Глава 21 Топология искривленных поверхностей

Если бы другие размышляли над математическими истинами так глубоко и постоянно, как это делаю я, они пришли бы к моим открытиям.

Карл Фридрих Гаусс188


Один из самых фундаментальных вопросов в геометрии плоских кривых — кривизна. Кривизна в точке x — это число k, измеряющее «крутизну» поворота в этой точке, т. е. скорость изменения направления касательного вектора. Пусть в точке x построен нормальный вектор n к кривой; если кривая изгибается в направлении n, то k > 0, если в направлении, противоположном n, то k < 0, в противном случае к = 0 (см. рис. 21.1). Чем круче изгибается кривая, тем больше (по абсолютной величине k).

Рис. 21.1. Кривые c k > 0, k < 0, k = 0 и k = 0 (слева направо)


По теореме Жордана, у простой замкнутой кривой на плоскости есть внутренность и внешность. Поэтому можно выбрать нормальные векторы во всех точках кривой, так что все они будут указывать внутрь. После этого мы сможем вычислить кривизну в каждой точке кривой. Обычно кривизна изменяется от точки к точке (см. рис. 21.2). Просуммировав кривизну по всем точкам кривой, мы получим полную кривизну. Детали этого вычисления выходят за рамки книги, но любой студент, изучавший математический анализ, сразу поймет, что, коль скоро кривизна изменяется непрерывно, сумма, о которой идет речь, — не что иное, как интеграл кривизны. Имеет место следующая теорема[12].


Теорема о полной кривизне кривой
Полная кривизна любой простой замкнутой гладкой плоской кривой равна 2π.

Рис. 21.2. Кривая с областями положительной, отрицательной и нулевой кривизны; нормальные векторы указывают внутрь


Иными словами, полная кривизна всех простых замкнутых гладких кривых одинакова! Если бросить на стол веревочную петлю, так чтобы она не пересекала самое себя, то области отрицательной и положительной кривизны компенсируют друг друга, так что полная кривизна будет равна 2π. То есть факт гомеоморфности окружности однозначно определяет полную кривизну. Снова мы видим, как топология управляет геометрией.

Мы не станем доказывать эту теорему, но она тесно связана с теоремой о вращающихся касательных из предыдущей главы. И снова студент, знакомый с математическим анализом, заметит, что, поскольку мы суммируем скорость изменения вращающихся касательных, полная кривизна просто равна полному изменению угла касательного вектора, т. е. 2π.

Можно рассматривать эту теорему как еще одно обобщение теоремы о сумме внешних углов многоугольника. Вдоль сторон многоугольника кривизна равна нулю, а вся его кривизна сосредоточена в вершинах и принимает вид внешних углов. Полная кривизна равна 2π.

Теперь перейдем от кривых к поверхностям. Поскольку мы изучаем геометрические свойства поверхностей, то должны считать их жесткими, а не сделанными из резины, как в топологии. Будем также предполагать, что поверхности гладкие, не имеют резких складок и углов.

Как и для кривых на плоскости, мы исследуем кривизну поверхностей в трехмерном пространстве. Снова выберем вектор n, нормальный к поверхности в точке x. Затем рассмотрим плоскость, проходящую через x и параллельную n. Пересечением этой плоскости с поверхностью является некоторая кривая, кривизну которой можно вычислить. Обычно кривизна кривых для разных плоскостей различается. Наименьшее и наибольшее значения k1 и k2 называются главными кривизнами поверхности в точке x (см. рис. 21.3). В 1760 году Эйлер доказал, что главным кривизнам соответствуют перпендикулярные плоскости189.

Рис. 21.3. Поверхности, для которых k1, k2 < 0 (слева), k1 > 0, k2 < 0 (в центре) и k1 = 0, k2 > 0 (справа)


Именно таким способом геометры измеряли кривизну поверхностей, пока Гаусс не внес простую, но критически важную модификацию. Он перемножил главные кривизны и получил единственное значение кривизны, которое теперь называется гауссовой кривизной: k = k1k2. Эта, на первый взгляд, тривиальная операция, которая дает величину, содержащую меньше информации, чем две главные кривизны по отдельности, помогла математикам лучше понять природу кривизны поверхностей.

Как ни странно, большинство великих математиков в детстве не были вундеркиндами; их гений созревал постепенно и проявлялся на более поздних этапах жизни. Но математические способности Гаусса были очевидны уже в юном возрасте. Он родился в 1777 году в немецком герцогстве Брауншвейг. В три года Гаусс поразил своего отца Герхарда, указав ошибку в арифметических вычислениях в бухгалтерских книгах. Позже Гаусс по субботам сиживал на высоком стуле и помогал отцу.

В молодости Гаусс любил рассказывать, как в семилетнем возрасте он шокировал тупого и заносчивого школьного учителя. Учитель дал классу задание: вычислить сумму арифметической прогрессии (пусть это будет190 1 + 2 + 3 +. + 100). Гаусс почти сразу написал на своей грифельной доске число 5050, положил ее на стол скептически настроенного учителя и заявил «ligget se» (вот она). Вместо того чтобы выполнять утомительное суммирование, Гаусс заметил, что если сложить первое число с последним, второе с предпоследним и т. д., то каждая сумма будет равна 101 (1 + 100, 2 + 99, 3 + 98…). Поскольку таких пар пятьдесят, то сумма должна быть равна 50 101 = 5050.

Рис. 21.4. Карл Фридрих Гаусс


Этот случай в классе положил начало цепочке событий, которая в 1791 году привлекла к Гауссу внимание герцога брауншвейгского Карла Вильгельма Фердинанда. Герцог был очарован четырнадцатилетним юношей и пообещал оплатить его обучение. Щедрый герцог заплатил за обучение Гаусса в колледже Каролинум и в Гёттингенском университете, а затем продолжал выплачивать ему жалованье до самой своей смерти от рук наполеоновской армии в 1807 году.

Предчувствие не обмануло герцога. Свой первый важный результат, доказательство закона взаимности квадратичных вычетов, он получил, когда ему было девятнадцать лет. Эта теорема, которую он называл theorema aureum (золотая теорема), ускользнула от внимания и Эйлера, и Лагранжа.

В качестве своей личной печати Гаусс выбрал дерево с несколькими плодами и словами pauca sed matura (немного, но зрелые). Этот девиз действительно сопровождал Гаусса на протяжении всей карьеры. В отличие от плодовитого Эйлера, Гаусс не спешил публиковать свои работы. Он никогда не отдавал в печать тривиальных результатов, настаивая на том, что каждая публикация должна быть шедевром. Он говорил: «Вы знаете, что я пишу медленно. Это в основном потому, что я не бываю удовлетворен, пока не выскажу как можно больше в немногих словах, а писать быстро отнимает гораздо больше времени, чем писать со всеми деталями»191. Гаусс оставил свой след во многих науках: астрономии, геодезии, теории поверхностей, конформных отображениях, математической физике, теории чисел, теории вероятностей, топологии, дифференциальной геометрии и комплексном анализе.

Из-за стремления к совершенству Гаусс не опубликовал много блестящих результатов. Его математический дневник (Notizenjournal), обнаруженный через сорок три года после смерти, — кладезь математических идей. Если бы Гаусс опубликовал только часть этих результатов и ничего больше, то и тогда его запомнили бы как влиятельного математика. Печально сознавать, что математики годами трудились, только чтобы заново открыть идеи, уже известные Гауссу. Интересно, как далеко продвинулась бы математика XIX века, если бы Гаусс с большей охотой обнародовал свои результаты.

После смерти герцога Гаусс был вынужден занять пост директора Гёттингенской обсерватории. Значительную часть последних двадцати лет жизни он потратил на занятия астрономией в обсерватории. Он дожил до 78 лет и мирно упокоился 23 февраля 1855 года.

Применяя подход Гаусса к измерению кривизны одной величиной k = k1k2, мы можем сказать, что кривизна в точке положительна, отрицательна или равна нулю. Возвращаясь к рис. 21.3, мы видим, что если обе кривые, как края миски, загибаются в сторону нормального вектора (или в направлении от него), то знаки k1 и k2 одинаковы, и мы имеем положительную кривизну. С другой стороны, если, подобно седлу, одна кривая загибается в направлении нормального вектора, а другая — в направлении от него, то знаки k1 и k2 противоположны, и кривизна отрицательна. Если одна или обе главные кривизны равны нулю, как в случае цилиндра или плоскости, то кривизна нулевая.

Важно подчеркнуть, что кривизна измеряется в одной точке. На типичной поверхности имеются области положительной, отрицательной и нулевой кривизны. Например, тор на рис. 21.5 имеет положительную кривизну в области, наиболее удаленной от центра, отрицательную — в области, ближайшей к центру, и нулевую — на границе этих областей. Существуют поверхности постоянной кривизны. Сфера (не топологическая, а настоящая) имеет постоянную положительную кривизну, а плоскость и цилиндр — нулевую кривизну. Самый известный пример поверхности постоянной отрицательной кривизны — поверхность в форме слуховой трубки, называемая псевдосферой, — не потому, что она похожа на сферу, а потому, что имеет постоянную кривизну.

Гауссова кривизна, площадь и угловой избыток тесно связаны между собой, и именно эту связь мы должны понять. Мы уже видели, что кривизна и угловой избыток связаны. На рис. 20.9 показан геодезический треугольник на сфере — с угловым избытком и на седле — с угловым недостатком. Чем менее искривлена поверхность, тем больше она напоминает плоскость и тем больше треугольник на поверхности похож на плоский треугольник. При положительной кривизне имеет место угловой избыток, а при отрицательной — угловой недостаток.

Рис. 21.5. Поверхность (тор) переменной кривизны: положительной, отрицательной и нулевой. У других поверхностей постоянная положительная кривизна (сфера), нулевая кривизна (цилиндр) и постоянная отрицательная кривизна (псевдосфера)


Также должно быть понятно, что размер имеет значение. На очень маленькие треугольники кривизна поверхности почти не влияет (представьте себе два равносторонних треугольника на земле, один с длиной стороны 1000 км, а другой — 1 см). Если увеличивать масштаб поверхности, то она будет казаться все более и более плоской. Чем меньше треугольник, тем ближе его угловой избыток к нулю.

Приведем еще одну иллюстрацию связи между кривизной и площадью. Возьмем участок поверхности с положительной кривизной, например кусочек луковичной шелухи или капустного листа. Попытавшись ровно разложить его на столе, мы обнаружим, что в середине слишком много материала. К сожалению, внешний край луковичной шелухи порвется, если попытаться ее разгладить. Именно поэтому на обычной (меркаторской) проекции Земли кажется, будто Гренландия размером с континентальную часть США, хотя на самом деле на территории нижних сорока восьми штатов легко уместились бы три таких острова, как Гренландия. Для поверхностей отрицательной кривизны мы сталкиваемся с прямо противоположной проблемой. Если бы мы отрезали кусочек седловидной поверхности, то при попытке расправить его на столе оказалось бы слишком много материала по краям. Внутренняя часть диска пошла бы морщинами.

Изучив связь между кривизной, площадью и угловым избытком, мы сможем получить другое определение гауссовой кривизны. Рассмотрим геодезический треугольник △, содержащий точку x, с внутренними углами a, b, c. Угловой избыток этого треугольника, E(△) = a + b + c — π, является хорошей мерой кривизны в точке x. Проблема в том, что, как мы уже отметили, при уменьшении треугольника величина E(△) стремится к нулю. Поэтому нужно масштабировать угловой избыток на площадь. Вместо того чтобы работать с E(△), мы будем использовать величину E(△)/A(△), где A(△) — площадь треугольника △. Оказывается, что если уменьшать △, устремив его к х, то величина E(△)/A(△) будет стремиться к гауссовой кривизне в точке x.

В такой формулировке гауссову кривизну особенно легко вычислить для поверхностей постоянной кривизны. Поскольку кривизна постоянна, то она равна просто E(△)/A(△), где △ — произвольный геодезический треугольник (необязательно сжимать треугольник в точку). Например, пусть △ — октант сферы радиуса r. В таком треугольнике три прямых угла, поэтому угловой избыток равен E(△) = 3(π/2) — π = π/2, а площадь A(△) = (1/8)4πr2 = πr2/2. Следовательно, в каждой точке сферы гауссова кривизна равна (π/2)/(πr2/2) = 1/r2, и, значит, при увеличении радиуса сферы ее кривизна уменьшается. Кривизну бильярдного шара увидеть легко, но о кривизне Земли этого не скажешь.

Из такого определения гауссовой кривизны можно сделать еще один вывод. Рассмотрим лист бумаги, лежащий на столе. Очевидно, что его гауссова кривизна равна нулю. Если свернуть его в цилиндр, то геометрия изменится, но гауссова кривизна по-прежнему будет равна нулю. Как ни старайся, превратить лист бумаги в сферу положительной кривизны или седло отрицательной кривизны не получится. При любой деформации листа бумаги его кривизна останется нулевой. На техническом жаргоне эту мысль можно выразить, сказав, что мы можем изменять внешнюю кривизну листа, но никогда не сумеем изменить его внутреннюю кривизну.

Две главные кривизны k1 и k2 измеряют внешнюю кривизну поверхности — они зависят от того, как поверхность располагается в трехмерном пространстве. Для плоского листа бумаги k1 = k2 = 0, но для цилиндра одна из этих величин ненулевая. Главные кривизны являются внешними, потому что обитатели поверхности никогда не смогли бы вычислить их, производя вычисления только на поверхности. Они должны выйти за пределы поверхности и посмотреть, как она расположена в окружающем пространстве. Поскольку гауссова кривизна является произведением главных кривизн, k = k1k2, она также служит мерой внешней кривизны.

Однако величины площадей и углов — внутренние свойства поверхности, поскольку могут быть измерены живущими на ней существами. Для вычисления этих величин не нужно фиксировать положение поверхности в пространстве. Площадь и углы треугольника, нарисованного на листе бумаги, не изменятся, когда мы свернем его в цилиндр. Следовательно, поскольку гауссову кривизну можно определить в терминах этих величин, она фактически является мерой внутренней кривизны поверхности!

Именно Гаусс первым открыл, что произведение двух внешних главных кривизн дает меру внутренней кривизны поверхности. Он оценил красоту своего открытия, поэтому назвал его theorema egregium, или «замечательная теорема».

Поскольку гауссова кривизна — внутреннее свойство поверхности, для ее измерения не требуется, чтобы объект был жестко закреплен в пространстве. Однако это и не топологическая мера. Если бы лист бумаги был топологической поверхностью (сделанной из резины), то можно было бы как угодно изменить его кривизну и сильно исказить нарисованный на нем треугольник.

В 1827 году Гаусс доказал важную теорему, в которой развивалась связь между кривизной, площадью и угловым избытком192. Точно так же, как мы вычислили полную кривизну простой замкнутой кривой, Гаусс хотел вычислить полную кривизну области на поверхности. Для поверхности постоянной кривизны все просто. Если гауссова кривизна равна k, то полная кривизна области R равна k · A(R), где A(R) — площадь R. Если область является геодезическим треугольником △, то полная кривизна равна k · A(△) = [E(△)/A(△)]A(△) = E(△), угловому избытку треугольника.

Замечательная теорема Гаусса утверждает, что это верно и для геодезических треугольников на поверхностях непостоянной кривизны[13].


Локальная теорема Гаусса-Бонне
Полная кривизна геодезического треугольника на поверхности равна угловому избытку этого треугольника.

Иными словами, эта теорема говорит, что полная кривизна геодезического треугольника △ равна a + b + c — π, где a, b, c — внутренние углы △.

Вторым человеком, имя которого фигурирует в названии этой теоремы, является французский геометр Пьер Оссиан Бонне (1819–1892). В 1848 году Бонне обобщил теорему Гаусса, доказав ее вариант для областей, стороны которых не являются геодезическими; этот вариант мы здесь приводить не будем193. Таким образом, Гаусс мог вычислить полную кривизну любого геодезического треугольника, а Бонне — полную кривизну любой замкнутой области на поверхности.

Удивительно, что ни Гаусс, ни Бонне не задались, казалось бы, естественным вопросом: какова полная кривизна всей поверхности? Они даже не поинтересовались полной кривизной сферы. Полную кривизну поверхности можно вычислить без всякого труда, объединив локальную теорему Гаусса-Бонне с теоремой об угловом избытке (по техническим причинам необходимо потребовать, чтобы поверхности были ориентируемыми).

Разобьем поверхность на геодезические треугольники. По локальной теореме Гаусса-Бонне, полная кривизна каждого треугольника равна его угловому избытку. Поэтому полная кривизна поверхности S равна полному угловому избытку поверхности, который, как мы знаем, составляет 2πχ(S). Этот результат теперь называется глобальной теоремой Гаусса-Бонне[14].


Глобальная теорема Гаусса-Бонне
Полная кривизна ориентируемой поверхности равна 2πχ(S).

Грубо говоря, глобальная теорема Гаусса-Бонне утверждает, что, растягивая и сжимая поверхность, мы можем изменить ее локальную кривизну, но полная кривизна не изменится. Все новые области положительной кривизны будут компенсированы новыми областями отрицательной кривизны. Роль играет только топология поверхности.

Может показаться странным, что локальная кривизна бильярдного шара отличается от локальной кривизны Земли, ведь форма-то у них одинакова, а различны только размеры. Глобальная теорема Гаусса-Бонне разрешает эти сомнения. Хотя кривизна Земли гораздо меньше кривизны бильярдного шара, ее площадь гораздо больше. А полная кривизна того и другого одинакова. Прибавление большого числа маленьких величин — то же самое, что прибавление одной большой.

Объединив теорему Гаусса-Бонне с теоремой классификации (глава 17) для ориентируемых поверхностей, мы придем к интересным выводам. Например, сфера — единственная замкнутая поверхность с положительной эйлеровой характеристикой. Поэтому любая поверхность положительной полной кривизны должна быть гомеоморфна сфере. Аналогично, если полная кривизна замкнутой поверхности равна нулю, то она должна быть гомеоморфна тору. У любой другой замкнутой ориентируемой поверхности (рода g, где g > 1) полная кривизна должна быть отрицательна.

Хотя и Гаусс, и Бонне прошли мимо этого глобального варианта теоремы, Вильгельм Бляшке (1885–1962) решил назвать его в их честь в учебнике, который написал в 1921 году194. Именно в этой книге появилось доказательство глобальной теоремы, в котором используется локальная теорема. А первое доказательство глобальной теоремы Гаусса-Бонне датируется 1888 годом, когда Дик доказал ее совершенно другим способом195. И снова мы видим, как неожиданно иногда дают имена теоремам.

В этой и предыдущей главах мы видели красивые и неожиданные связи между топологией и геометрией. Мало того что эйлерова характеристика является топологическим инвариантом, она еще и служит соединительным звеном между двумя совсем разными дисциплинами. Это еще одна причина, по которой формула Эйлера является фундаментальным явлением в математике. В следующих двух главах мы увидим, как эйлерова характеристика обобщается на многомерные объекты.


Приложения к главе

188. Bell (1937), 254.


189. Euler (1760).


190. Обсуждение этой истории см. в Hayes (2006).


191. Quoted in Simmons (1992), 177.


192. Gauss (1828); английский перевод и комментарии в Dombrowski (1979).


193. Bonnet (1848).


194. Blaschke (1921).


195. Dyck (1888).


Загрузка...