Армия иммунитета

Солдаты и оружие

Каково оружие и кто солдаты непобедимой армии иммунитета? Именно непобедимой, не возражайте. Не приводите в качестве примеров ужасающие и опустошительные эпидемии "черной смерти" (чумы) в Западной Европе XIV века или холеры, которая, выйдя в 1823 году из Индии, прошла по всей Европе и Америке. Про грипп, погубивший в 1918-1919 годах около 20 миллионов человек и не усмиренный полностью до сих пор. Да, все это так. И все же армия иммунитета в целом непобедима.

Каждая смерть в результате инфекции — это победа возбудителей болезни (чумы, оспы, гриппа) над иммунитетом умершего. Каждое выздоровление — победа иммунитета. История жизни на земле одновременно летопись борьбы живых организмов с возбудителями болезней. Виды, у которых не оказалось достаточно надежной армии иммунитета, погибли. Но выживших-то и защитила такая непобедимая армия. А если бы это было не так? На земле бы не было животных, не было бы и людей. Одни микробы.

Ни одна эпидемия не уничтожила всех. Возбудители болезней отступали, а армия иммунитета выходила из очередной схватки с новым оружием против конкретного микроба, против именно этой конкретной болезни.

Побежденными могут оказаться отдельные особи. Но в целом армия иммунитета непобедима. А особи? Что ж, ничего не поделаешь: "A la guerre comme a la guerre", то есть "На войне как на войне".

Но вернемся к науке. Любое проявление жизни связано так или иначе с ее основой — клеткой. Клеток в организме очень много. Человек состоит приблизительно из 10000000000000 разных клеток (или, как написали бы представители более точных наук, 1013). И у всех свои заботы. Как и в нашей жизни одни люди выращивают хлеб, другие добывают уголь, третьи шьют одежду, одни клетки переваривают пищу, другие переносят кислород, третьи строят кожные покровы. Их обязанности разделены очень строго.

Особые клетки, собранные в маленькие железы, производят слюну. Еще меньшие — слезы. Специальные органы вырабатывают уникальные по своим свойствам клетки — половые. В них удивительным образом "записана" информация. Она контролирует развитие будущего организма, повторяя все основные признаки родителей.

Все клетки могут оказывать сопротивление микробам. Но в разной степени. В государстве, например, все его население так или иначе способно оказывать сопротивление врагам. Но известно и то, что этого недостаточно. Государство содержит специальные войска. Нечто похожее и в организме.

Солдаты и оружие


Во всех клетках организма есть вещества, способные убивать или задерживать размножение микробов. Клетки выделяют, например, слюну или слезы и одновременно вырабатывают вещество, способное растворить микробов. Вещество это называется лизоцим. В крови тоже есть антимикробные вещества. Одно из них носит имя комплемент. Выделения кожи также могут убивать бактерии. Если чистую кожу загрязнить взвесью микробной культуры и через 10-15 минут подсчитать количество микробов, можно убедиться в бактерицидных свойствах кожи: их число уменьшится в десятки раз. Все эти антимикробные свойства связаны с естественным, иначе говоря, природным, содержанием некоторых специфических веществ в жидкостях организма.

К сожалению, гуморальные (то есть жидкостные) факторы естественного иммунитета не очень сильное оружие. Ни лизоцим, ни комплемент не действуют на многих микробов. И те прекрасно себя чувствуют на коже и размножаются в крови.

Против них необходимы особые "войска".

Солдатами иммунитета, защищающими наш организм от микробов, служат уже известные нам вездесущие клетки с общим названием фагоциты. "Фагос" в переводе с греческого означает "пожирающий". Клетки-фагоциты находятся повсюду: в крови, в стенках кровеносных сосудов, в легких, в печени, в подкожной соединительной ткани. В любом уголке тела, как и полагается, пребывают в состоянии готовности номер один защищающие нас войска — фагоциты. Они различны по размерам и форме; одни из них подвижны и могут передвигаться в жидкостях и тканях, проходить сквозь стенки сосудов, как сказочные джинны; другие прикреплены к одному месту, воюют насмерть. Величина одних — 5-8 микрон, других — 15-20. Всех их объединяет общее свойство, они фагоцитируют: пожирают, захватывая и переваривая инородные частицы и, что самое главное, бактерий.

Итак, фагоциты делятся на две большие группы — свободные и фиксированные, то есть на блуждающие и стоящие на одном месте. К свободным относятся белые кровяные шарики — лейкоциты и некоторые клетки соединительной ткани, устремляющиеся при тревоге по направлению к чужеродному раздражителю. Эти соединительно-тканные клетки получили название "макрофаги", что значит "большие фагоциты".

Однако не все макрофаги способны блуждать. Во всех органах есть неподвижные, фиксированные фагоциты. Особенно много их в селезенке, печени, лимфатических узлах, костном мозге, в стенках сосудов. Клетки первой группы сами нападают на проникшего врага. Вторые ждут, когда враг проплывет мимо в токе крови или лимфы. Они стоят в засаде, как богатырская застава на пути "идолища поганого".

И стоят они на дорогах, которые не может миновать все, попадающее в кровь. Введите в кровь животному несколько десятков или сотен миллионов микробных тел, через несколько часов там не окажется ни одного. Все они будут захвачены фагоцитами печени, селезенки и других органов. Если ввести бактерии под кожу, можно наблюдать, как огромное число лейкоцитов крови и подвижных макрофагов из соседних тканей двинется к очагу инфекции, окружит его и вступит в борьбу. Аналогия с войсками довольно полная. Но важно, что иммунные войска ведут войну только оборонительного характера, только на своей территории.

В иммунологическом войске есть особые клетки — плазматические. Они-то и являются главной фабрикой оружия — фабрикой антител. Их немного. Но когда микробы попадают в кровь и ткани организма, их число быстро растет. Возникают плазматические клетки из своих предшественников, лимфоцитов, которым будут посвящены десятки страниц этой книги.

Антитела обладают удивительным свойством соединяться с тем микробом, в ответ на который были созданы, и ни с каким другим. Если заразить кролика возбудителем человеческой холеры, животное не погибнет, для него этот микроб не смертелен. Через несколько дней в крови у кролика появятся молекулы сывороточного белка, способные соединяться с холерным вибрионом. Это антитела.

Соединение антител с микробом можно увидеть. Взять у кроликов кровь и, когда она свернется, отсосать пипеткой сыворотку. Добавить к ней возбудителей холеры. Антитела присоединятся к вибрионам и склеют их. Хлопья склеенных микробов осядут на дно пробирки, а потом растворятся под влиянием присоединившихся к ним антител. Все это можно увидеть и невооруженным глазом: мутная ранее микробная взвесь становится прозрачной. Каких бы других микробов мы ни взяли, антитела на них действовать не будут. Микробы не склеются и не растворятся.

Если кролику в кровь, под кожу или внутримышечно, ввести токсин дифтерийной палочки, в сыворотке появятся дифтерийные антитоксины. Добавление такой сыворотки к токсину возбудителя дифтерии уничтожит его ядовитые свойства. Это подействуют появившиеся в крови кролика антитела против дифтерийного токсина. И только против дифтерийного. В этом специфика иммунитета. Против каждого агрессора — свое оружие.

В крови каждого животного и человека "плавают" десятки тысяч антител против самых разнообразных чужеродных агентов, которые проникали или собираются проникнуть в организм. Около одного процента массы крови приходится на антитела. Это значит 1020 белковых молекул! 1020 единиц оружия. Цифра астрономическая.

Устройство главного оружия

Расшифровать устройство молекулы антител удалось благодаря работам двух исследователей — Роднея Портера в Оксфорде и Джеральда Эдельмана в Нью-Йорке. Первые результаты были опубликованы в 1959 году. К 1965 году в общих чертах структура молекулы была расшифрована. К 1970 иммунологи знали не только план строения, но и последовательность укладки "кирпичей" (аминокислот, из которых построена любая белковая молекула). В 1972 году Портер и Эдельман были удостоены Нобелевской премии.

Примерный ход событий таков. В 1958 году Портер выделил из крови белок антител. Этот белок носит название иммуноглобулина. Исследователь обработал чистый иммуноглобулин папаином. Этот растительный фермент разрушает белки. Он способен "разрезать" белковые молекулы поперек.

В это же самое время на другом берегу Атлантического океана, как говорят в науке, "одновременно и независимо" Эдельман обработал выделенные из крови молекулы иммуноглобулинов 6-меркаптоэтанолом. Этот химический реагент обладает способностью "разрезать" молекулы белков вдоль. (Папаин пилит белковые стволы на дрова, а 6-меркаптоэтанол на доски.)

Здесь следует немного отвлечься от антител, чтобы вспомнить, как устроены белки, что лежит в их основе.

Основой строения всех белков служат пептидные цепи. Белок может быть составлен из нескольких цепей, расположенных последовательно или параллельно друг другу. Каждая цепь, как из звеньев, образована из аминокислот. Вот, например, кусочек пептидной цепи инсулина — одного из хорошо изученных белков, при недостатке которого развивается тяжелая болезнь диабет: цистеин — аланин — серии — валин — цистеин. Полипептидные цепи, составленные из разных сочетаний 20 аминокислот, образуют все многообразие белков на нашей планете.

Аминокислоты соединены в цепи пептидов через атомы углерода и азота. Эти связи носят название пептидных. Именно их разрывает папаин. Конечно, не все сразу. В первую очередь в наиболее доступных участках белковой молекулы.

Если пептидные цепи, составляющие молекулу белка, расположены в виде двух нитей параллельно друг другу, то они соединяются между собой через два атома серы. Эти связи называются дисульфидными. Их разрушает 6-меркаптоэтанол. В результате этого белковая молекула, если она составлена из параллельных пептидных цепей, разрезается вдоль.

Итак, Портер рассек молекулу антитела поперек, а Эдельман вдоль.

Молекулярный вес целой молекулы был чуть больше 150 тысяч. После поперечного "разрезания" возникли три фрагмента с молекулярным весом около 50 тысяч каждый. Портер получил три фрагмента примерно равной величины. Он обозначил их I, II и III. Величина их была почти равна, но свойства...

Фрагменты I и II оказались тождественными друг другу. Каждый из них обладал главным качеством антитела — мог соединяться с антигеном, с той чужеродной субстанцией, против которой направлено данное антитело. Фрагмент III этим качеством не обладал.

Эдельман получил 4 фрагмента, вернее, 4 цепи, так как он разделил белковую молекулу на пептидные цепи. Две цепи, тождественные между собой, имели молекулярный вес примерно 25 тысяч. Он их назвал L-цепи (от слова light — легкий). Две другие, тоже тождественные между собой, имели вес 50 тысяч. Он их назвал Н-цепи (от слова heavy — тяжелый). Ни одна из этих цепей основным качеством антитела — способностью связывать антиген — не обладала. Однако если воссоединить L-цепь и Н-цепь, то у образовавшейся структуры, представляющей половину молекулы, это качество восстанавливалось.

Вот так перед исследователями возникла задачка на сообразительность.

Дано: если разрезать молекулу поперек, возникает 3 части. Обозначим молекулярный вес в тысячах внизу символа, а антительную активность звездочкой вверху символа. Получим формулу строения антитела: AT150* = I50* + II50* + III50.

Если разрезать вдоль, возникают 4 части со своей формулой:

AT150* = 2L25 + 2H50 = (L25 + H50)* + (L25 + H50)*.

Требуется: определить пространственную структуру расположения пептидных цепей в молекуле и локализацию активных центров, то есть участков, определяющих главное качество — способность соединиться с антигеном.

Еще упрощаем задачу: из двух длинных и двух коротких цепочек сложить фигуру, которая бы при поперечном разрезе давала три равновеликих фрагмента. Два из них несут специфические антиген-связывающие участки, составленные из длинной и короткой цепей.

Получится конструкция, похожая на заглавную букву "игрек" латинского шрифта Υ, что-то вроде нашей мальчишеской рогатки. Места, к которой привязывается резинка, и есть активные центры. Две стороны рогатины и есть портеровские фрагменты I и II. Рукоятка — фрагмент III. Папаин рассекает конструкцию на три фрагмента как раз в месте разветвления.

Две длинные цепи, располагаясь рядом друг с другом, формируют рукоятку, а в месте разветвления образуют внутренние стороны рогатины. Короткие цепи примыкают к длинным после развилки, формируя наружные стороны рогатины. Концы ее, состоящие из окончаний обоих типов цепей, определяют специфичность молекулы. В итоге каждое антитело имеет два активных центра. Как двумя руками связывает оно чужеродные антигенные частицы, делая их неактивными, нерастворимыми, неспособными оказывать вредное организму действие.

Такая конструкция построена не только на основе логических рассуждений. Она подтверждена специальными физико-химическими методами. Наконец ее увидели в электронном микроскопе. Молекула антитела действительно выглядит так: Υ.

Некоторые молекулы антител соединяются своими "рукоятками" по две. Тогда они называются димерами. Они имеют, таким образом, сразу четыре активных центра для связывания антигена. Так ведут себя иммуноглобулины класса А. Другие молекулы объединяются по пять (пентамеры), образуя картину звезды с десятью активными центрами, смотрящими наружу. Это иммуноглобулины класса М. Но большинство антител относятся к обычному, мономерному типу. Их называют иммуноглобулинами класса Г.

К 1970 году структура антител была понята не только в общих чертах. Было выяснено, сколько аминокислот в каждой из четырех пептидных цепей.

Легкие цепи человеческих иммуноглобулинов оказались составленными из 214 аминокислот каждая, а тяжелые из 428. Молекула антитела наиболее распространенного класса Г сложена из 1284 аминокислот. Но не все они формируют каждый из двух активных центров молекулы. Специфические участки, которыми молекула распознает чуждый антиген и связывает его, образованы не более чем десятками аминокислот. Однако, чтобы построить их пространственно правильно, работают по 107 первых аминокислот каждой из 4 цепей. Они расположены на ее концах. Эти участки цепей называются вариабельными, потому что аминокислотная последовательность здесь в разных молекулах варьирует. Для каждого антитела характерна своя последовательность. Именно этими участками молекула узнает чужеродное вещество, прочно соединяется с ним и не дает возможности причинить вред организму.

Устройство главного оружия


Специализированный род войск — лимфоциты

В 1948 году шведская исследовательница Астрид Фагреус предположила, что антитела вырабатываются плазматическими клетками, которые названы так за то, что содержат много протоплазмы. В 1956 году американский иммунолог Альберт Куне доказал предположение Фагреус. Но откуда берутся плазматические клетки, в то время еще не знали.

Были самые различные мнения. Предполагалось, что макрофаг, поглотивший микроб или иную чужеродную субстанцию, превращается в продуцента антител — в плазматическую клетку. Если бы это подтвердилось, макрофаги получили бы титул главнейшей клетки иммунной системы: и пожиратель врагов, и кузница оружия. Но это не подтвердилось. И вскоре был открыт главный специализированный род клеточных войск — лимфоциты. Это они способны расшифровать детали чужеродных субстанций и, превратившись в плазматические клетки, начать интенсивный синтез антител. Они умеют делать еще многое другое.

Если не учитывать эритроциты, которые переносят кислород, то все остальные клетки крови имеют белый цвет. Их называют лейкоцитами, то есть белыми клетками. Из них 30 процентов относятся к лимфоцитам. Лимфоцит в переводе на русский язык означает "клетка лимфы".

Во всех тканях нашего тела, помимо крови, циркулирует лимфа. По лимфатическим сосудам она поступает в лимфатические узлы, а оттуда собирается в один большой сосуд — грудной проток, который впадает в кровяное русло около самого сердца. В лимфе нет эритроцитов. Только лимфоциты.

Триста лет назад знаменитый голландец Антони Левенгук сконструировал микроскоп. Первыми объектами его наблюдений были капля дождевой воды и капля крови. Он открыл красные кровяные шарики — эритроциты, которые составляют основную массу клеток крови. Не прошло и сотни лет, как были обнаружены белые клетки крови. Их почти в тысячу раз меньше, чем эритроцитов, но все равно очень много. В грамме крови содержится 4-5 миллиардов эритроцитов и 6-8 миллионов лейкоцитов.

Лейкоциты делятся на две основные группы. Клетки первой группы, собственно лейкоциты, составляют около 2/3 и характеризуются тем, что имеют не круглые, а сегментированные ядра. У клеток второй группы, они получили название лимфоцитов, абсолютно круглые ядра, которые занимают большую часть клетки.

В конце прошлого столетия Мечников обнаружил, что лейкоциты защищают организм, пожирая чужеродные частицы. В отличие от больших тканевых фагоцитов — макрофагов он назвал их малыми фагоцитами-микрофагами. А вот чем занимаются лимфоциты, стало известно всего 15 лет назад.

Как легко мы перелистываем историю! Триста лет назад открыты первые клетки крови — красные, двести лет назад — лейкоциты, сто лет назад — лимфоциты. Упорный труд, поиски, изобретательность, споры, десять поколений исследователей! А у нас полстраницы печатного текста.

В каждом грамме крови два миллиона лимфоцитов. Чем они заняты? Этот вопрос задавали себе сотни исследователей. Профессор Джеймс Гоуэнс из Оксфорда, сделавший больше всех других, чтобы обнаружить функции этих клеток, приводит слова известного патолога Арнольда Рича: "Лимфоциты — это флегматичные наблюдатели бурной активности фагоцитов". Таким было одно из распространенных воззрений. Действительно, очень маленькие клетки, 6-8 микрон в диаметре, чуть больше собственного ядра (почти одно ядро!), которые не обладают активной подвижностью, но почти всегда скапливаются вокруг воспалительного очага, где работают фагоциты, пожирая все инородное или отмирающее.

Было и другое мнение. Лимфоцитам приписывали функцию питания других клеток. Их даже называли трофоцитами, питающими клетками.

Многие считали, что из лимфоцитов возникают всевозможные другие клетки — соединительно-тканные, печеночные, легочные и т. д. "Старая литература, — пишет Гоуэнс, — наполнена противоречивыми доказательствами того, что малые лимфоциты могут превращаться в эритроциты, гранулоциты, моноциты, фибробласты, плазматические клетки и т. д. Один циник как-то заметил, что все клетки, за исключением клеток нервной системы, в то или иное время рассматривались как производные лимфоцитов!"

Лимфоцит действительно таинственная клетка, коль скоро ему удалось сохранить свою тайну вплоть до 60-х годов XX столетия! В начале 60-х годов появились бесспорные доказательства того, что все специфические реакции иммунитета — выработку антител, отторжение пересаженных тканей или органов, противовирусную защиту — осуществляют лимфоциты.

Разберем это на примере исследований Джеймса Гоуэнса. В те годы у него в Оксфордском университете была малюсенькая лаборатория. В одной из комнаток со старинными полупрозрачными окнами в центре на столе стоял сконструированный им самим станок. Главная часть станка — цилиндр из плексигласа. В цилиндре хитроумно закреплена крыса. На шее у крысы разрез. Через разрез внутрь тела уходит тоненькая прозрачная трубочка. Из трубочки все время капают маленькие белые капли.

Доктор Гоуэнс ввел трубку в главный лимфатический сосуд — в грудной проток и "выкачивает" лимфу. Он оставляет крысу без лимфоцитов. После этого он иммунизирует ее чужеродными клетками — эритроцитами барана. Должны выработаться антитела против бараньих эритроцитов. Он исследует кровь крысы раз, другой, третий... Антител нет! Тогда он берет другую "безлимфоцитную" крысу и возвращает ей в кровь ее лимфоциты. Иммунизирует и обнаруживает нормальное количество антител.

Значит, без лимфоцитов антитела вырабатываться не могут.

Второе исследование. Гоуэнс облучает крысу рентгеновскими лучами. Многие системы страдают после облучения, иммунная система тоже. Животное не вырабатывает антител. Облученной крысе вводят эритроциты барана, антител нет. Другой облученной крысе эритроциты барана вводят вместе с лимфоцитами от здоровой крысы, антитела есть.

Значит, с лимфоцитами можно передать в другой организм способность вырабатывать антитела. С лимфоцитами переносится и память об антигене. Если эти клетки взять от животного, которого уже иммунизировали эритроцитами барана, то в облученном животном они обеспечат выработку большего количества антител. Так, как если бы его иммунизировали повторно.

Третье исследование касается механизма отторжения пересаженных чужеродных тканей. К началу 60-х годов было хорошо известно, что первая пересадка кожи иммунизирует организм и повторный лоскут отторгается вдвое быстрее первого. Но почему? Думали, что это работа антител. Однако сыворотка крови от такого животного, содержащая антитела, если ее ввести другому животному, не ускоряет отторжения пересаженной кожи. А вот лимфоциты ускоряют. Причем точно в два раза.

Значит, это лимфоциты занимаются отторжением пересаженных чужеродных тканей! Без помощи антител.

Лимфоциты, которые после первого контакта с чужеродным антигеном специально нацелены против него, стали называть сенсибилизированными лимфоцитами. Они да антитела — вот два главных типа специализированного оружия иммунитета.

Лимфоциты-убийцы

Роберт Кох, немецкий бактериолог, один из преуспевших "охотников за микробами", в 1882 году открыл возбудителя туберкулеза. До сих пор эту бациллу называют палочкой Коха.

Конечно же, он попытался найти способ лечения туберкулеза. Двигаясь по стопам великого Пастера, Кох длительно культивировал открытую им палочку в питательном бульоне. Через 6-8 недель, когда культура состарилась, он профильтровал ее через фильтр, не пропускающий микроорганизмов. Получилась прозрачная жидкость, которую Кох назвал туберкулином.

Если туберкулин ввести подкожно здоровому человеку, то, кроме легкого временного покраснения, ничего не произойдет. Но если то же самое сделать больному туберкулезом, через 6 часов краснота начнет нарастать, через сутки возникнет уплотнение, через двое оно увеличится, и дело может дойти до изъязвления. Ни на что другое человек, зараженный туберкулезом, так не реагирует. Только на туберкулин.

Кому в детстве не ставили реакцию Пирке, чтобы определить, нет ли у вас туберкулезной инфекции? Это и есть кожная проба с туберкулином. Только венский профессор Клеменс Пирке в 1907 году заметил, что туберкулин необязательно вводить шприцем в кожу, а можно втереть в маленькую царапину. Это совсем не больно.

Реакция строго специфическая, как и все в иммунологии. Ее назвали реакцией повышенной чувствительности замедленного типа. Она не связана с антителами. Антител против туберкулина вообще не образуется.

Почти 70 лет не могли объяснить природу туберкулиновой реакции. Знали только, что в место введения фильтрата туберкулезных палочек устремляются лимфоциты. Это они формируют воспаление. За их счет возникает уплотнение. Они как бы не дают туберкулину распространиться по всему организму. Но так ведут себя только лимфоциты от человека или животного, зараженного туберкулезом, то есть уже проконтактировавшего с чужеродными антигенами этого микроба, уже включившего свою иммунную систему для специфического сопротивления.

В 60-х годах нашего столетия разобрались в сути туберкулиновой и других подобных ей реакций. Аналогичные пробы ставят при бруцеллезе (реакция на бруцеллин). Такие же пробы оказались положительными и при пересадке чужеродных органов и тканей. Оказалось, если человек А отторг первый трансплантат, например, кусочек кожи, взятый от человека Б, то у него появляется положительная реакция повышенной чувствительности замедленного (туберкулинового) типа. Только не на туберкулин или бруцеллин, а на фильтрат из кожи человека Б. Именно Б! Ни В, ни Г, а только Б.

Такова специфичность иммунного ответа.

А дальше следует вспомнить один из описанных выше экспериментов доктора Гоуэнса в Оксфорде. Реакции повышенной чувствительности замедленного типа можно перенести в другой организм, если ввести ему лимфоциты от первого. Лимфоцит не только зачинатель этого типа реагирования, но и эффектор (исполнитель).

На поверхности эффекторных лимфоцитов выявлены специфические рецепторы, которые, подобно антителам, обнаруживают чужеродный антиген и соединяются с ним. Таким образом, лимфоцит как бы впивается в чужеродный объект — в микроб, пересаженную или в раковую клетку. В отличие от антител он не только удерживает и связывает ее. Он выделяет, ферменты, которые растворяют ее. Если нужно, на чуждую клетку "набрасываются" несколько — пятьдесят, сто лимфоцитов. Если необходимо, они гибнут, чтобы выделилось как можно больше смертоносных для врага ферментов, но уничтожают и его.

Рецепторы лимфоцитов демонстрируют великую мудрость природы в умении использовать единый план строения для разных объектов. Эти рецепторы — подобия иммуноглобулинов. Как бы особые иммуноглобулины. Их нередко называют Т-иммуноглобулинами. Они очень тесно связаны с другими структурами на поверхности клетки, но вместе с тем это уже знакомые нам "рогатки", которые как бы воткнуты своими рукоятками в поверхность лимфоцита. Только это не приплывшие с кровью антитела. Нет, к гуморальному иммунному ответу они не имеют отношения. Рецепторы вырабатываются самими лимфоцитами. Они — часть их тела. Часть тела специализированных клеток, которые служат эффекторами, исполнителями второго — клеточного — типа иммунного ответа.

Поскольку лимфоциты, вооруженные рецепторами против тех или иных чужеродных клеток, способны убивать эти клетки, их назвали лимфоцитами-киллерами. Killer по-английски значит убийца. Лимфоцит — убийца. Это тяжело звучит по-русски. И в научных статьях почти никогда этот термин не переводят. Пишут, не меняя термина: "Доказано, что иммунный ответ клеточного типа характеризуется накоплением лимфоцитов-киллеров" или "исследовали происхождение лимфоцитов-киллеров".

Загрузка...