Отцы иммунологии

Эдвард Дженнер

Ученый чаще всего не знает, насколько правилен его замысел и подтвердится ли его идея. Тем не менее он работает, верит в замысел, верит в идею.

Уверенность рождает решимость. Но не только решимость к многолетним научным исканиям. Порой она концентрируется в одном кульминационном пункте.

Эдвард Дженнер родился более двухсот лет назад в Англии, в графстве Глесстершир, в местечке Беркли.

Дженнеру 21 год.

Молодой врач обратил внимание на существовавшее в народе поверье: человек, переболевший весьма безобидной коровьей оспой, никогда не заболевает натуральной, или, как ее называют, черной, оспой, от которой только в Лондоне умирало от одной до трех тысяч человек ежегодно.

Дженнер поверил в народную молву. 26 лет зрела эта вера. 26 лет он наблюдал и сопоставлял факты. Сомнений оставалось все меньше и меньше. Люди, чаще всего доярки, перенесшие коровью оспу, действительно не заболевали натуральной!

Дженнеру 47 лет.

Эдвард Дженнер


14 мая 1796 года врач и ученый Эдвард Дженнер решился на эксперимент, который избавил человечество от оспы, и стал прародителем новой науки — иммунологии. Уверенный в своей правоте, ученый ставит опыт на человеке.

Крестьянка Сарра Нелмс заразилась коровьей оспой, и у нее на руке появилось несколько типичных пузырьков. Содержимое одного из них будет привито Эдвардом Дженнером восьмилетнему мальчику Джеймсу Фиппсу. Но этого мало. Потом мальчика надо будет заразить настоящей черной оспой. Если он ошибется, мальчик умрет. После этого нельзя будет жить и Дженнеру...

Достаточно ли он уверен? Достаточно ли доказательств, подтверждающих идею? Как жаль, что опыт нельзя поставить на себе... Нужен человек, никогда раньше не контактировавший с больными оспой. Впрочем, это и опыт на себе. Если вспомнить, как боролись в той же Англии с противооспенной вакциной в последующие годы.

"Для того чтобы с большей точностью наблюдать за ходом заражения, — пишет Дженнер, — я выбрал здорового мальчика (Джеймса Фиппса) около восьми лет с целью привить ему коровью оспу. Я взял материю с пустулы на руке одной скотницы (Сарры Нелмс), которая заразилась коровьей оспой от коров своего хозяина. Эту материю я привил на руку мальчика 14 мая 1796 года посредством двух поверхностных надрезов, едва проникнувших через толщу кожи, длиной около полудюйма каждый. На седьмой день мальчик начал жаловаться на боль под мышкой, а на девятый его стало немного лихорадить, он потерял аппетит, и появилась легкая головная боль. На следующий день он был совершенно здоров... Все болезненные явления исчезли, оставив на месте прививки струпья и незначительные рубцы, но не причинив ни малейшего беспокойства ни мне, ни моему пациенту. Для того чтобы удостовериться в том, что мальчик, над которым я производил опыт, после этого легкого заболевания от прививки яда коровьей оспы был огражден от заражения настоящей оспой, я произвел ему 1 июля того же года инокуляцию человеческой оспы, взятой непосредственно с оспенной пустулы.

Несколько легких уколов и надрезов были сделаны на его обеих руках и материя тщательно втерта, но какого-либо заметного заболевания не последовало".

Решающий эксперимент — апофеоз идеи — прошел успешно. Маленький Фиппс приобрел в результате безопасной прививки невосприимчивость к одной из самых страшных болезней — черной оспе. Эта прививка была названа вакцинацией, от латинского слова "вакка", что значит "корова". Термин прижился, и всякая профилактическая прививка болезнетворного начала с тех пор и называется вакцинацией, хотя вакцина может быть приготовлена из мозга зараженного кролика, как в случае бешенства, или из легочной ткани мышей, как в случае сыпного тифа.

Уверенность ученого родила решимость. Решимость ученого привела к открытию. Нужно ли подчеркивать слово ученого? Да, нужно. Уверенность и решимость невежды может привести в лучшем случае к нелепости, в худшем — к трагедии. Уверенность ученого — это вера, основанная на длительных наблюдениях, сопоставлениях, точных знаниях. Вера ученого, основанная на строгих доводах разума, — великая созидающая сила.

Рассказывать ли о том, что значили для Дженнера эти дни и ночи наблюдения за мальчиком! Говорить ли о той радости, которая пришла в итоге!

Эдвард Дженнер полюбил мальчика как родного сына. Ведь в конце концов, если Дженнер активное начало в этом открытии, то мальчик тоже был соавтором. Хотя он даже не знал, чему он помог и чем рисковал.

Но активный родитель знал. И никогда не забывал. Он любил мальчика, любил соавтора. Любил свое детище, свою воплощенную идею.

Луи Пастер

И все-таки открытие Дженнера не родило новой науки. Это было гениальное наблюдение, опередившее время почти на 100 лет. Но оно дало человечеству лишь способ предупреждать оспу.

Нет слов, это очень большой подарок. И человечество благодарило великого англичанина еще при жизни. Его способ предупреждения оспы был признан и распространен во многих странах. Лондонское медицинское общество выбило в честь Дженнера Большую золотую медаль. Английский парламент вручил ему награду в 10 тысяч фунтов стерлингов, а потом вторично в 20 тысяч. Дженнер стал почетным гражданином Лондона. Русская императрица Елизавета — жена Александра I — послала Дженнеру в подарок перстень с крупным бриллиантом. Первого вакцинированного русского ребенка, Антона Петрова, нарекли Вакциновым и воспитывали за казенный счет. Во Франции Наполеон Бонапарт официально содействовал оспопрививанию и сделал его обязательным в армии. Рассказывают, что однажды Наполеона попросили об освобождении английского пленного. "Об этом просит Дженнер", — заметила Жозефина. "Ах, Дженнер! — воскликнул Наполеон. — Ну Дженнеру я ни в чем не могу отказать".

Итак, Дженнер научил человечество не бояться оспы. Но ни он, ни медицина того времени не создали всеобщего метода предупреждения заразных болезней. Не было учения, не было теории.

Наука должна была еще немножко подрасти. Человечество должно было еще кое-что познать. Наконец, должен был родиться Луи Пастер, чтобы через 85 лет после открытия Дженнера создать науку иммунологию и дать людям принципы изготовления вакцин против любой инфекции.

В Париже на одном из зданий висит мемориальная доска. На этой доске даты — вехи открытий Луи Пастера.

"Здесь — была лаборатория Пастера.

1857. Брожение.

1860. Самопроизвольное зарождение.

1865. Болезни вина и пива.

1868. Болезни шелковичных червей.

1881. Зараза и вакцина.

1885. Предохранение от бешенства."

1881 год — год рождения иммунологии. И опять все началось с того, что ученый должен был поверить мелькнувшей в результате исследования догадке, поверить себе.

Внешне открытие пришло случайно. Но нужно было обладать гениальным умом Пастера, чтобы сделать как будто бы "немного": заметить, проверить и глубоко уверовать во всеобщность принципа.

1880 год. Пастер изучает куриную холеру. У кур своя холера, безопасная для человека. Микроб, живущий в пробирках лаборатории, действовал безотказно, когда им заражали подопытных птиц. Смерть наступала через день-два. В каникулярный период работу временно прервали и пробирки оставили в термостате при свободном доступе воздуха. Когда через три недели микробами из этих пробирок заразили кур, они заболели... но не погибли. Неудачу решили исправить: через несколько дней птиц заразили свежими микробами.

Птицы даже не заболели!

На основании этого, казалось бы, неудачного эксперимента у Пастера возникла обобщающая идея. Он проверил то, что заметил, и глубоко уверовал во всеобщность принципа: если понизить ядовитость микробов, понизить их способность вызывать болезнь и смерть, они превращаются в препарат, защищающий от этой болезни. Ученый поверил, хотя и говорил в ответ на расспросы: "Я ничего не могу сказать, я не осмеливаюсь громко формулировать все то, на что я надеюсь". И это он говорил, создавая в соответствии со своей идеей новую вакцину. Уже не против куриной холеры, а против сибирской язвы, которая поражает и животных и людей. Он готовил ее, создавая "ужасные жизненные условия" сибироязвенным бациллам. Их длительно держали в подогретом состоянии.

Когда вакцина против сибирской язвы была готова, Луи Пастер, абсолютно уверенный в успехе, решился на публичный эксперимент.

Пастер был мастером публичных выступлений. Он умел вызывать слезы на глазах слушателей, он умел и любил запугать, а затем указать путь к спасению. Он устраивал научные вечера, приглашал на них Александра Дюма, Жорж Санд, высокопоставленных вельмож. Темноту зала пронзал лучом света и, указывая на пляшущие пылинки, говорил о мириадах микробов, несущих болезни и смерть. Он знал, как расшевелить журналистов, интеллигентов, снобов, буржуа, молодежь.

Ученых расшевелить сложнее. Особенно умудренных опытом членов Французской академии наук. Не всякий ученый, добившись успеха и усевшись в кресло академика, склонен воспринимать новое, особенно устрашающее новое. К тому же строгим, педантичным ученым нелегко воспринимать идеи, низвергаемые на них бурным, непостижимо уверенным Пастером. Но он был гениален. Он почти всегда был прав. Он увлекался, но никогда не придумывал.

Французская академия наук уже знала о создании сибиреязвенной вакцины. Сообщение о своем открытии Пастер сделал в академии 28 февраля 1881 года. Как всегда, новая идея многими была встречена весьма сдержанно. Но Пастер обещал публичный эксперимент. Было принято решение проверить его идеи, его работу, его вакцину на скотоводческой ферме в Пуильи-ле-Фор. Пастер вынес на суд ученых, и не только ученых, на суд толпы сановников, журналистов, обывателей свое открытие.

Этот один из самых опасных экспериментов Пастера состоялся в мае 1881 года. А если бы опыт не удался? Если бы опыт не удался, лаборатория Пастера тотчас лишилась бы ассигнований. Ему трудно было бы продолжать работу. А ведь впереди еще неначатая борьба с бешенством. Он еще не знает, чем рискует. Он еще не знает, чем он будет заниматься дальше. Но мы-то теперь знаем, чем он рисковал. Впереди была одна из самых драматических его работ. Но азартный Пастер уверовал в свою идею, апробировал ее в лаборатории, и родилась решимость. А ученым в академии он без эффектов говорил о главном — о принципе, об иммунитете.

Доклад в академии был не простым сообщением о создании вакцин против куриной холеры и сибирской язвы. Доклад сообщал об универсальном принципе создания искусственного иммунитета введением ослабленного возбудителя болезни, к которой необходимо выработать невосприимчивость. Вот почему публичный эксперимент был больше, чем апробация вакцины против сибирской язвы. На карту ставилась судьба только что рожденной науки об иммунитете. Многие ученые в академии не одобряли решения Пастера, упрекали его в излишней самоуверенности.

И все же можно представить себе тяжесть сомнений, силу решимости и глубину уверенности Пастера в те знаменательные дни.

В начале мая 1881 года на ферме в Пуильи-ле-Фор вакцинировали 30 овец и 5 коров. Столько же животных оставили в качестве контрольных. 31 мая все 70 животных были заражены сибирской язвой. Эксперимент проводился в присутствии врачей, ученых, государственных деятелей, журналистов. Через двое суток Пастер и гости снова были на ферме.

Все контрольные животные погибли. Все вакцинированные остались жить!

Пастер до начала эксперимента предсказал его результаты. Он не сомневался в них.

Вопреки тогдашним законам чести Пастер отказывался от дуэли, даже когда первым наносил оскорбления, но смело шел на, казалось бы, авантюрный, рекламный эксперимент. Этаумелость побольше, чем при дуэли.

Пастер открыл общий принцип стимуляции иммунитета с помощью вакцин. Человечество избавилось от многих заразных болезней. Но он не знал, почему прививки предохраняют, не знал, что происходит в организме, какие системы срабатывают, как организм защищается, каковы механизмы иммунитета. У него было сверхнаивное представление, будто введенные первый раз ослабленные микробы "выедают" что-то нужное именно этому виду микробов. Попадающим второй раз микробам нечего есть, они дохнут, инфекция не развивается. То есть не организм реагирует, не его иммунная система срабатывает и создает защиту, а микроб сам "излишне много съедает".

Илья Мечников и Пауль Эрлих

"С самых древнейших и до самых позднейших времен принималось за несомненное, что организм обладает какой-то способностью реагировать против входящих в негр извне вредных влияний. Эту способность сопротивления называли разно. Исследования Мечникова довольно твердо устанавливают факт, что эта способность зависит от свойств фагоцитов, главным образом, белых кровяных телец и соединительно-тканных клеток, пожирать попадающие в тело высшего животного микроскопические организмы". Так рассказывал журнал "Русская медицина" о докладе Ильи Ильича Мечникова в Обществе киевских врачей, сделанном 21 января 1884 года.

Можно ли день доклада считать днем рождения первой научно обоснованной теории, объясняющей механизмы невосприимчивости к инфекционным болезням?

Конечно нет. Доклад формулировал мысли, родившиеся в голове ученого много раньше, во время работы. Отдельные элементы фагоцитарной теории были обнародованы раньше в статьях и докладах. Но назвать эту дату днем рождения великой дискуссии по теории иммунитета можно.

Дискуссия длилась 15 лет. Жестокая война, в которой цвета одной точки зрения были на знамени, поднятом Мечниковым. Цвета другого знамени защищали такие великие рыцари бактериологии, как Беринг, Пфейффер, Кох и Эммерих. Возглавлял их в этой борьбе Пауль Эрлих — автор принципиально иной теории иммунитета.

Теории Мечникова и Эрлиха исключали одна другую. На конференциях и съездах, на страницах журналов и книг — всюду скрещивали оружие оппоненты. Оружием были факты. Только факты.

Идея родилась внезапно. Ночью. Мечников сидел один за своим микроскопом и наблюдал жизнь подвижных клеток в теле прозрачных личинок морских звезд. Он вспоминал, что именно в этот вечер, когда вся семья ушла в цирк, а он остался работать, его осенила мысль. Мысль, что эти подвижные клетки должны иметь отношение к защите организма. (Наверное, это и надо считать "мигом рождения".)

Последовали десятки опытов. Инородные частицы — заноза, зерна краски, бактерии — захватываются подвижными клетками. Под микроскопом видно, как собираются клетки вокруг непрошеных пришельцев. Часть клетки вытягивается, образуя ложную ножку, по-латыни — "псевдоподию". Инородные частицы охватываются псевдоподиями и оказываются внутри клетки, как бы пожираются ею. Мечников так и назвал эти клетки фагоцитами, что значит клетки-пожиратели.

Ученый обнаружил их у самых разных животных. У морской звезды и у червей, у лягушек и кроликов и, конечно, у человека. У всех представителей царства животных почти во всех тканях и в крови присутствуют специализированные клетки-фагоциты.

Самое интересное — конечно, фагоцитоз бактерий.

Ученый вводит в ткани лягушки возбудителей сибирской язвы. К месту введения микробов стекаются фагоциты. Каждый захватывает одну, две, а то и десяток бацилл. Клетки пожирают эти палочки и переваривают их.

Так вот он, таинственный механизм невосприимчивости! Вот как идет борьба с возбудителями заразных болезней. Теперь понятно, почему один человек заболевает во время эпидемии холеры (да и не только холеры!), а другой нет. Значит, главное — это количество и активность фагоцитов.

В то же самое время, в начале 80-х годов ученые Европы, особенно Германии, несколько по-иному объяснили механизм иммунитета. Они считали, что микробы, оказавшиеся в организме, уничтожаются вовсе не клетками, а специальными веществами, находящимися в крови и других жидкостях организма. Концепция получила название гуморальной, то есть жидкостной.

И начался спор...

1887 год. Международный гигиенический конгресс в Вене. О фагоцитах Мечникова и его теории говорят лишь попутно, как о чем-то совсем неправдоподобном. Мюнхенский бактериолог, ученик гигиениста Макса Петтенкофера Рудольф Эммерих сообщает, что он вводил иммунным, то есть предварительно вакцинированным, свиньям микроб краснухи и бактерии погибали в течение часа. Погибали без всякого вмешательства фагоцитов, которые за это время не успевали даже "подплыть" к микробам.

Что делает Мечников? Он воспроизводит опыт Эммериха. Мюнхенский коллега ошибся. Даже через 4 часа микробы еще живы. Мечников сообщает результаты своих опытов Эммериху.

Эммерих повторяет эксперименты и убеждается в своей ошибке. Микробы краснухи гибнут через 8-10 часов. А это как раз то время, которое и нужно фагоцитам для работы. В 1891 году Эммерих публично признает свою ошибку.

Илья Мечников и Пауль Эрлих


1891 год. Очередной международный гигиенический конгресс. Теперь в Лондоне. В дискуссию вступает Эмиль Беринг — также немецкий бактериолог. Его имя навсегда останется в памяти людей. Оно связано с открытием, спасшим миллионы жизней. Беринг — создатель противодифтерийной сыворотки.

Последователь гуморальной теории иммунитета, Беринг сделал очень логичное предположение. Если животное перенесло в прошлом какую-нибудь заразную болезнь и у него создался иммунитет, то и сыворотка крови, ее бесклеточная часть, должна повысить свою бактериоубийственную силу. Если это так, то можно искусственно вводить животным микробы, ослабленные или в малых количествах.

Можно искусственно получить такой иммунитет. И сыворотка этого животного должна убивать соответствующие микробы. Беринг создал противостолбнячную сыворотку. Чтобы ее получить, он вводил кроликам яд столбнячных бацилл, постепенно увеличивая дозу его. А теперь надо проверить силу этой сыворотки. Крысу, кролика или мышь заразить столбняком, а потом ввести противостолбнячную сыворотку, сыворотку крови иммунизированного кролика.

Болезнь не развивалась. Животные оставались живыми. То же самое Беринг проделал и с дифтерийными палочками. И именно так дифтерию стали лечить у детей и лечат до сих пор. В 1901 году Беринг за это получил Нобелевскую премию.

Но при чем здесь клетки-пожиратели? Вводили сыворотку, часть крови, где нет клеток. И сыворотка помогала бороться с микробами. Никакие клетки, никакие фагоциты в организм не попадали, и тем не менее он получал какое-то оружие против микробов. Следовательно, клетки ни при чем. Что-то есть в бесклеточной части крови. Значит, верна теория гуморальная. Фагоцитарная теория неверна.

В результате такого удара ученый получает толчок к новой работе, к новым исследованиям. И Мечников опять отвечает экспериментами. В результате выясняется: не сыворотка убивает возбудителей дифтерии и столбняка. Она обезвреживает выделяемые ими токсины, яды, и стимулирует фагоциты. Активизированные сывороткой фагоциты легко расправляются с обезоруженными бактериями, чьи ядовитые выделения нейтрализованы находящимися в той же сыворотке антитоксинами, то есть антиядами.

Две теории начинают сближаться. Мечников по-прежнему убедительно доказывает, что в борьбе с микробами главная роль отводится фагоциту. Ведь в конце концов фагоцит делает решающий шаг и пожирает микробов. Тем не менее и Мечников вынужден принять некоторые элементы гуморальной теории.

Гуморальные механизмы в борьбе с микробами все же действуют. После беринговских исследований приходится согласиться, что контакт организма с микробными телами приводит к накоплению циркулирующих в крови антител. (Появилось новое понятие — антитело; подробнее об антителах будет дальше.) Некоторые микробы, например холерные вибрионы, под влиянием антител гибнут и растворяются.

Отменяет ли это клеточную теорию? Ни в коем случае. Ведь антитела должны вырабатываться, как и все в организме, клетками. И конечно же, на фагоцитах лежит основная работа по захвату и уничтожению бактерий.

1894 год. Будапешт. Очередной международный конгресс. И опять страстная полемика Мечникова, но на этот раз с Августом Пфейффером. Менялись города, менялись темы. Дискуссия уводила все дальше в глубины сложных отношений животных с микробами.

Сила спора, страсть и накал полемики оставались прежними. Через десять лет, на юбилее Ильи Ильича Мечникова, Эмиль Ру вспоминал эти дни:

"До сих пор я так и вижу вас на Будапештском конгрессе 1894 года, возражающим вашим противникам: лицо горит, глаза сверкают, волосы спутались. Вы походили на демона науки, но ваши слова, ваши неопровержимые доводы вызывали рукоплескания аудитории. Новые факты, сначала казавшиеся в противоречии с фагоцитарной теорией, вскоре приходили в стройное сочетание с нею".

Таков был спор. Кто победил в нем? Все! Мечниковская теория стала стройной и всеобъемлющей. Гуморальная теория нашла свои главные действующие факторы — антитела. Пауль Эрлих, объединив и проанализировав данные гуморальной теории, создал в 1901 году теорию образования антител.

15 лет спора. 15 лет взаимных опровержений и уточнений. 15 лет спора и взаимопомощи.

1908 год. Высшее признание для ученого — Нобелевская премия присуждена Илье Мечникову — создателю фагоцитарной теории и Паулю Эрлиху — создателю теории образования антител, то есть гуморальной части общей теории иммунитета.

Мечников и Эрлих создали теорию иммунитета. Они спорили и победили. Все оказались правы, даже те, кто, казалось, прав не был. Кто все-таки выиграл в этом споре? Выиграла наука. Выиграло человечество. В научном споре побеждают все!

Загрузка...