он присоединится к антителам. После этого в ячейки приливают анти-БТ-антисыворотку, меченную ферментом. Чаще всего для метки используется фермент пероксидаза. В тех лунках, где присоединение ботулина произошло, меченные пероксидазой антитела подсоединяются к ранее сформированному комплексу. Если добавить к нему перекись водорода и хромоген (красящее вещество), то перекись водорода под воздействием пероксидазы разложится, хромоген изменит окраску.

Таким иммуноферментным методом могут быть определены и оценены вещества, если их концентрация в смеси составляет всего лишь одну десятимиллиардную долю грамма на литр.

Широко используется тест для диагностики аллергии. Суть его в том, что с помощью антител, меченных изотопами йода, определяется аллерген — виновник аллергии, которая, как известно, обусловливается появлением в организме избытка иммуноглобулинов IgE против проникших в него аллергенов: пыльцы растений, домашней пыли, пищевого аллергена и т. п.

Антитела присоединяются к частицам, на которых сидит аллерген, а затем осаждаются мечеными анти-Ig-Е-иммуноглобулинами. Если осадок окажется радиоактивным, то в нем есть аллергические антитела (иммуноглобулины) против данного аллергена, а значит, есть и аллергия. Если нет, то и аллергии нет. Найти причинный аллерген — значит успешно лечить болезнь. Подобно иммуноферментному методу, этот радиоаллергосорбентный тест высокочувствителен и не требует пробных внутрикожных инъекций аллергенов, как это до сих пор практикуется при диагностике аллергии.

В самых разных областях науки широко распространен метод конкуренции искомого антигена с радиоактивным. Этим методом проводится индикация и количественная оценка биоорганических соединений с чувствительностью до 10-12 грамма на литр.

Раковая клетка в мирных целях

Для иммунной биотехнологии, для всех ее методов, о которых мы рассказали, необходимы животные, из крови которых извлекаются определенные белки, иммуноглобулины, антитела. Существуют специальные фермы мелких (кролики, мыши, крысы, морские свинки) и крупных (козы, ослы, лошади) животных. Однако надо помнить, что разные животные (и даже одна и та же особь) вырабатывают антитела против того или иного вещества, отнюдь не полностью тождественные.

Это связано не только с индивидуальными особенностями животных или "поливалентностью" иммунизирующего материала, но и со способностью клеток иммунной системы организма вырабатывать много разных клонов (клон — длинный ряд потомков одной клетки; сколько размножается клеток, столько образуется и клонов). А каждый лимфоидный клон синтезирует свой вариант специфического антитела. В сыворотке иммунизированного животного всегда накапливается продукт работы многих клонов, и антитела в ней образуют "семью" очень похожих, но не тождественных антител.

Иммунные реагенты, полученные разными лабораториями или одной и той же, но в разное время, не совсем тождественны. Поэтому, несмотря на высокую степень специфичности, это не идеальные реагенты. Чтобы добиться их абсолютной специфичности, приходится прибегать к серии сложных технологических приемов по извлечению антител из сывороток. В последние годы иммунология решила эту проблему. Одновременно с этим уменьшилась и потребность иммунной биотехнологии в животных.

В 1975 году английские ученые Пиук Коллер и Цезарь Милстейн разработали методику получения клеточных гибридов — гибридом. Эти гибридомы образуются от слияния лимфоцитов, взятых у иммунизированных животных" с клетками миеломы, извлекаемыми из костного мозга и культивируемыми в питательной среде.

Миелома — это одна из форм рака крови. Миеломные, как и другие злокачественные раковые клетки, обладают способностью безудержно размножаться. Они возникают по еще неизвестным причинам в костном мозге, делятся быстрее всех нормальных клеток, наводняют организм, губят его. Извлеченные из организма и помещенные в питательную среду, они не утрачивают этого злого качества безудержно и бесконечно размножаться. Культура этих клеток "бессмертна", ее можно выращивать тоннами. Но зачем?

А вот лимфоциты, как и другие "благородные" клетки тела, размножаются ровно настолько, насколько нужно организму. Помещенные даже в самую идеальную питательную среду, они быстро отмирают. Возникает биотехнологический парадокс. Клетки, которые не могут вырабатывать в культуре нужные нам антитела, "бессмертны", а те, которые могут, — в питательной среде не живут.

Гибридома — это использование раковой клетки в промышленных целях. Не как убийцы, а как мирного партнера. От лимфоцита гибридома получает способность синтезировать нужные антитела, а от миеломного партнера — выживать в искусственной среде и бесконечно в ней размножаться. Поэтому антитела, синтезируемые гибридомами, могут быть наработаны в неограниченном количестве. Эти антитела идентичны по всем параметрам и взаимодействуют только с одним антигеном.

Таким образом, полученный в пробирке препарат может служить идеальным реагентом на ту или иную органическую субстанцию, идеальным диагностическим или лечебным средством. Набор специфических реагентов, который может быть получен, не ограничен. Это могут быть антитела против белков крови и тканей, против антигенов различных органов, против раковых и нормальных клеток, против вирусов, бактерий, паразитов, против некоторых химических соединений и т. п.

Проблема изучения и практического использования гибридных клеток решалась в последние несколько лет бурно, можно даже сказать — взрывоподобно. К ее разработке в различных странах подключились сотни исследователей. В ближайшем будущем, очевидно, возникнут фирмы или фабрики, которые будут выпускать моноклональные антитела в качестве уникальных реагентов, диагностических и лечебных препаратов.

Конечно, получать лимфоцитарные гибриды — дело непростое. Оно включает в себя несколько ступеней. Накапливают гибридный клон или в пробирке, или в организме животных. При этом на всех этапах накопления образцы клеток необходимо консервировать в жидком азоте, чтобы в любое время можно было вернуться к любому этапу и сохранить на будущее нужные клоны.

С помощью моноклональных антител уже внесен большой вклад в науку. Проанализирована структура и генетика иммуноглобулинов, открыты и исследованы рецепторы лимфоцитов, с помощью которых они распознают "свой" антиген, получены реагенты опухолевой клетки, проведено у животных экспериментальное лечение рака крови, приготовлены моноспецифические антитела против некоторых микроорганизмов и т. д.

Плодотворное сотрудничество генной инженерии с иммунной биотехнологией ярко иллюстрируется известным противовирусным и противоопухолевым препаратом интерфероном. Его получение стало возможным с помощью микроорганизмов, в наследственный аппарат которых введены гены, кодирующие синтез интерферона. Однако выделение препарата из культуральной среды и его очистка оставались еще весьма не простой задачей. Гибридома, синтезирующая антитела против интерферона, позволила решить и эту проблему: недавно с помощью моноклональных антител был получен в экспериментальных количествах интерферон, очищенный от всех примесей.

Загрузка...