Каждая живая клетка — это сложная, высокоупорядоченная система. Как показали эксперименты, содержимое клетки находится в состоянии непрерывной активности; различные вещества все время входят в клетку и выходят из нее наружу. Все реакции, протекающие в клетке, можно подразделить на две группы. Анаболические реакции — это реакции синтеза крупных молекул из более мелких и простых; для этих процессов необходима затрата энергии (т.е. это эндергонические процессы):
А + В→АВ [+ΔG]
(где ΔG — изменение свободной энергии для данной реакции).
Катаболические реакции — это реакции распада крупных молекул на более мелкие и простые, обычно с выделением энергии (т.е. это экзергонические процессы):
АВ→А + В [- ΔG].
Иногда образовавшиеся более простые молекулы могут затем вновь использоваться для биосинтеза.
[Примечание. Важно отметить, что не во всякой катаболической реакции высвобождается энергия. Некоторые реакции распада, назначение которых состоит в том, чтобы избавить клетку от нежелательных веществ, являются эндергоническими.]
Совокупность катаболических и анаболических реакций, протекающих в клетке в любой данный момент, составляет ее метаболизм:
Катаболизм + Анаболизм = Метаболизм.
Поступающие в клетку органические вещества служат для нее источником, во-первых, небольших "строительных блоков", используемых для биосинтеза новых клеточных компонентов или замены компонентов, отслуживших свой срок, и, во-вторых, источником химической энергии. Когда в клетке происходит расщепление питательных веществ, обычно высвобождается энергия. Значительную ее часть клетка использует на поддержание своих жизненных процессов. Энергия поступает в различные участки клетки и переходит из одной формы в другую. Каждая форма энергии служит затем для выполнения в клетке определенной работы. Это может быть биосинтез, механическая работа, клеточное деление, активный транспорт, осмос, а в некоторых специализированных клетках — мышечное сокращение, биолюминесценция или электрические разряды (рис. 11.1). Наиболее пригодна для использования в живой клетке химическая энергия, так как она может быстро передаваться из одной части клетки в другую (а также из клетки в клетку) и расходоваться экономно — строго отмеренными порциями, там и тогда, где и когда это необходимо. Первоисточником всей энергии служит Солнце. В живых организмах энергия легко переходит из одной формы в другую, но включиться в пищевые цепи солнечная энергия может лишь после того, как она будет поглощена зелеными растениями (автотрофами) и преобразована их содержащими хлорофилл клетками в процессе фотосинтеза в химическую энергию, заключенную либо в глюкозе (простой сахар), либо в крахмале (полисахарид). Часть этой энергии высвобождается и расходуется растениями для их собственных нужд. Животные вынуждены пользоваться готовым источником энергии (т. е. пищей). Для некоторых (травоядных) животных таким источником энергии служат растения, которыми они питаются; другие (плотоядные) питаются тканями травоядных животных (см. гл. 12).
Рис. 11.1. Обмен энергией между средой и гетеротрофной клеткой. Важно помнить, что при переходе энергии из одной формы в другую часть ее теряется — рассеивается в виде тепла
Дыханием можно назвать практически любой процесс, при котором окисление органических веществ ведет к выделению химической энергии. Когда этот процесс протекает в клетках, его называют внутренним, тканевым или клеточным дыханием. Если для него требуется кислород, то дыхание называют аэробным; если же реакции идут в отсутствие кислорода, то говорят об анаэробном дыхании.
Органические молекулы (по большей части углеводы или жиры) расщепляются последовательно, связь за связью, в ряде ферментативных реакций. В каждой из этих реакций высвобождается небольшое количество энергии, и значительная часть этой энергии запасается в молекулах нуклеотида, который носит название аденозинтрифосфата (АТФ).
Тканевое дыхание не следует путать с процессами поглощения кислорода из окружающей среды и выделения СО2 в среду. В совокупности эти два процесса называются внешним дыханием или (лучше) газообменом. Во внешнем дыхании могут участвовать органы или структуры, снабженные специализированными поверхностями для эффективного газообмена; воздух или вода прогоняются над этими поверхностями с помощью разного рода дыхательных движений (разд. 11.6).
Молекула АТФ состоит из пурина аденина, пятиуглеродного сахара рибозы и трех фосфатных групп (рис. 11.2). При гидролитическом отщеплении двух ее концевых фосфатных групп выход свободной энергии на каждую из них составляет около 30,6 кДж, тогда как отщепление третьей фосфатной группы АТФ дает только 13,8 кДж (табл. 11.1). Именно по этой причине принято говорить, хотя это и неверно, что АТФ и АДФ (аденозиндифосфат) содержат богатые энергией (высокоэнергетические) связи (которые часто обозначают знаком ˜ ). Почему при гидролизе АТФ выделяется больше энергии, чем при гидролизе многих других соединений, не ясно. Полагают, что это как-то зависит от распределения зарядов в его молекуле. Для поддержания целостности такой молекулы требуется больше химической энергии. Энергия, таким образом, заключена не в какой-либо одной связи, а характеризует всю молекулу в целом.
Рис. 11.2. Структура АТФ. Две концевые фосфатные группы присоединены пирофосфатными связями, гидролитическое расщепление которых дает большое количество свободной энергии
Таблица 11.1. Свободная энергия гидролиза некоторых фосфатов
11.1. Из табл. 11.1 видно, что АТФ вовсе не самое "богатое энергией" соединение в клетке. АТФ занимает промежуточное положение. Какой смысл можно в этом усмотреть?
АТФ — стандартная единица, в виде которой запасается высвобождаемая при дыхании энергия. Для синтеза АТФ из АДФ и фосфата требуется 30,6 кДж энергии на 1 моль. Поэтому АТФ может образоваться лишь в таких реакциях, при которых выход энергии составляет более 30,6 кДж/моль. Вся энергия, высвобождающаяся сверх 30,6 кДж/моль, равно как и вся энергия от реакций, дающих менее 30,6 кДж/моль, не может быть запасена в АТФ и рассеивается в виде тепла.
Поскольку вся химическая энергия представлена в одной форме (а именно, в форме АТФ), процессы, идущие с потреблением энергии, нуждаются только в одной системе, способной принимать химическую энергию от АТФ. Этим достигается большая экономия в отношении действующих в клетке механизмов.
АТФ-постоянный источник энергии для клетки. Он мобилен и может доставлять химическую энергию в любую часть клетки. Когда клетка нуждается в энергии, единственное, что требуется для ее получения — это гидролиз АТФ. Поскольку АТФ содержится во всех живых клетках, его часто называют универсальным носителем энергии.
АДФ может быть рефосфорилирован в АТФ в результате дыхательной активности (рис. 11.3) или за счет другого высокоэнергетического соединения, например креатинфосфата, присутствующего в мышечных клетках. Если весь АДФ мышечной клетки превращается в АТФ, то фосфат от АТФ переносится на креатин с образованием креатинфосфата. При этом вновь появляется некоторое количество АДФ, который может, присоединив фосфат, образовать АТФ. При понижении уровня АТФ происходит обратный процесс: фосфат переносится от креатинфосфата на АДФ, и запасы АТФ таким образом восстанавливаются (рис. 11.4).
Рис. 11.3. А. Гидролиз АТФ. Б. Рефосфорилирование АДФ в результате дыхательной активности
Рис. 11.4. Перенос высокоэнергетической фосфатной группы между АТФ и креатином
Третий путь рефосфорилирования АДФ — это фосфорилирование, протекающее в хлорофилл-содержащих клетках зеленых растений (разд. 9.4).
АТФ играет важную метаболическую роль благодаря своему центральному положению в клеточной активности. Он действует как связующее звено между дыханием и процессами, требующими затраты энергии. При этом его высокоэнергетические фосфатные группы непрерывно отщепляются и замещаются новыми.
11.2. Роль АТФ можно сравнить с ролью аккумулятора. Объясните, в чем заключается это сходство.
В клетке происходят трех типов:
1. Прямое окисление молекулярным кислородом:
А + О2 → АО2
2. Реакции, в которых А окисляется за счет В:
АН2 + В → А + ВН2.
11.3. Как называется этот тип окисления?
11.4. Как называются ферменты, катализирующие такие реакции?
3. Реакции, в которых происходит перенос электронов, например окисление одной ионной формы железа (Fe2+) в другую (Fe3+):
Fe2+ → Fe3+ + e-.
Все эти три типа окисления встречаются в последовательности реакций, составляющих вместе процесс, который носит название аэробного дыхания.
Клеточное дыхание — это окисление субстрата, приводящее к получению химической энергии (АТФ). Субстратами для дыхания служат органические соединения — углеводы, жиры и белки.
Углеводы. Большинство клеток использует в первую очередь именно углеводы. Клетки головного мозга млекопитающих вообще не способны использовать для дыхания ничего, кроме глюкозы. Полисахариды вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносахаридов:
Жиры. Жиры составляют "первый резерв" и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Впрочем, в клетках скелетных мышц при наличии глюкозы и жирных кислот предпочтение отдается жирным кислотам.
Белки. Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров, например при длительном голодании.
Окисление глюкозы — в тех случаях, когда субстратом служит глюкоза, — подразделяется на три четко различимые фазы: гликолиз (путь Эмбдена — Мейергофа), окислительное декарбоксилирование (цикл Кребса, иначе называемый циклом лимонной кислоты или циклом трикарбоновых кислот) и окислительное фосфорилирование (дыхательная цепь, где происходит перенос водорода и электронов). Гликолиз — фаза, общая для анаэробного и аэробного дыхания, но две другие фазы можно наблюдать только в аэробных условиях. Подробно все эти процессы мы рассмотрим немного позднее, а здесь скажем о них лишь несколько слов.
При аэробном дыхании окисление глюкозы происходит путем последовательных реакций дегидрирования. При каждом дегидрировании отщепляемый водород используется для восстановления кофермента:
Большая часть этих реакций происходит в митохондриях, где акцептором водорода служит обычно кофермент НАД (никотинамидадениндинуклеотид):
НАД + 2Н → НАД ⋅ Н2,
или, в более точной записи,
НАД+ + 2Н → НАД ⋅ Н + Н+.
НАД⋅Н2 поступает затем в дыхательную цепь и здесь снова подвергается окислению.
В дыхательной цепи НАД ⋅ Н2 вновь окисляется до НАД, а отщепившийся от него водород передается не менее чем через пять переносчиков к концу цепи, где соединяется с молекулярным кислородом, образуя воду. Переход водорода по этой дыхательной цепи состоит из ряда окислительно-восстановительных реакций. В некоторых из этих реакций выделяется достаточно энергии для образования АТФ, и такой процесс носит название окислительного фосфорилирования. Чистый выход на одну молекулу глюкозы при полном ее окислении до воды и СО2 составляет 38 молекул АТФ, синтезированного из АДФ и неорганического фосфата. При этом две молекулы АТФ дает гликолиз, две — цикл Кребса и 34-дыхательная цепь (рис. 11.5).
Рис. 11.5. Схема аэробного дыхания
Гликолизом называют последовательность реакций, в результате которых одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты (рис. 11.6). Эти реакции протекают не в митохондриях, а в цитоплазме, и для них не требуется присутствия кислорода. Процесс можно подразделить на два этапа: на первом из них происходит превращение глюкозы в фруктозо- 1,6,-бисфосфат, а на втором — расщепление фруктозо-1,6-бисфосфата на два трехуглеродных сахара, которые позже превращаются в пировиноградную кислоту. При этом на первом этапе две молекулы АТФ потребляются в реакциях фосфорилирования, а на втором — четыре молекулы АТФ образуются. Поэтому чистый выход АТФ при гликолизе равен двум молекулам. Кроме того, при гликолизе освобождаются четыре атома водорода. Их судьбу мы рассмотрим позднее. Суммарную реакцию гликолиза можно записать так:
Рис. 11.6. Схема гликолиза
Потребление и выход различных веществ в процессе гликолиза указаны в табл. 11.2.
Таблица 11.2. Потребление и выход веществ в процессе гликолиза
Конечная судьба пировиноградной кислоты зависит от присутствия кислорода в клетке. Если кислород имеется, то пировиноградная кислота переходит в митохондрии для полного окисления до СО2 и воды (аэробное дыхание). Если же кислорода нет, то она превращается либо в этанол, либо в молочную кислоту (анаэробное дыхание).
11.5. Внимательно изучите рис. 11.7 и дайте ответы на следующие вопросы:
а. Как называется процесс, происходящий на этапах Б и Г?
б. К какому классу принадлежит фермент, катализирующий реакцию В?
е. Как называется реакция, обозначенная буквой Д?
г. Какой витамин входит в состав молекулы НАД?
Рис. 11.7. Отдельные этапы гликолиза и общая биохимия этого процесса. Важно отметить, что, поскольку при расщеплении фруктоза-1,6-бисфосфата образуются два трехуглеродных соединения, в последующих реакциях синтезируются четыре молекулы АТФ, по две на каждую молекулу трехуглеродного соединения, превращающегося в пировиноградную кислоту
Аэробное дыхание распадается на две фазы. В первой из них при достаточном количестве кислорода каждая молекула пировиноградной кислоты поступает в митохондрию, где она полностью окисляется аэробным путем. Сначала происходит окислительное декарбоксилирование пировиноградной кислоты, т.е. отщепление СО2 с одновременным окислением путем дегидрирования. Во время этих реакций пировиноградная кислота соединяется с веществом, которое называют коферментом А (сокращенно его часто обозначают КоА или KoAS-Н), в результате чего образуется ацетилкофермент А. Количество выделяющейся при этом энергии достаточно для образования в молекуле ацетилкофермента А высокоэнергетической связи. В действительности процесс гораздо сложнее, чем следует из этого описания; в нем участвуют пять разных коферментов и три фермента. Суммарная реакция имеет вид НАД⋅Н2, являющийся продуктом этой реакции, направляется в дыхательную цепь митохондрии.
СН3СОСООН + KoAS — Н + НАД → СН3СО ˜ S — КоА + СО2 + + НАД⋅Н2 + Ацетил-КоА
Вторую фазу аэробного дыхания составляет цикл Кребса (названный так в честь открывшего его исследователя — сэра Ганса Кребса). Ацетильная группа ацетил-КоА, содержащая два атома углерода, включается в цикл Кребса при гидролизе ацетил-КоА. Она присоединяется к щавелевоуксусной кислоте — четырехуглеродному соединению, в результате чего образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. Далее следует цикл реакций, в которых ацетильные группы, поступающие в цикл при гидролизе ацетил-КоА, дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул СО2. При декарбоксилировании для окисления двух атомов углерода до СО2 используется кислород, отщепляемый от двух молекул воды. Этот процесс носит название окислительного декарбоксилирования. В конце цикла щавелевоуксусная кислота регенерируется. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. На каждую окисленную молекулу ацетил-КоА образуются: одна молекула АТФ, четыре пары атомов водорода и две молекулы СО2. Водородные атомы присоединяются к НАД или ФАД (разд. 6.2.3) и в конце концов попадают в дыхательную цепь. Поскольку из одной окисленной молекулы глюкозы образуются две молекулы ацетил-КоА, для окисления каждой молекулы глюкозы в процессе дыхания требуются два оборота цикла. Поэтому в конечном итоге при окислении одной молекулы глюкозы синтезируются две молекулы АТФ, выделяются четыре молекулы СО2 и высвобождаются восемь пар атомов водорода, поступающие затем в дыхательную цепь (рис. 11.8).
Суммарную реакцию для образования ацетил-КоА и цикла Кребса можно записать так:
С6Н12О6 + 6Н2О → 6СО2 + 4АТФ + 12АсН2,
где Ас — акцептор водорода.
Рис. 11.8. Упрощенная схема цикла Кребса
Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов окисляются молекулярным кислородом до Н2О с одновременным фосфорилированием АДФ в АТФ. Происходит это, когда водород, отделившийся от НАД⋅Н2 или ФАД⋅Н2, передается по цепи, включающей по меньшей мере пять переносчиков — флавопротеин, кофермент Q и несколько разных цитохромов. В конце цепи водород соединяется с молекулярным кислородом и образует воду. Промежуточные переносчики водорода претерпевают при этом ряд окислительно-восстановительных реакций. Переносчики сгруппированы таким образом, что в трех пунктах цепи при переходе водородных атомов от одного переносчика к другому небольшое количество энергии высвобождается и включается в молекулу АТФ. На рис. 11.9 представлена дыхательная цепь, или цепь переноса электронов. В действительности на первом участке цепи происходит главным образом перенос водорода, а на последнем — исключительно перенос электронов. Переносчики X, Y и Z-цитохромы. X и Y представляют собой белковые пигменты с железосодержащей простетической группой, которая называется гемом (такой же гем содержится в гемоглобине). При каждой окислительно-восстановительной реакции железо оказывается попеременно в окисленной (Fe3+) и в восстановленной (Fe2+) форме. На конечном этапе медьсодержащий переносчик Z, называемый обычно цитохромоксидазой (или цитохромом а + а3), катализирует восстановление молекулярного кислорода до воды. Цианид калия и окись углерода блокируют клеточное дыхание на этом этапе.
Рис. 11.9. Схема дыхательной цепи, где происходит перенос водорода и электронов. Пункты, в которых высвобождается достаточно энергии для синтеза АТФ, не указаны. Кроме того, показаны не все переносчики, входящие в дыхательную цепь
НАД и НАДФ — два очень близких по своей структуре кофермента. Оба они представляют собой производные никотиновой кислоты (одного из витаминов группы В). Молекулы того и другого кофермента электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:
а второй присоединяется к НАД или НАДФ целиком.
Суммарную реакцию можно записать так:
или проще
НАД(Ф) + Н2 → НАД(Ф) ⋅ Н2.
Свободный протон позднее, при отщеплении водорода, используется для обратного окисления кофермента.
Флавопротеины — это коферменты, в состав которых входит витамин В2. ФАД (флавинадениндинуклеотид) играет роль простетической группы, белковая же часть молекулы флавопротеина действует как фермент. В дыхательной цепи эта белковая часть выступает в качестве НАД-дегидрогеназы, катализируя окисление восстановленного НАД. Водород переносится флавопротеином в виде целых атомов.
В цикле Кребса белковая часть флавопротеина, простетической группой которого служит ФАД, действует как сукцинатдегидрогеназа. Она катализирует окисление янтарной кислоты в фумаровую. Восстановленный ФАД располагается в дыхательной цепи после первого пункта окислительного фосфорилирования (т. е. синтеза АТФ). Поэтому за счет его обратного окисления синтезируются только две молекулы АТФ (рис. 11.10).
Рис. 11.10. Развернутая схема дыхательной цепи. Каждый цитохром способен передавать только один электрон. Предполагается, что на каждом дыхательном пути действуют два ряда цитохромов. Здесь показан только один, но цифры удвоены, чтобы количества образующихся конечных продуктов соответствовали действительности. В энергетическом смысле электроны перемещаются 'вниз'
Молекула этого кофермента содержит цикл из шести атомов углерода. Кофермент Q принимает водород от флавопротеина и передает его цитохрому b.
Все цитохромы — это белки с относительно небольшой молекулярной массой. Они содержат тем в качестве прочно связанной простетической группы и переносят не водородные атомы, а электроны. Роль переносящего электроны компонента в цитохромах играет железо гема. Обычно оно находится в окисленной форме (Fe3+), но после присоединения электрона, переходит в восстановленную форму (Fe2+). Каждый водородный атом, поступающий от кофермента Q, распадается на ион водорода и электрон:
Н → Н+ + е-
Этот электрон присоединяется к иону железа:
Ионы водорода поступают на время в окружающую среду: они понадобятся вновь позднее, в конце дыхательной цепи.
Электрон от цитохрома b переходит к цитохрому с и далее к цитохрому а + а3 — прочному комплексу двух цитохромов, называемому обычно цитохромоксидазой. Этот комплекс, помимо железа, содержит еще и медь и вступает в окислительно-восстановительную реакцию, когда цитохром а3 в конце концов передает электроны кислороду (рис. 11.10). Любой цитохром может переносить только по одному электрону; поэтому полагают, что во всякой дыхательной цепи имеются два ряда цитохромов, которые и осуществляют перенос электронных пар:
Теперь, когда читатель уже кое-что знает о переносчиках водорода и электронов, ему будет легче разобраться и в более подробной схеме дыхательной цепи, приведенной на рис. 11.10.
Суммарные реакции аэробного дыхания:
Многие микроорганизмы (анаэробы) получают большую часть своего АТФ за счет анаэробного дыхания. Для некоторых бактерий сколько-нибудь значительные количества кислорода вообще губительны, так что они вынуждены жить там, где кислород отсутствует. Такие организмы называют облигатными анаэробами (примеры — бактерии Clostridium botulinum и С. tetani).
Известны и другие организмы, например дрожжи и паразиты кишечного тракта (ленточные черви и др.), которые могут существовать как без кислорода, так и в его присутствии. Их называют факультативными анаэробами. Некоторые клетки, временами испытывающие недостаток кислорода (в частности, мышечные клетки), тоже обладают способностью к анаэробному дыханию.
В условиях, когда кислорода нет и, значит, водородные атомы, освободившиеся в процессе гликолиза, не могут быть ему переданы, вместо НАД должен быть использован другой акцептор водорода. Таким акцептором становится пировиноградная кислота. При этом в зависимости от метаболических путей, имеющихся у данного организма или у самих клеток, конечные продукты анаэробного дыхания оказываются различными. У дрожжей, например, образуются этанол и СО2:
(этот процесс называется спиртовым брожением), а в животных клетках, испытывающих временный недостаток кислорода, и у некоторых бактерий происходит молочнокислое брожение, приводящее к образованию молочной кислоты:
На рис. 11.11 представлены эти различные пути анаэробного дыхания.
Ни тот, ни другой процесс не дает дополнительного количества АТФ, так что выход энергии на одну молекулу глюкозы, расщепленную путем анаэробного дыхания, соответствует двум молекулам АТФ. Значительная часть энергии, заключенной в молекуле глюкозы, при этом так и не извлекается (остается в конечных продуктах брожения — этаноле и молочной кислоте). Поэтому анаэробное дыхание (рис. 11.11) в сравнении с аэробным (см. разд. 11.3.9) следует считать процессом малоэффективным. Молочная кислота должна из мышечных клеток удаляться кровью, чтобы не наступило утомление. Позднее, в аэробных условиях, она вновь превращается в глюкозу в печени, где глюкоза запасается в форме гликогена. Подробно этот процесс описан в разд. 16.4.
Рис. 11.11. Различные пути анаэробного дыхания
С6Н12О6 + 6О2→6СО2 + 6Н2О + 38АТФ;
ΔG = -2880 кДж/моль
( — 30,6 кДж-это величина свободной энергии, образующейся при гидролизе АТФ до АДФ).
Рис. 11.12. Модель челночной системы (подробное объяснение см. в тексте). НАД — никотинамидадениндинуклеотид; ФП — флавопротеин
1) Дрожжевое (спиртовое) брожение:
С6Н12О6 → 2С2Н5ОН + 2СО2 + 2АТФ;
ΔG = — 210 кДж/моль.
Эффективность = 2⋅(- 30,6)/(- 210) = 29,14%
2) Гликолиз в мышцах (молочнокислое брожение):
С6Н12О6 2СН3СНОНСООН + 2АТФ;
ΔG = — 150 кДж/моль.
Эффективность = 2⋅(- 30,6)/(- 150) = 40,80%
Приведенные цифры показывают, что эффективность превращения энергии в каждой из этих систем довольно высока по сравнению с бензиновым (25-30%) или паровым (8-12%) двигателем. Количество же энергии, запасаемой в виде АТФ при аэробном дыхании, в 19 раз больше, чем при анаэробном. Объясняется это тем, что значительная часть энергии остается "запертой" в этаноле и молочной кислоте. Энергия, заключенная в этаноле, остается для дрожжей навсегда недоступной, и, значит, спиртовое брожение в смысле получения энергии — малоэффективный процесс. Из молочной же кислоты довольно большое количество энергии может быть извлечено позднее, если появится кислород. В присутствии кислорода молочная кислота превращается в печени в пировиноградную кислоту. Последняя поступает затем в цикл Кребса и полностью окисляется до СО2 и Н2О, в результате чего дополнительно образуется большое число молекул АТФ (разд. 17.4.8).
Хотя из описанной выше картины событий, составляющих аэробное дыхание, видно, что на каждую окисленную молекулу глюкозы образуется обычно 38 молекул АТФ, в разных тканях это число может быть различным. В цитоплазме в процессе гликолиза образуются два комплекса НАД⋅Н2. Цитоплазматический НАД не способен пройти сквозь митохондриальную мембрану, поэтому поставляемые гликолизом электроны должны поступать в митохондрии не прямым путем, а при посредстве особых челночных механизмов. В зависимости от того, какой из этих механизмов действует, окисление цитоплазматического НАД ⋅ Н2 дает либо четыре, либо шесть молекул АТФ и, значит, общий выход АТФ на одну окисленную молекулу глюкозы составляет 36 или 38 молекул. Схема на рис. 11.12 показывает, как работает такой челночный механизм. Вещество X играет роль переносчика — транспортирует водород из цитоплазмы в митохондрию; в отличие от НАД⋅Н2 оно способно проходить через митохондриальную мембрану.
После реакции НАД→НАД ⋅ Н2 в клетках сердечной мышцы и печени обратное окисление дает три молекулы АТФ.
После реакции ФП→ФПН2 в мышечных и нервных клетках обратное окисление дает две молекулы АТФ. Следовательно, в сердечной мышце и печени образуется в общей сложности 38 молекул АТФ, а в мышечных и нервных клетках-36 молекул.
Челночные механизмы непрерывно переносят электроны из цитоплазмы в митохондрии, одновременно вновь окисляя цитоплазматический НАД ⋅ Н2. Это надежно предотвращает накопление водородных атомов в цитоплазме и позволяет понять, почему при аэробном дыхании не накапливается молочная кислота.
Наиболее эффективный способ извлечения энергии из субстрата с запасанием ее для последующего использования состоит в расчленении этого процесса на ряд более простых обратимых реакций, катализируемых ферментами. Одна из таких промежуточных реакций — это окисление янтарной кислоты в фумаровую путем отщепления водорода.
Известны вещества, способные присоединять отщепленные водородные атомы и при этом изменять свой цвет. Одно из таких веществ — 2,6 — дихлорфенолиндофенол (ДХФИФ); его окисленная форма окрашена в синий цвет, а восстановленная бесцветна.
Если окисленная форма ДХФИФ при смешивании с тканевым экстрактом обесцвечивается, то можно предположить, что причина этого — присоединение атомов водорода от янтарной кислоты. Добавим к смеси янтарную кислоту. Если теперь скорость обесцвечивания возрастает, то это подкрепит нашу гипотезу о том, что ДХФИФ играет роль акцептора атомов водорода, отщепляющихся от янтарной кислоты.
Поскольку большинство реакций в живых организмах катализируется ферментами, ясно, что окисление будет происходить лишь в том случае, если в среде имеется надлежащий фермент. Реакцию окисления янтарной кислоты катализирует фермент сукцинатдегидрогеназа, и дополнительные исследования позволяют выявить присутствие этого фермента. В нашем опыте источником фермента будет служить суспензия митохондрий из прорастающих семян маша (Phaseolus aureus). Важно выделять митохондрии как можно быстрее. После разрушения клеток метаболизм почти сразу же прекращается.
Опыт делится на две части: 1) выделение нужного фермента и 2) использование его для окисления янтарной кислоты. ДХФИФ служит индикатором, который позволяет определить, идет ли реакция или нет.
Все, что требуется для первой части опыта (т.е. для приготовления ферментного экстракта), желательно до начала работы не менее часа выдержать в холодильнике.
4 центрифужные пробирки (по 15 мл)
2 стеклянные палочки
2 градуированные пипетки на 10 мл
2 лабораторных стакана емкостью 1 л (желательно полиэтиленовые)
Лед
Соль
Семена маша
Пробирки со штативом 1 градуированная пипетка на 1 мл
Таймер
Растворы (указания относительно приготовления растворов даны после описания опыта):
Забуференный раствор сахарозы
Забуференный раствор сахарозы + раствор янтарной кислоты
0,1%-ный ДХФИФ (приготовляется на забуференном растворе сахарозы) Дистиллированная вода
1. Прорастите семена маша (24 шт.), поместив их на влажную вату и оставив в темноте на 3-4 дня.
2. Приготовьте ледяную баню: положите лед в полиэтиленовый стакан емкостью 1 л и добавьте к нему соли, чтобы понизить температуру.
3. Поместите в стакан со льдом забуференный раствор сахарозы и две центрифужные пробирки.
4. Удалите у 12 проросших семян оболочки и корешки.
5. Поместите в каждую центрифужную пробирку по шесть семян.
6. Добавьте в каждую пробирку по 1 мл забуференного раствора сахарозы, не содержащего янтарной кислоты.
7. Тщательно размельчите семена с помощью охлажденной стеклянной палочки; пробирки должны при этом все время оставаться в стакане со льдом.
8. Добавьте в каждую центрифужную пробирку еще по 10 мл забуференного раствора сахарозы.
9. Поместите центрифужные пробирки в центрифугу (друг против друга) и прокрутите их при максимальной скорости в течение 3 мин.
10. Верните центрифужные пробирки в стакан со льдом.
11. Внесите пипеткой в одну из лабораторных пробирок 15 мл дистиллированной воды и отметьте положение мениска.
12. Вылейте дистиллированную воду и заполните пробирку до отметки надосадочной жидкостью из центрифужных пробирок.
13. Следующее необходимо проделать очень быстро: добавьте в ту же лабораторную пробирку 0,5 мл раствора ДХФИФ и перемешайте содержимое, заткнув пробирку большим пальцем и перевернув ее.
14. Во время перемешивания растворов включите отсчет времени.
15. Отметьте цвет раствора через 20 мин.
16. Повторите весь эксперимент, использовав на этот раз забуференный раствор сахарозы, содержащий янтарную кислоту.
Проследить за ходом эксперимента можно и с помощью колориметра.
1. Поставьте красный фильтр, включите колориметр и дайте ему прогреться в течение 5 мин.
2. Добавьте 0,5 мл раствора ДХФИФ к 15 мл надосадочной жидкости, как описано выше.
3. Смешайте растворы и включите отсчет времени.
4. Поместите пробирку в колориметр и установите прибор на 0% пропускания.
5. Снимите показания колориметра через 1, 2, 5, 10 и 20 мин.
6. Повторите тот же опыт, но с забуференным раствором сахарозы, содержащим янтарную кислоту.
7. Постройте график зависимости пропускания (ось ординат) от времени.
8. Сформулируйте выводы, которые можно сделать на основании полученных результатов.
Забуференный раствор сахарозы (100 мл)
Гидрофосфат натрия (Na2HPO4) 0,76 г
Дигидрофосфат калия (КН2РО4) 0,18 г
Сахароза 13,60 г
Сульфат магния 0,10 г
Забуференный раствор сахарозы + янтарная кислота (100 мл)
Забуференный раствор сахарозы, приготовленный, как описано выше, плюс:
Янтарная кислота 1,36 г
Гидрокарбонат натрия 1,68 г
Лучше всего сразу приготовить забуференный раствор сахарозы в количестве, достаточном для обеих частей опыта (раствор готовится на дистиллированной воде). После этого следует разделить раствор на две равные части и добавить к одной из них янтарную кислоту и гидрокарбонат натрия (в соответствующей концентрации).
Когда к забуференному раствору сахарозы добавляют янтарную кислоту и гидрокарбонат натрия, жидкость вскипает. Раствор следует хорошо встряхнуть, чтобы вся углекислота выделилась, так как ее присутствие может сказаться на результатах эксперимента.
Растворите 0,1 г дихлорфенолиндофенола в 10 мл забуференного раствора сахарозы (без янтарной кислоты для обеих частей эксперимента). Растворяется это вещество не слишком хорошо, поэтому после тщательного перемешивания суспензию следует профильтровать.
Митохондрии имеются во всех эукариотических клетках. Эти органеллы — главное место аэробной дыхательной активности клетки. Впервые наблюдал митохондрии в виде гранул в мышечных клетках Кёлликер в 1850 г. Позднее, в 1898 г., Михаэлис показал, что они играют важную роль в дыхании: в его опытах митохондрии вызывали изменение цвета окислительно-восстановительных индикаторов.
Число митохондрий в клетке очень непостоянно; оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий (в одной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными; в более активных клетках они обычно крупнее. Длина митохондрий колеблется в пределах 1,5-10 мкм, а ширина — в пределах 0,25-1,00 мкм.
11.6. Почему при столь больших различиях в длине митохондрий их ширина сравнительно постоянна?
Митохондрии способны изменять свою форму, а некоторые могут также перемещаться в особо активные участки клетки. Такое перемещение (которому способствует ток цитоплазмы) позволяет клетке сосредоточивать большее число митохондрий в тех местах, где выше потребность в АТФ. В других случаях положение митохондрий более постоянно (как, например, в летательных мышцах насекомых; рис. 11.13).
Рис. 11.13. Электронные микрофотографии летательной мышцы комнатной мухи (Musca), полученные с помощью трансмиссионного (А) и сканирующего (Б) электронного микроскопа. Видно, что каждая миофибрилла окружена полиморфными митохондриями
Митохондрии можно выделить из клеток в виде чистой фракции с помощью гомогенизатора и ультрацентрифуги. После этого их можно исследовать в электронном микроскопе, используя для этой цели различные методики, такие, как изготовление срезов и негативный контраст. Каждая митохондрия окружена двумя мембранами; наружную мембрану отделяет от внутренней расстояние в 6-10 нм. Внутренняя мембрана заключает в себе полужесткий матрикс митохондрии; эта мембрана образует многочисленные гребневидные складки, так называемые кристы (рис. 11.14). Обрабатывая митохондрии ультразвуком и детергентами, можно отделить наружную мембрану от внутренней, что позволяет изучать структуру и функции каждой из них в отдельности. Однако даже и с помощью такой методики нам пока еще мало что удалось узнать о наружной митохондриальной мембране. Полагают, что она проницаема для веществ с молекулярной массой меньше 21 000 и что такие вещества через нее диффундируют. Кристы внутренней мембраны существенно увеличивают ее поверхность, обеспечивая место для размещения мультиферментных систем и облегчая доступ к ферментам, находящимся в митохондриальном матриксе. Внутренняя мембрана отличается избирательной проницаемостью, т. е. пропускает лишь определенные вещества. Известно, что активный транспорт АДФ и АТФ через внутреннюю митохондриальную мембрану осуществляют особые ферменты, называемые транслоказами. Метод негативного контрастирования, при котором окрашенными оказываются не сами структуры, а пространство вокруг них, позволил выявить присутствие особых "элементарных частиц" на той стороне внутренней митохондриальной мембраны, которая обращена к матриксу (рис. 11.14, Б и Д). Каждая такая частица состоит из головки, ножки и основания. Хотя микрофотографии свидетельствуют, казалось бы, о том, что элементарные частицы выступают из мембраны в матрикс, считается, что это артефакт, обусловленный самой процедурой приготовления препарата, и что в действительности они полностью погружены в мембрану. Головки частиц ответственны за синтез АТФ. Это АТФаза (ранее обозначавшаяся F1), обеспечивающая сопряжение фосфорилирования АДФ с реакциями в дыхательной цепи. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты самой дыхательной цепи. Они размещены по отношению друг к другу строго упорядоченным образом. В митохондриальном матриксе содержится большая часть ферментов, участвующих в цикле Кребса и в окислении жирных кислот. Здесь же находятся митохондриальные ДНК, РНК и рибосомы, а также ряд различных не очень крупных белков (разд. 7.2.12).
Рис. 11.14. Строение митохондрий. А. Схематическое изображение митохондрии. Б. Схема строения кристы с 'элементарными частицами' внутренней мембраны. В. Строение элементарной частицы внутренней митохондриальной мембраны. Г. Электронная микрофотография митохондрии, полученная при малом увеличении. Д. Электронная микрофотография, на которой видны элементарные частицы внутренней митохондриальной мембраны (F1-F0-АТФаза) из разрушенных осмотическим шоком митохондрий комнатной мухи
11.7. Какими химическими веществами обмениваются цитоплазма и митохондрии? Укажите, какие из них поступают в митохондрии и какие переходят из митохондрий в цитоплазму.
Митохондриальная ДНК несет информацию для синтеза приблизительно 30 белков. Этого, однако, недостаточно, так как для построения новой митохондрии требуется большее число белков. В какой-то мере, следовательно, образование новых митохондрий должно зависеть от ядерной ДНК, от цитоплазматических ферментов и от некоторых других молекул, поставляемых клеткой. На рис. 11.15 суммированы современные представления о взаимодействии между митохондрией и другими частями клетки в процессе сборки митохондрии.
Рис. 11.15. Процесс сборки митохондрии из ее компонентов. (По Tribe, Whittaker, Chloroplasts and mitochondria. Series in Biology, №31, Arnold.)
Существует гипотеза, согласно которой митохондрии были некогда свободноживущими прокариотическими организмами, наподобие бактерий. Эти прокариоты, случайно проникнув в клетку, вступили затем с этой клеткой-хозяином во взаимовыгодный симбиоз. По-видимому, условия внутри клетки оказались благоприятными для прокариот, в обмен же прокариоты своим присутствием резко повысили "производительность" клетки в смысле синтеза АТФ и придали ей способность к аэробному дыханию. В пользу этой гипотезы свидетельствует ряд данных. Во-первых, митохондриальная ДНК представлена обычно кольцевой молекулой (рис. 11.16), а именно такую ДНК мы находим у современных бактерий. Во-вторых, митохондриальные рибосомы меньше цитоплазматических и сходны по своим размерам с бактериальными. В-третьих, движения митохондрий напоминают движения некоторых бактерий. И наконец, отмечено, что механизмы белкового синтеза у митохондрий и бактерий, с одной стороны, и в цитоплазме — с другой, чувствительны к разным антибиотикам. Например, хлорамфеникол и стрептомицин подавляют синтез белка в митохондриях и у бактерий, а циклогексимид блокирует синтез белка в цитоплазме (см. разд. 9.3.1 об эндосимбиотической гипотезе применительно к хлоропластам).
Рис. 11.16. Электронная микрофотография митохондриальной ДНК из пивных дрожжей Saccharomyces carlsbergensis. Молекула представляет собой суперспирализованное кольцо двухцепочечной ДНК с длиной 'окружности' 26 мкм. Она построена примерно из 75000 нуклеотидов
Изучением этого вопроса активно занимаются больше 30 лет, однако четкого представления о механизмах синтеза АТФ у нас пока еще нет. В последнее время усиленно обсуждаются главным образом две гипотезы: гипотеза химического сопряжения и хемиосмотическая гипотеза.
Согласно этой гипотезе, синтез АТФ сопряжен с переносом электронов при посредстве одного или нескольких "высокоэнергетических" промежуточных продуктов. Энергия, высвобождаемая при переносе электронов в окислительно-восстановительных реакциях дыхательной цепи, используется в нескольких ее звеньях для образования высокоэнергетической связи в одном из таких продуктов. Затем при фосфорилировании АДФ эта энергия переходит к высокоэнергетической связи АТФ (рис. 11.17). До сих пор, однако, обнаружить подобные промежуточные продукты не удалось, и до тех пор пока их существование не подтвердится, эту гипотезу нельзя считать убедительной.
Рис. 11.17. Гипотеза химического сопряжения. Х-пока еще не идентифицированный промежуточный продукт. Здесь показан только один такой продукт, но их могло быть и несколько
Большее признание завоевала гипотеза, выдвинутая Митчеллом в 1961 г. Он полагал, что синтез АТФ находится в тесной зависимости от того, каким образом электроны и протоны передаются по дыхательной цепи. Ниже перечислены условия, соблюдения которых требует эта гипотеза.
1. Внутренняя митохондриальная мембрана должна быть интактна и непроницаема для протонов (ионов водорода), направляющихся снаружи внутрь.
2. В результате активности дыхательной (электрон-транспортной) цепи ионы водорода поступают в нее изнутри, из матрикса, а освобождаются на наружной стороне мембраны.
3. Движение ионов водорода, направленное изнутри наружу, приводит к их накоплению, вследствие чего между двумя сторонами митохондриальной мембраны возникает градиент рН. Это может быть связано с тем, что ферменты, принимающие и отдающие ионы водорода, расположены в мембране определенным образом и поэтому могут принимать ионы водорода только изнутри и отдавать их только наружу.
4. Сам по себе градиент рН не мог бы поддерживаться, так как ионы водорода диффундировали бы обратно в митохондрию. Поддержание такого градиента требует затраты энергии. Предполагается, что энергию поставляет перенос электронов по электронтранспортной (дыхательной) цепи.
5. Эта энергия используется затем для синтеза АТФ. Синтез АТФ, таким образом, поддерживается наличием градиента рН.
6. АТФ образуется в результате фосфорилирования АДФ:
АДФ + Фн ⇔ АТФ + Н2О.
По закону действующих масс удаление воды должно ускорять реакцию, идущую слева направо, т. е. благоприятствовать образованию АТФ. Согласно теории Митчелла, фермент, ответственный за образование воды при синтезе АТФ, ориентирован в мембране таким образом, что ионы водорода освобождаются с внутренней стороны мембраны, где значение рН выше (т. е. концентрация Н+ меньше), а гидроксильные ионы (ОН-) — с наружной стороны, где рН ниже (т.е. концентрация Н+ больше). Таким образом, вода, образующаяся при синтезе АТФ, быстро удаляется, и это стимулирует синтез.
Из гипотезы Митчелла ясно, почему мембрана должна быть интактной (в ней расположены ферменты, ответственные за прохождение ионов во-дорода и за образование воды, так что любое изменение структуры мембраны неминуемо сказалось бы также на расположении ферментов и на их структуре). Объяснимо и требование непроницаемости мембраны для ионов водорода (в направлении снаружи внутрь): в основе гипотезы лежит представление о трансмембранном градиенте рН, а такой градиент не мог бы поддерживаться, если бы мембрана была полностью проницаемой. Следует отметить также, что гипотеза обходится без каких бы то ни было промежуточных продуктов в процессе синтеза АТФ.
Этот метаболический путь требует наличия кислорода и служит главным источником пятиуглеродных сахаров, входящих в состав важных нуклеотидов (АТФ, НАД, ФАД) и нуклеиновых кислот. Шунт может функционировать наряду с обычным гликолитическим путем, поставляя в разных клетках от 10 до 90% энергии, получаемой за счет расщепления углеводов в процессе дыхания.
Суть превращений сводится к тому, что шесть молекул глюкозо-6-фосфата сначала дегидрируются, а затем декарбоксилируются. Акцептором водорода служит НАДФ. В конечном итоге образуется шесть молекул рибулозо-5-фосфаза (фосфорилированного пятиуглеродного сахара) и в качестве побочного продукта — шесть молекул СО2. Молекулы рибулозо-5-фосфата претерпевают затем сложную последовательность реакций, в результате которой ресинтезируются пять молекул глюкозо-6-фосфата. Кроме того, образуется глицеральдегид-3-фосфат, который может быть направлен на путь гликолиза и превращен в пировиноградную кислоту, поступающую в конце концов в цикл Кребса. Пентозофосфатный шунт дает в общем итоге 36 молекул АТФ. Гликолиз вместе с циклом Кребса дает 38 молекул, но шунт имеет то преимущество, что в нем меньше реакций, а значит, меньше и число необходимых ферментов. Суммарную реакцию можно записать так:
Шунт поставляет также НАДФ⋅Н2, который служит донором водорода и электронов (восстановителем) при синтезе ряда веществ. В жировой ткани, например, именно этот шунт дает большие количества НАДФ⋅Н2, который используется для восстановления ацетил-КоА до жирных кислот в процессе синтеза липидов.
Глиоксилатный цикл, функционирующий в богатых маслами семенах, обеспечивает превращение запасных жиров в углеводы. Ферменты, участвующие в этом цикле, сосредоточены главным образом в органеллах, называемых глиоксисомами (они содержат каталазу и, следовательно, представляют собой разновидность пероксисом), и активных в период прорастания семян; впрочем, этот цикл протекает и в других органеллах. Он, однако, перестает функционировать, после того как будет израсходован весь запас жиров.
Во время прорастания семян жиры гидролизуются до жирных кислот и глицерола. Затем жирные кислоты расщепляются путем β-окисления (разд. 11.5.6), что дает в итоге значительные количества ацетил-КоА. Ацетил-КоА, как обычно, вступает в цикл Кребса, но здесь к реакциям этого цикла добавляется еще и глиоксилатный цикл. В каждом обороте глиоксилатного цикла происходит следующее суммарное превращение:
2Ацетил-КоА (2х2С) → Янтарная кислота (4С) + 2Н + 2КоА
Пара отделившихся атомов водорода передается на кислород через дыхательную цепь, в результате чего синтезируется АТФ. Янтарная кислота может использоваться как источник углеродных скелетов для синтеза ряда различных соединений. Таким образом, субстратом для глиоксилатного цикла служит двухуглеродное соединение ацетил-КоА, а поставляет этот цикл энергию и промежуточные четырех — углеродные продукты для биологических синтезов.
В некоторых животных тканях, например в печени, а также в семенах растений, содержащих большие количества жиров, эти жиры могут использоваться в качестве дыхательного субстрата без предварительного превращения их в углеводы. Сначала жиры при участии ферментов, называемых липазами, гидролизуются до жирных кислот и глицерола.
Глицерол (глицерин) сначала фосфорилируется под действием АТФ, превращаясь в глицеролфосфат, а затем дегидрируется под действием НАД с образованием дигидроксиацетонфосфата. Этот последний превращается в свой изомер-глицеральдегид-3-фосфат (рис. 11.18). В этих процессах, как видно из рис. 11.18, одна молекула АТФ потребляется и три образуются (при переносе водорода на кислород в дыхательной цепи). Далее глицеральдегид-3-фосфат вступает на путь гликолиза и в цикл Кребса, что дает еще 17 молекул АТФ. Таким образом, превращения одной молекулы глицерола в процессе аэробного дыхания дают в общем итоге 20 — 1 = 19 АТФ.
Рис. 11.18. Превращение глицерола в глицеральдегид-3-фосфат
Каждая молекула жирных кислот окисляется в результате процесса, называемого β-окислением. При этом от молекулы жирной кислоты последовательно отщепляются двухуглеродные фрагменты, так что на каждом этапе эта длинная молекула укорачивается на два атома углерода. Образовавшийся ацетил-КоА может, как обычно, поступить в цикл Кребса, чтобы окислиться до СО2 и воды (рис. 11.21). Этот процесс протекает в матриксе митохондрий. Из каждой молекулы жирной кислоты извлекается большое количество энергии: при окислении стеариновой кислоты выход АТФ составляет, например, 147 молекул. Неудивительно поэтому, что жирные кислоты — важный источник энергии. Около половины обычных энергетических затрат сердечной мышцы, печени, почек и скелетных мышц (в покое) покрывается именно за счет окисления жирных кислот.
Белки используются как дыхательный субстрат крайне редко — только после того, как будут исчерпаны все имеющиеся запасы углеводов и жиров. Сначала белки гидролизуются до аминокислот, из которых состоят их молекулы, а затем аминокислоты дезаминируются (от них отщепляются аминогруппы). С отщеплением аминогрупп протекают реакции двух типов: окислительное дезаминирование и трансаминирование.
Окислительное дезаминирование происходит в клетках печени позвоночных. В результате дегидрирования и гидролиза от аминокислоты отщепляется молекула аммиака. Позже азот выводится из организма в виде аммиака, мочевой кислоты или мочевины (у разных животных выводимый продукт может быть различным; см. разд. 18.5). Аминокислота при дезаминировании превращается в α-оксокислоту. В зависимости от природы боковых групп аминокислот их углеродные скелеты могут в процессе дыхания расщепляться по пути, характерному для углеводов или же для жирных кислот (рис. 11.19).
Рис. 11.19. Окислительное дезаминирование глутаминовой кислоты
Эту реакцию, свойственную всем клеткам, катализируют ферменты, называемые трансаминазами. Трансаминирование — это перенос аминогруппы от аминокислоты на оксокислоту. Таким образом, вместо одной аминокислоты может получиться другая. Одновременно образуются соответствующие α-оксокислоты, которые могут затем подвергаться обычному расщеплению в процессе дыхания. Несколько примеров трансаминирования приведено на рис. 11.20. На рис. 11.21 представлены главные метаболические пути, участвующие в дыхании.
Рис. 11.20. Примеры реакций трансаминирования
Рис. 11.21. Главные метаболические пути, участвующие в процессе дыхания
Каким бы ни был процесс дыхания — аэробным или анаэробным, между организмом и средой непрерывно должен происходить обмен газами. Аэробам для окисления пищевых веществ и получения энергии нужен поступающий из внешней среды кислород, а в среду аэробы и большинство анаэробов выделяют углекислоту (диоксид углерода СО2) — конечный продукт ("отходы") дыхания. Обмен СО2 и О2 между средой и организмом называется газообменом, а поверхность, на которой этот обмен фактически происходит, — дыхательной поверхностью. Осуществляется газообмен у всех организмов путем диффузии. Для того чтобы диффузия могла происходить, дыхательная поверхность должна удовлетворять нескольким условиям:
1) она должна быть проницаемой, чтобы газы могли сквозь нее проходить;
2) образующий ее слой должен быть тонким, потому что диффузия эффективна на расстояниях не более 1 см;
3) она должна быть влажной, так как оба газа — кислород и СО2-диффундируют в растворе;
4) дыхательная поверхность должна быть большой, чтобы через нее могли обмениваться достаточные количества газов в соответствии с потребностями организма.
Организмы получают необходимый им кислород либо непосредственно из атмосферы, либо из воды, в которой он растворен. Содержание кислорода в воде и в воздухе далеко не одинаково. В воздухе в единице объема содержится во много раз больше кислорода, чем в таком же объеме воды. Отсюда следует, что объем воды, который вынуждены пропускать над дыхательной поверхностью для удовлетворения своих метаболических нужд водные организмы, например рыбы, значительно больше объема воздуха, достаточного для наземных позвоночных животных.
У Amoeba proteus тело меньше 1 мм, поэтому отношение поверхности к объему у нее очень велико. Диффузия газов происходит у нее через всю наружную клеточную мембрану, и этого вполне хватает для ее метаболических нужд.
У двуслойных многоклеточных Hydra и Obelia все клетки находятся в контакте с водной средой, и у каждой из этих клеток газообмен через клеточную мембрану, соприкасающуюся со средой, достаточен для удовлетворения ее потребностей.
У таких свободноживущих плоских червей, как Planaria, кислород поступает в организм путем диффузии через всю поверхность тела. Этому благоприятствует сильно уплощенная форма тела (толщина тела не превышает, как правило, 0,06 см), увеличивающая отношение поверхности к объему. Способствует диффузии и то, что планарии обитают обычно в хорошо аэрируемых водоемах.
Многие плоские черви, например Taenia, — внутренние паразиты, живущие в условиях, где кислорода очень мало. В таком случае они ведут себя как анаэробы. Ни размеры, ни форма их тела не определяются при этом потребностью в диффузии кислорода, хотя отношение поверхности к объему все еще остается у них высоким.
11.8. Какое другое преимущество дает плоским червям большое отношение поверхности тела к объему?
С увеличением размеров тела отношение поверхности тела к объему уменьшается. Простая диффузия теперь уже не может обеспечить достаточный приток кислорода к тем клеткам, которые не находятся в прямом контакте с внешней средой. К тому же нередко и сама потребность в кислороде у таких более крупных животных ввиду их высокой метаболической активности оказывается выше.
Повышенная потребность в кислороде привела в процессе эволюции к тому, что некоторые участки тела превратились в специализированные дыхательные поверхности. У разных животных типы дыхательных поверхностей различны. В каждом случае они приспособлены для работы в тех или иных конкретных условиях. На рис. 11.22 показано, как их можно в соответствии с этим классифицировать.
Рис. 11.22. Типы дыхательных поверхностей
Обычно площадь дыхательных поверхностей сильно увеличена, и часто они связаны с какой-нибудь транспортной системой, например кровеносной. Транспортная система обеспечивает дыхательной поверхности связь со всеми прочими тканями тела и делает возможным непрерывный обмен кислородом и углекислотой между дыхательной поверхностью и клетками. Присутствие дыхательного пигмента в крови еще больше повышает способность крови переносить кислород. Кроме того, особые вентиляционные движения ускоряют газообмен между организмом и средой, поддерживая крутые диффузионные градиенты.
Кровь, содержащая какой-либо дыхательный пигмент, служит гораздо более эффективным переносчиком кислорода, нежели кровь без такого пигмента. Пигмент позволяет поглощать и транспортировать гораздо большие количества О2; он может находиться в плазме крови или в особых клетках. Любопытно отметить, что молекулы тех пигментов, которые заключены в форменных элементах крови, относительно невелики по сравнению с пигментами плазмы. Пигменты плазмы представляют собой агрегаты из многих небольших молекул, ведущие себя как одна крупная молекула. Такая организация дает возможность увеличивать количество пигмента в крови без одновременного увеличения числа частиц в растворе.
11.9. Почему это важно?
11.10. В чем преимущество системы, в которой дыхательный пигмент сосредоточен в особых клетках?
Все известные дыхательные пигменты присоединены к белковым молекулам. Пигменты обладают способностью обратимо связывать кислород. При высоких концентрациях кислорода пигмент легко его присоединяет, а при низких — быстро отдает. Перенос кислорода гемоглобином более подробно описан в гл. 14. В табл. 11.3 приведены свойства распространенных дыхательных пигментов животных.
Таблица 11.3. Обычные дыхательные пигменты[4]
У кольчатых червей нет никаких систем, предназначенных специально для газообмена, и газообмен происходит путем диффузии через всю поверхность тела. Специализированные системы кольчатым червям в сущности и не нужны, так как благодаря цилиндрической форме тела отношение поверхности к объему у них велико, а при своей относительно малой активности они расходуют мало кислорода на единицу массы тела.
Кровеносная система у кольчатых червей имеется, и в их крови растворен дыхательный пигмент гемоглобин. Сокращения кровеносных сосудов прогоняют кровь вместе с растворенными в ней газами по всему телу, действуя как насос; это же способствует и поддержанию крутых диффузионных градиентов.
У наземных олигохет (например, у Lumbricus) кутикула постоянно увлажняется секретом находящихся в эпителии желез и жидкостью, выделяемой дорсальными порами. В эпителии непосредственно под кутикулой расположены капилляры. Расстояние между кровеносными сосудами и поверхностью тела невелико, и это обеспечивает быструю диффузию кислорода в кровь. Дождевые черви практически ничем не защищены от высыхания и поэтому могут существовать только во влажной среде.
У водных полихет (например, у Nereis sp.) на каждом сегменте тела имеется по две параподии (см. рис. 4.26). Это подвижные выросты стенки тела, пронизанные многочисленными сосудами; благодаря им площадь дыхательной поверхности животного увеличивается. Диффузия газов ускоряется благодаря тому, что кровь в этих сосудах проходит совсем близко от поверхности тела.
С системой, обеспечивающей газообмен у членистоногих, можно ознакомиться на примере насекомых. Газообмен осуществляется здесь через систему трубочек — так называемых трахей. Благодаря этому кислород из воздуха поступает прямо к тканям, и необходимость в его транспортировке кровью отпадает. Это гораздо более быстрый способ, нежели диффузия растворенного кислорода сквозь ткани; такой газообмен создает условия для высокой интенсивности метаболизма.
Дыхальца — парные отверстия, имеющиеся на втором и третьем грудном и на первых восьми брюшных сегментах тела насекомого, ведут в воздушные полости. От этих полостей отходят разветвленные трубочки, называемые трахеями (рис. 11.23). Каждая трахея выстлана плоским эпителием, секретирующим тонкий слой хитинового материала. Обычно этот жесткий слой дополнительно укреплен спиральными и кольцевыми утолщениями, благодаря которым воздухоносные пути остаются открытыми, даже если в просвете трахей давление оказывается отрицательным (сравните с хрящевыми кольцами в трахее и бронхах человека). В каждом сегменте тела трахеи разветвляются на многочисленные более мелкие трубочки, называемые трахеолами; трахеолы тоже ветвятся, пронизывая ткани насекомого, и в наиболее активных тканях, например в летательных мышцах, оканчиваются слепо внутри отдельных клеток. В трахеолах хитиновая выстилка отсутствует; кроме того, степень их ветвления может меняться, приспосабливаясь к метаболическим нуждам ткани.
Рис. 11.23. А. Вертикальный продольный разрез тела прямокрылого. Б. Строение трахеи насекомого
В состоянии покоя трахеолы наполнены водянистой жидкостью (рис. 11.24); в это время кислород диффундирует по ним к тканям (а СО2 — в обратном направлении) со скоростью, вполне достаточной для удовлетворения потребностей насекомого. В активном состоянии усиление метаболической активности мышц ведет к накоплению определенных метаболитов, в частности молочной кислоты, и в тканях соответственно повышается осмотическое давление. Когда это происходит, жидкость из трахеол под действием осмотических сил частично всасывается в ткани и в трахеолы поступает больше воздуха, а значит, и больше кислорода, причем этот кислород подается непосредственно к тканям как раз тогда, когда они в нем нуждаются.
Рис. 11.24. Условия, создающиеся в тканях насекомого в покое и в активном состоянии (работа трахеол)
Общий поток воздуха, проходящий через тело насекомого, регулируется механизмом, закрывающим дыхальца. Отверстие каждого дыхальца снабжено системой клапанов, управляемых очень мелкими мышцами. Края этого отверстия покрыты волосками, которые предотвращают попадание в дыхальце чужеродных частиц и излишнюю потерю влаги. Величина отверстия регулируется в зависимости от количества СО2 в теле насекомого.
Усиленная активность ведет к усиленному образованию СО2. Хеморецепторы улавливают это, и дыхальца открываются. Тот же стимул может вызывать и вентиляционные движения тела, особенно у крупных насекомых. Дорсовентральные мышцы, сокращаясь, делают тело насекомого более плоским, вследствие чего объем трахейной системы уменьшается и воздух выталкивается из нее наружу ("выдох"). Всасывание воздуха ("вдох") происходит пассивно, когда сегменты тела благодаря своей эластичности принимают исходную форму.
Судя по некоторым данным, грудные и брюшные дыхальца открываются и закрываются попеременно, и это в сочетании с вентиляционными движениями тела создает однонаправленный поток воздуха, который входит в тело насекомого через грудной его отдел и выходит через брюшной.
Трахейная система, безусловно, весьма эффективна в смысле газообмена, однако следует учитывать, что газообмен определяется здесь исключительно диффузией газообразного кислорода через ткани насекомого. Диффузия же, как известно, эффективна только на малых расстояниях, и это накладывает жесткие ограничения на размеры, которых могут достигать насекомые. Эти малые расстояния, на которых диффузия достаточно эффективна, не превышают 1 см; поэтому хотя и встречаются насекомые длиной до 16 см, их тело не должно при этом иметь в толщину более 2 см!
На каждой стороне глотки акулы расположено по пять пар жаберных мешков, в каждом из которых находится жабра. Обычно каждая жабра поддерживается вертикальным хрящом — так называемой жаберной дугой. От перегородки, лежащей над жаберной дугой, отходит ряд горизонтальных складок — жаберных лепестков. Каждый лепесток на верхней и нижней поверхности в свою очередь образует вертикальные складки, называемые вторичными лепестками (рис. 11.25). Свободный край каждой жаберной перегородки довольно сильно вытянут и действует как надежный откидной (створчатый) клапан. При дыхательных движениях он периодически закрывает находящуюся непосредственно за ним жаберную щель. Пространства между этими клапанами и жаберными лепестками называются парабранхиальными полостями.
Рис. 11.25. Ток воды около жаберных лепестков акулы
Бедная кислородом кровь из брюшной аорты поступает в каждую жабру по приносящей жаберной артерии. В области жаберной пластинки эта артерия многократно разветвляется на множество мелких капилляров. Именно здесь происходит газообмен. Капилляры затем вновь объединяются в выносящие жаберные артерии, которые выходят из жабры у ее основания.
Вентиляционные движения, действующие как нагнетающий насос перед жабрами и отсасывающий позади них, создают почти непрерывный ток воды сквозь жабры. Вода входит через рот и брызгальца, когда дно ротовой полости и глотки опускается. Происходит это потому, что при увеличении объема глоточной области давление в ней уменьшается и в нее устремляется вода (рис. 11.26, А). Одновременно из-за снижения давления в глотке имеющиеся на жабрах клапаны плотно прикрывают жаберные щели, препятствуя поступлению воды с этой стороны. При этом работает и отсасывающий насос: боковые движения клапанов вызывают расширение парабранхиальных полостей, так что гидростатическое давление в них оказывается ниже, чем в глотке; из-за этого перепада давлений вода не только поступает в глотку, но одновременно проходит и между жаберными лепестками, т.е. течет практически непрерывно.
После того как полость глотки заполнится водой, рот и брызгальца закрываются, клапаны открываются, а дно ротовой полости и глотки поднимается. Это проталкивает воду через жаберные мешки над дыхательным эпителием жаберных лепестков, а затем наружу через жаберные щели (рис. 11.26, Б). Когда вода проходит через глоточную область, сфинктер пищевода сокращается и закрывает пищевод, препятствуя попаданию воды в пищеварительный тракт. Растворенный в воде кислород поглощается гемоглобином, находящимся в эритроцитах, однако акулы извлекают из воды менее 50% кислорода, тогда как костные рыбы-80%. Объясняется это сравнительно небольшой поверхностью жабер у акул (в сравнении с костными рыбами) и тем, что значительная часть воды, проходящей через жабры, движется в направлении, параллельном направлению кровотока.
Рис. 11.26. Схема, поясняющая, как происходит дыхание у акулы. Изменения давления указаны относительно наружного давления. А. Наполнение ротовой полости и глотки водой. Б. Изгнание воды через жаберные щели
11.11. Почему газообмен происходит менее эффективно, если ток крови параллелен току воды?
У костных рыб на каждой стороне глотки имеются четыре жаберные дуги, разделяющие пять жаберных щелей. На этих дугах находятся жабры. Каждая жабра состоит из двух рядов тонких жаберных лепестков, расположенных в виде буквы V (рис. 11.27). Лепестки, несущие жаберные пластинки и имеющие примерно такое же строение, как у акулы, пронизаны многочисленными капиллярами. Подвижная жаберная крышка, укрепленная тонкими костными слоями, служит наружной стенкой жаберной полости и защищает жабры; она составляет также часть вентиляционного механизма.
Рис. 11.27. Жаберный лепесток костной рыбы
При вдохе ротовая полость расширяется и давление в ней падает, вследствие чего внутрь устремляется вода. Одновременно под напором воды извне закрывается клапан на заднем конце жаберной крышки, препятствуя поступлению воды с этой стороны. В то же время, однако, сокращаются мышцы жаберной крышки, вызывая расширение жаберной полости. Давление в жаберной полости ниже, чем в ротовой, и потому вода поступает из ротовой полости в жаберную, проходя при этом над жабрами. Газообмен, таким образом, может продолжаться и тогда, когда рыба набирает в рот новые порции воды.
При выдохе ротовая полость и входное отверстие пищевода закрываются, а дно ротовой полости поднимается. Вода вследствие этого проходит через жаберные щели и выходит затем наружу около заднего края открытой теперь жаберной крышки. Благодаря согласованной активности ротовой полости и мышц жаберной крышки жабры почти все время омываются потоком воды.
Лепестки соседних жабер перекрываются своими концами. Вместе с жаберными пластинками они образуют своего рода сито; оно создает сопротивление току воды, замедляя прохождение воды над жаберными пластинками и тем самым увеличивая время, на протяжении которого может происходить газообмен. Кровь в жаберных лепестках течет в направлении, противоположном току воды. В такой противоточной системе кровь на своем пути все время встречается с водой, в которой концентрация растворенного кислорода относительно высока, и градиент концентрации между кровью и водой поддерживается по всей длине жаберного лепестка. Благодаря этому костные рыбы могут извлекать до 80% растворенного в воде кислорода.
У лягушки газообмен может происходить тремя разными путями: через кожу (кожное дыхание), через эпителий, выстилающий ротовую полость (ротовое дыхание), и через легкие (легочное дыхание).
Кожное дыхание. Кожа лягушки обильно снабжена капиллярами и все время остается влажной — ее покрывает слизь, выделяемая слизистыми железами. Кислород воздуха растворяется в этой слизи и затем диффундирует в кровь. Это называется кожным дыханием. Поглощение кислорода кожей остается на протяжении всего года практически неизменным, поскольку концентрация кислорода в воздухе постоянна, а значит, остается постоянным и диффузионный градиент. В зимнее время почти весь необходимый животному кислород поступает в организм именно таким путем, весной же, когда лягушки наиболее активны, за счет кожного дыхания удовлетворяется иногда лишь четверть всей потребности в кислороде. Остальной кислород поступает через ротовую полость и легкие.
Ротовое дыхание. Заметные глазу движения горла у лягушки поддерживают постоянный газообмен между ротовой полостью и атмосферой. Это называется ротовым дыханием. Для вдоха рот и голосовая щель должны быть закрыты, ноздри открыты, а дно ротовой полости должно опускаться, что достигается сокращением грудино-подъязычных мышц, прикрепленных к подъязычному хрящу (рис. 11.28, А). Ротовая полость выстлана влажным, богатым кровеносными сосудами эпителием; именно здесь и происходит газообмен. Выдох наступает, когда сокращаются каменисто-подъязычные мышцы, также прикрепленные к подъязычному хрящу; при их сокращении дно ротовой полости поднимается.
Легочное дыхание. Легкие лягушки представляют собой пару полых мешков. Стенки их образуют многочисленные складки, но даже при этом поверхность их относительно невелика по сравнению с поверхностью легких млекопитающего. Выстилающий легкие эпителий увлажнен слизью и обильно снабжается кровью. От каждого легкого отходит короткая трубка, называемая бронхом. Два бронха соединяются, образуя трахею. Трахея переходит в небольшую полость-гортань, которая через голосовую щель сообщается с ротовой полостью (рис. 11.28,А).
Рис. 11.28. А. Вертикальный разрез через голову лягушки, на котором виден подъязычный хрящ и связанные с ним мышцы. Б. Вентиляция легких у лягушки
У лягушки постоянно повторяются хотя и редкие, но сильные глотательные движения, обеспечивающие вентиляцию легких. Последовательность событий при этом такова (рис. 11.28, Б, I-IV):
I. Рот закрыт, ноздри открыты, голосовая щель закрыта, дно ротовой полости опущено. Воздух входит в рото-глоточную полость.
II. Ноздри закрыты, голосовая щель открыта. Воздух из легких в результате сокращения мышц и эластической тяги легких проталкивается в рото-глоточную полость, смешиваясь со свежим воздухом, поступившим при вдохе.
III. Дно ротовой полости поднимается и одновременно происходят усиленные глотательные движения, в результате чего смешанный воздух проталкивается в легкие. Когда легкие заполнятся воздухом, голосовая щель закрывается, и воздух на некоторое время оказывается запертым в легких. В это время здесь и происходит газообмен между капиллярами легочного эпителия и воздухом, заполняющим легкие.
IV. Через короткое время происходит выдох. Ноздри закрываются, голосовая щель открывается и дно ротовой полости снова опускается. Воздух из легких засасывается в ротовую полость. Затем ноздри открываются, голосовая щель закрывается и дно ротовой полости поднимается. Воздух выходит наружу через ноздри.
Тело у рептилий одето роговым покровом, обычно непроницаемым для газов, поэтому кожное дыхание у них отсутствует. Газообмен происходит только в легких. Их легкие тоже представляют собой, по сути дела, мешки, но со значительно более сложной складчатостью, чем у амфибий. У рептилий имеются ребра, однако у них нет настоящей диафрагмы, которая отделяла бы грудную полость от брюшной. Вентиляция легких происходит за счет движения ребер, вызываемого сокращением межреберных мышц. Механизм дыхания очень сходен с таковым у млекопитающих.
Птицы-гомойотермные животные, и для поддержания температуры тела им требуется весьма интенсивный метаболизм. Поэтому у них выработался в процессе эволюции и высокоэффективный механизм дыхания.
Легкие у птиц невелики; это компактные органы, состоящие из многочисленных ветвящихся воздухоносных трубочек, называемых бронхами. Мельчайшие из них, парабронхи, пронизаны многочисленными кровеносными сосудами; здесь и происходит газообмен. С легкими сообщаются большие тонкостенные воздушные мешки. Кровеносных сосудов в них мало, и они не участвуют в газообмене. По своему функциональному назначению воздушные мешки делятся на две группы: передние и задние, через которые воздух соответственно входит в дыхательную систему и выходит из нее.
Вентиляционные движения у птиц сложны, но в общем виде их можно свести к следующим этапам:
первый вдох — воздух поступает непосредственно в задние мешки (рис. 11.29);
первый выдох — воздух из задних мешков поступает в легкие;
второй вдох — воздух из легких переходит в передние мешки;
второй выдох — воздух из передних мешков выталкивается наружу.
Рис. 11.29. Легкие и система воздушных мешков птицы
Такой способ вентиляции обеспечивает однонаправленный поток воздуха — из задних мешков через легкие в передние мешки и затем наружу.
В состоянии покоя дыхательные движения происходят у птиц так же, как и у млекопитающих: межреберные мышцы, сокращаясь, производят вдох, а брюшные — выдох. В полете вентиляция легких усиливается в результате мощных сокращений грудных мышц, управляющих движениями сильно развитой грудины. В этих условиях легкие и воздушные мешки птицы пропускают большой объем воздуха, что необходимо для удовлетворения возросших метаболических потребностей.
Дыхательная система млекопитающего состоит из парных легких, расположенных в грудной полости, и ряда воздухоносных трубок, связывающих их с атмосферным воздухом. Путь воздуха включает следующие разделы: носовые ходы, глотку, гортань, трахею, бронхи, бронхиолы, легочные альвеолы. Двенадцать пар костных ребер окружают находящиеся в грудной полости сердце и легкие и служат им защитой. Сзади каждое ребро сочленяется с одним из грудных позвонков таким образом, что оно может подниматься и опускаться. Спереди десять пар ребер присоединены к костной пластине, которая называется грудиной. Остальные две пары называются свободными ребрами. Важными частями этой системы служат также межреберные мышцы, прикрепляющиеся к ребрам, и обширная диафрагма, отделяющая грудную полость от брюшной.
Воздух поступает в организм через две наружные ноздри, у каждой из которых имеется каемка волосков, задерживающих посторонние частицы. Носовые ходы выстланы ресничным эпителием, в котором имеются бокаловидные клетки, секретирующие слизь. Эта слизь выполняет две функции. Во-первых, она улавливает любые частички, которым удалось проскользнуть через каемку волосков, окружающую ноздри. Биение ресничек направляет затем эти частички к задней части ротовой полости, и здесь они проглатываются, так что попасть в воздухоносные пути уже никак не могут. Во-вторых, слизь увлажняет вдыхаемый воздух; здесь же, в носовых ходах, он и нагревается благодаря неглубоко залегающим кровеносным сосудам. В крыше задней части носовой полости находится обонятельный эпителий, состоящий из нейросенсорных и поддерживающих клеток, обильно снабжаемых кровью. Именно этот участок ответствен за распознавание запахов. Пройдя через носовые ходы, воздух попадает в глотку через два внутренних отверстия. К этому моменту он уже обычно освобожден от имевшихся в нем частиц, согрет, увлажнен, и животное распознало принесенные им запахи.
Далее воздух, прежде чем попасть в гортань, должен пройти через глотку. Через глотку проходят и воздух, и пища, поэтому щелевидное отверстие, ведущее в гортань (оно называется голосовой щелью), должно быть защищено от попадания пищи, которая могла бы закупорить дыхательные пути. Такой защитой служит имеющийся здесь треугольный клапан из хрящевой ткани — так называемый надгортанник.
Гортань — это полость перед входом в трахею, образованная девятью хрящами. Прикрепленные к ним мышцы позволяют этим хрящам двигаться относительно друг друга. В гортани горизонтально располагаются два ряда эластичных связок, называемых голосовыми связками. Когда воздух с силой проталкивается через голосовую щель, возникают звуковые волны. С изменением натяжения голосовых связок изменяется высота звука.
Из гортани воздух попадает в трахею — трубку, которая лежит непосредственно перед пищеводом и заканчивается в грудной полости. Стенки трахеи укреплены С-образными хрящами; благодаря этим хрящам она всегда остается открытой. Своей незамкнутой стороной С-образные хрящи обращены к пищеводу; они не позволяют трахее спадаться при вдохе (рис. 11.30). Изнутри трахея выстлана псевдо-многослойным ресничным цилиндрическим эпителием. В этом эпителии находятся секретирующие слизь бокаловидные клетки. В слизи застревают попавшие в трахею пылинки и микробы, а ритмичные биения ресничек, направленные в сторону ротовой полости (ее задней части), удаляют их из трахеи.
Рис. 11.30. Трахея и легкие человека. (G. М. Hughes, 1973, The vertebrate lung, Oxford Biology Readers, Nq 59.)
На нижнем конце трахея разделяется на два бронха. Правый бронх в свою очередь разделяется на три меньших бронха, каждый из которых направляется в одну из трех долей правого легкого. Аналогичным образом левый бронх разделяется на два бронха, заканчивающиеся в двух долях левого легкого (рис. 11.31). В обоих легких каждый бронх многократно делится на еще более тонкие трубки, называемые бронхиолами. Имеющиеся в бронхах С-образные хрящи в более мелких трубках замещены хрящевыми пластинками неправильной формы, а в бронхиолах, внутренний диаметр которых меньше 1 мм, хряща нет вовсе. Стенка состоит здесь только из гладкой мускулатуры, соединительной ткани с эластическими волокнами, обеспечивающими возможность растяжения и упругого сужения бронхиол, и выстилающего бронхиолы ресничного эпителия с секретирующими слизь клетками. Самые мелкие трубочки, называемые дыхательными бронхиолами, имеют в диаметре около 0,5 мм. Они в свою очередь делятся на многочисленные альвеолярные ходы, выстланные кубическим эпителием и оканчивающиеся альвеолярными мешочками, которые называются альвеолами (рис. 11.30, 11.32 и 11.33). Все вместе альвеолы и создают ту поверхность, на которой у млекопитающего происходит газообмен.
Рис. 11.31. Легкое человека, в которое введен специальный краситель, чтобы можно было видеть воздухоносные пути и кровеносные сосуды
Рис. 11.32. Гистологическое строение легочных альвеол
Рис. 11.33. Электронная микрофотография, на которой виден альвеолярный капилляр легкого собаки в продольном разрезе. (G.M. Hughes, 1973, The vertebrate lung, Oxford Biology Readers, № 59.)
В легких млекопитающего могут быть сотни миллионов альвеол с общей площадью поверхности в десятки квадратных метров. Толщина альвеолярной стенки составляет всего лишь около 0,0001 мм. Наружная сторона альвеолярной стенки покрыта густой сетью кровеносных капилляров; все они берут начало от легочной артерии и в конце концов объединяются, образуя легочную вену. Каждая альвеола выстлана влажным плоским эпителием. В альвеолярной стенке присутствуют также коллаген и эластические волокна, придающие ей гибкость и позволяющие альвеолам изменять свой объем при вдохе и выдохе.
Кислород, растворившийся в слое влаги на поверхности эпителия альвеол, диффундирует через тонкий барьер, состоящий из этого эпителия и из эндотелия капилляров, и поступает сначала в плазму крови. Затем он соединяется в эритроцитах с гемоглобином, который в результате этого превращается в оксигемоглобин. Углекислый газ (диоксид углерода) диффундирует в обратном направлении — из крови в полость альвеол.
Диаметр альвеолярных капилляров меньше диаметра эритроцитов, и эритроциты протискиваются через эти капилляры под напором крови. При этом большая доля их поверхности приходит в контакт с поверхностью альвеол, на которой осуществляется газообмен, и в эритроциты, таким образом, поступает больше кислорода. Кроме того, эритроциты движутся по капилляру относительно медленно, так что газообмен может происходить дольше. Когда кровь покидает альвеолы, парциальные давления кислорода и диоксида углерода в ней те же, что и в воздухе альвеолы.
Легкие, находящиеся в грудной клетке, отделены от ее стенок плевральной полостью — щелевидным пространством, выстланным эластичной прозрачной оболочкой (плеврой). Внутренний, висцеральный листок плевры покрывает легкие, а наружный, париетальный (пристеночный) листок выстилает стенки грудной клетки и диафрагму. Плевральная полость содержит жидкость, выделяемую плеврой. Эта жидкость увлажняет плевру и тем самым уменьшает трение между ее двумя листками при дыхательных движениях. Плевральная полость непроницаема для воздуха и давление в ней на 3-4 мм рт. ст. ниже, чем в легких. Это существенно, так как благодаря этому легкие заполняют практически всю грудную клетку. Отрицательное давление в плевральной полости поддерживается на протяжении всего входа, что позволяет альвеолам расширяться и заполнять любое дополнительное пространство, возникающее при расширении грудной клетки.
Воздух поступает в легкие и выходит из них благодаря работе межреберных мышц и диафрагмы; в результате их попеременного сокращения и расслабления объем грудной полости изменяется. Есть две группы межреберных мышц: наружные направлены под углом вниз и вперед, а внутренние — вниз и назад (рис. 11.34). Диафрагма состоит из кольцевых и радиальных мышечных волокон, расположенных вокруг центрального сухожильного участка.
Рис. 11.34. Схема расположения межреберных мышц
Вдох — это активный процесс. Наружные межреберные мышцы сокращаются, а внутренние расслабляются. Вследствие этого ребра отходят вперед, удаляясь от позвоночника. Одновременно сокращается, становясь более плоской, диафрагма. Оба этих действия приводят к увеличению объема грудной клетки. В результате давление в грудной клетке, а поэтому и в легких становится ниже атмосферного, так что воздух поступает внутрь и заполняет альвеолы до тех пор, пока давление в легких не сравняется с атмосферным (рис. 11.35).
Рис. 11.35. Схематическое изображение грудной клетки, поясняющее, какие движения совершаются при дыхании (вид сбоку; показано только одно ребро)
Выдох — процесс в обычных условиях в основном пассивный, происходящий под действием эластического сокращения растянутой легочной ткани и расслабления части дыхательных мышц. Наружные межреберные мышцы и диафрагма расслабляются, возвращаясь в прежнее положение и к прежним своим размерам, а внутренние межреберные мышцы сокращаются. Вследствие этого объем грудной клетки уменьшается и давление в ней становится выше атмосферного. Воздух поэтому выталкивается из легких, и выдох таким образом заканчивается. При физической нагрузке имеет место форсированное дыхание. В действие вводятся дополнительные мышцы, и выдох становится гораздо более активным процессом, требующим расхода энергии. Внутренние межреберные мышцы сокращаются более энергично и резко отводят ребра вниз. Сильнее сокращаются и брюшные мышцы, вызывая более активное движение диафрагмы вверх.
Непроизвольную регуляцию дыхания осуществляет дыхательный центр, находящийся в продолговатом мозге (рис. 11.36). Вентральная часть дыхательного центра ответственна за стимуляцию вдоха; ее называют центром вдоха (инспираторным центром). Дорсальная часть и обе латеральные тормозят вдох и стимулируют выдох; они носят собирательное название центра выдоха (экспираторного центра). Дыхательный центр связан с диафрагмой диафрагмальными и грудными нервами. Бронхи и альвеолы иннервируются ветвями одного из черепных нервов — блуждающего.
Рис. 11.36. Регуляция дыхания
Главным фактором, регулирующим частоту дыхания, служит концентрация СО2 в крови. Когда уровень СО2 повышается, хеморецепторы каротидных и аортальных телец посылают нервные импульсы в инспираторный центр. От него через диафрагмальные и грудные нервы поступают импульсы в диафрагму и межреберные мышцы, что ведет к их сокращению. Таким образом автоматически стимулируется вдох. При вдохе альвеолы расширяются и находящиеся в них и в бронхиальном дереве рецепторы растяжения посылают импульсы в экспираторный центр, который автоматически подавляет вдох. Дыхательные мышцы расслабляются, и начинается выдох. После выдоха альвеолы уже не растянуты, и рецепторы растяжения не подвергаются больше стимуляции. Поэтому экспираторный центр отключается и вдох может начаться снова. Весь этот цикл непрерывно и ритмично повторяется на протяжении всей жизни организма.
В известных пределах частота и глубина дыхания могут регулироваться произвольно. При такой регуляции импульсы, возникающие в головном мозге, передаются в дыхательный центр, который и выполняет соответствующие действия. Концентрация кислорода тоже влияет на дыхание (разд. 11.8). Однако в обычных условиях кислорода всегда бывает достаточно, и потому его влияние относительно невелико.
Легкие человека вмещают в среднем около 5 л воздуха (рис. 11.37). В состоянии покоя человек вдыхает и выдыхает примерно 450 мл воздуха. Этот объем воздуха называется дыхательным объемом. Сверх этих 450 мл человек может вдохнуть еще около 1500 мл (дополнительный воздух), а после спокойного выдоха может выдохнуть дополнительно около 1500 мл (резервный воздух). Если сделать максимальный вдох, а затем максимальный выдох, то общее количество выдыхаемого воздуха (дыхательный + дополнительный + резервный) даст величину, называемую жизненной емкостью легких. После максимально глубокого выдоха в легких остается еще 1500 мл воздуха. Выдохнуть его не удается; он называется остаточным воздухом.
Рис. 11.37. Соотношение объемов воздуха: находящегося в легких
При вдохе из 450 мл вдыхаемого атмосферного воздуха в легкие попадает лишь около 300 мл, а приблизительно 150 мл остается в воздухоносных путях и в газообмене не участвует. При выдохе, который следует за вдохом, этот воздух выводится наружу неизмененным, не отличающимся по своему составу от атмосферного воздуха; его называют поэтому воздухом мертвого, или вредного, пространства. Воздух, достигающий легких, смешивается здесь с 3000 мл воздуха, уже находящегося в альвеолах. Вновь поступившая порция невелика по сравнению с объемом, к которому она добавляется; поэтому полное обновление всего находящегося в легких воздуха — по необходимости медленный процесс. Этот медленный и прерывистый обмен между атмосферным и альвеолярным воздухом сказывается на альвеолярном воздухе столь мало, что его состав остается практически постоянным (13,8% кислорода, 5,5% СО2 и 80,7% азота). Интересно сравнить состав альвеолярного воздуха с составом воздуха вдыхаемого и выдыхаемого (табл. 11.4). Из таблицы видно, что одну пятую часть поступающего кислорода организм удерживает для своих нужд, тогда как выдыхаемое количество СО2 в 100 раз больше того количества, которое поступает в организм при вдохе. В тесный контакт с кровью вступает альвеолярный воздух. По сравнению с вдыхаемым воздухом он содержит меньше кислорода, но больше CO2.
Таблица 11.4. Сравнение состава вдыхаемого, альвеолярного и выдыхаемого воздуха (в объемных процентах)
Обычный прибор, которым в школах, лабораториях и больницах измеряют объем воздуха, поступающего в легкие и выходящего из них, — это спирометр. Он состоит из сосуда с водой и помещенного в него вверх дном другого сосуда емкостью не менее 6 л, в котором находится воздух. Ко дну этого второго сосуда подведена система трубок. Через эти трубки испытуемый дышит, так что воздух в его легких и в сосуде составляет единую замкнутую систему.
Внутренний сосуд уравновешен, и, когда воздух входит в него (если испытуемый делает выдох) или выходит из него (при вдохе), он соответственно поднимается или опускается. Писчик кимографа записывает на медленно вращающемся барабане все эти движения.
К спирометру прилагается подробная инструкция по работе с прибором, и мы ее здесь обсуждать не будем. Важно, однако, уметь анализировать записи прибора и отдавать себе отчет в том, какую информацию можно из них извлечь.
Спирометр дает возможность определять интенсивность метаболизма, дыхательный коэффициент, дыхательный объем, частоту дыхания и потребление кислорода.
Под частотой дыхания понимают число циклов дыхательных движений в минуту. Легочную вентиляцию (ЛВ) определяют, умножая это число на дыхательный объем (ДВ):
ЛВ = Частота дыхания х Дыхательный объем.
Если, например, частота дыхания составляет 15/мин, а дыхательный объем 400 мл, то ЛВ = 15 х 400 мл = 6000 мл/мин (т. е. за 1 мин между организмом испытуемого и средой обменивается 6000 мл воздуха).
Под альвеолярной вентиляцией (АВ) понимают объем воздуха, фактически достигающего легких. Альвеолярная вентиляция меньше легочной.
АВ = Частота дыхания х (Дыхательный объем — Объем мертвого пространства).
Если, например, ДО = 400 мл, объем мертвого пространства = 150 мл и частота дыхания = 15/мин, то
АВ = 15 х (400 — 150) мл/мин = 15 х 250 мл/мин = 3750 мл (т. е. за 1 мин между легкими испытуемого и средой обменивается 3750 мл воздуха).
11.12. Почему альвеолярная вентиляция меньше легочной?
Поскольку почти любой вид метаболической активности организма непосредственно связан с дыханием, измеряя дыхание, мы можем судить об интенсивности обмена веществ в организме. Ее можно вычислить, определив потребление кислорода.
11.13. Ознакомьтесь с рис. 11.38. Нетрудно заметить, что чем меньше животное, тем выше у него интенсивность обмена. В чем причина этого?
11.14. Как можно сравнить интенсивность обмена у млекопитающих, отличающихся по своим размерам?
Рис. 11.38. Интенсивность метаболизма в расчете на 1 г массы тела (логарифмическая шкала)
Основным обменом (основным метаболизмом) называют минимальный уровень обмена веществ и энергетических затрат, необходимый только для поддержания жизни в состоянии полного покоя или сна. Для определения основного обмена необходимо, чтобы человек перед измерением в течение 12-18 ч находился в состоянии физического и психического покоя и не принимал никакой пищи. Это гарантирует, что к моменту измерения желудочно-кишечный тракт испытуемого будет пуст. Величина основного обмена зависит от возраста, пола, массы тела и состояния здоровья индивидуума, а также явным образом коррелирует с отношением поверхности тела к его объему.
Рассмотрим следующее уравнение:
С6Н12О6 + 6О2 → 6СО2 + 6Н2О + Энергия.
Из этого уравнения видно, что объем двуокиси углерода, образовавшейся за данное время при окислении углевода в процессе дыхания, равен объему потребленного за то же время кислорода (напомним, что моль любого газа при данных условиях температуры и давления занимает один и тот же объем). Отношение СО2:О2 называется дыхательным коэффициентом. Для углеводов дыхательный коэффициент равен 1,
Таким образом, из приведенного выше уравнения
11.15. Окисление жира трипальмитина в процессе дыхания описывается следующим уравнением:
2С51Н98О6 + 145О2 → 102СО2 + 98Н2О.
Чему равен ДК для трипальмитина?
11.16. Чему равен ДК, когда глюкоза окисляется в анаэробных условиях до этанола и СО2?
Изучение дыхательных коэффициентов дает ценные сведения о природе дыхательных субстратов и о типе метаболизма (табл. 11.5).
Таблица 11.5. Дыхательные коэффициенты для различных субстратов
11.17. Почему ДК у человека колеблется обычно в пределах от 0,7 до 1,0?
11.18. Из спирограммы, приведенной на рис. 11.39, определите:
а) частоту дыхания;
б) дыхательный объем;
в) легочную вентиляцию;
г) потребление кислорода.
Рис. 11.39. Спирограмма человека, находящегося в состоянии покоя
Поглощение кислорода беспозвоночными измеряется в этом опыте при помощи манометра. Используемый прибор изображен на рис. 11.40.
Рис. 11.40. Прибор, с помощью которого можно измерять потребление кислорода мелкими наземными беспозвоночными
При дыхании кислород поглощается, а СО2 выделяется, поэтому для поглощения СО2 в прибор помещают натровую известь.
Таким путем изучают влияние температуры на поглощение кислорода. Температура воздуха, в котором находятся исследуемые организмы, поддерживается в течение опыта на заданном уровне при помощи водяной бани.
Манометр
Манометрическая жидкость
Шприц на 1 мл
2 пробирки
2 куска цинковой сетки (размеры определяются диаметром пробирок)
Стеклянные бусы (или любой другой не поглощающий материал, занимающий тот же объем, что и исследуемые организмы)
Зажимы и штативы
Водяная баня
Термометр
Таймер
Миллиметровая бумага
Винтовой зажим
Исследуемые организмы
Цинковая сетка
Натровая известь
Мелкие беспозвоночные, например мокрицы или личинки мясной мухи Натровая известь
1. Заполните манометр до половины манометрической жидкостью и к одному из его колен через трехходовой кран присоедините шприц на 1 мл.
2. Поместите в обе пробирки равные по объему количества натровой извести, а поверх нее — цинковую сетку.
3. В одну из пробирок ("Опыт") поместите несколько мокриц или личинок мясной мухи, а в другую ("Контроль") — равное по объему количество стеклянных бус. Животные не должны соприкасаться с натровой известью; цинковая сетка должна отделять их от натровой извести вполне надежно.
4. Присоедините манометр к двум пробиркам, как показано на рис. 11.40, и поставьте трехходовой кран и винтовой зажим в такое положение, чтобы манометр сообщался с атмосферным воздухом.
5. Укрепите прибор так, чтобы пробирки находились в водяной бане с температурой 20°С, и оставьте его при этой температуре с открытыми кранами не менее чем на 15 мин.
6. Закройте трехходовой кран и винтовой зажим, отметьте уровень манометрической жидкости и включите отсчет времени.
7. Через одинаковые промежутки времени отмечайте по шкале показания манометра.
8. По окончании опыта снова откройте трехходовой кран и винтовой зажим.
9. Постройте график изменения уровня манометрической жидкости в зависимости от времени.
10. Вычислите скорость поглощения кислорода.
11. Повторите тот же опыт несколько раз при различных температурах, например при 20, 25, 30, 35 и 40°С.
12. Постройте график зависимости потребления кислорода от температуры.
1. В качестве манометрической жидкости можно использовать подкрашенную воду, масло или ртуть. Чем меньше плотность жидкости, тем больше смещение уровня ее мениска.
2. Смещение уровня мениска определяют по шкале. Для этого V-образную трубку манометра укрепляют на доске, на которую наклеена полоска бумаги со шкалой. Можно наклеить шкалу и на одно из колен манометра.
3. Прежде чем вести отсчет, следует проверить герметичность прибора. Для этого в прибор с помощью шприца нагнетают воздух, чтобы вызвать смещение уровня манометрической жидкости. После этого закрывают трехходовой кран, отключая таким образом манометр от атмосферного воздуха. Если прибор герметичен, то разность уровней манометрической жидкости в двух коленах не должна уменьшаться.
При восхождении на высокие горы люди страдают от недостаточной насыщенности крови кислородом. Такое состояние называют аноксией или гипоксией. Возникает оно вследствие того, что с возрастанием высоты над уровнем моря парциальное давление кислорода, так же как и других газов, содержащихся в атмосферном воздухе, падает; на высоте 5450 м атмосферное давление равно, например, уже только 0,5 бар, т. е. здесь оно вдвое меньше, чем на уровне моря. И хотя воздух содержит здесь столько же процентов кислорода, концентрация О2 на единицу объема вдвое меньше.
Дыхательная активность стимулируется хеморецепторами. На больших высотах усиление легочной вентиляции, вызванное потребностью в большем количестве кислорода, приводит к тому, что из крови в легкие переходит больше СO2 и кислотность крови соответственно снижается. Возрастание щелочности (повышение рН) порождает состояние, известное как алкалоз. При более высоком рН активность хеморецепторов подавляется; легочная вентиляция становится недостаточной, и это вызывает недомогание и чувство сильной усталости.
Со временем дыхательная и кровеносная системы могут в известной мере приспособиться к низкому парциальному давлению кислорода, существующему на больших высотах. По истечении нескольких дней из организма начинает выводиться щелочная моча, в результате чего алкалоз уменьшается. Теперь, когда подавление хеморецепторов снято, легочная вентиляция снова усиливается и концентрация СО2 опять становится главным химическим фактором, регулирующим интенсивность дыхания. Одновременно стимулируется кроветворная активность костного мозга — он начинает вырабатывать больше эритроцитов. Вследствие этого возрастает способность крови переносить кислород, и это частично компенсирует неполное ее насыщение кислородом в условиях пониженного парциального давления О2. После того как все эти приспособительные изменения произойдут, можно считать, что организм акклиматизировался в новых условиях.
Тюлени могут оставаться под водой до 15 мин. Способность их крови к переносу кислорода гораздо выше, чем у человека: в 100 мл крови у них переносится от 30 до 40 мл кислорода.
При нырянии в дыхательной и кровеносной системах животного происходят значительные изменения, обеспечивающие перераспределение кислорода в теле животного и эффективное его использование. Происходит это обычно следующим образом. В начале ныряния рефлекторно снижается частота сердечных сокращений и замедляется ток крови. Кровяное давление в артериях остается при этом на прежнем уровне, так как сосуды сужаются. Некоторые сосуды сжимаются полностью, т. е. отключаются вообще, и характер кровоснабжения меняется; теперь кровью снабжаются только самые важные для жизни органы: сердце, головной мозг и некоторые другие части нервной системы. Эти изменения означают, что кислород в крови используется медленно, но при этом остается всегда доступным для тех органов, которые наиболее чувствительны к аноксии. В почти лишенных кислорода мышцах тюленя идет процесс анаэробного дыхания, поэтому в них накапливается молочная кислота. Однако, поскольку из мышц в общий кровоток поступает мало крови, эта молочная кислота не расходится по телу животного в больших количествах и не причиняет вреда. Когда животное, вынырнув на поверхность, делает первый вдох, этот вдох служит сигналом для повышения частоты сокращений сердца и для возобновления нормального тока крови во всех органах. Молочная кислота поступает теперь в кровь и подвергается в печени соответствующим превращениям. Воздух в легких быстро замещается свежим, так как количество воздуха, обмениваемого при каждом вдохе, составляет около 80% от его общего количества в легких.
Растения расходуют на единицу массы меньше энергии, чем животные, поскольку интенсивность метаболизма у них ниже. У некоторых небольших растений газообмен осуществляется путем диффузии газов через всю поверхность, но у крупных цветковых растений для этой цели служат устьица на листьях и на зеленых стеблях (у травянистых форм), а также чечевички и трещины в коре на одревесневших стеблях (разд. 21.6.6).
Внутри растения распространение кислорода определяется диффузионными градиентами в воздухоносных межклетниках. По этим путям кислород достигает клеток и растворяется во влаге, покрывающей клеточные стенки. Отсюда он диффундирует уже внутрь клеток. СО2 движется по растению тем же путем, но в обратном направлении.
Сложнее обстоит дело с клетками, содержащими хлорофилл, когда в них одновременно протекают и дыхание, и фотосинтез. Здесь выделяемый хлоропластами кислород может сразу же потребляться митохондриями той же клетки, а продукт дыхательного метаболизма митохондрий — СO2 — может использоваться для фотосинтеза хлоропластами.
Более подробные сведения о газообмене у цветковых растений содержатся в гл. 9.
11.19. а. Перечислите (в виде таблицы) основные различия между фотосинтезом и аэробным дыханием, б. Укажите общие черты фотосинтеза и аэробного дыхания (в том числе и биохимические).