Воспитанники частного пансиона Топорнина, что в Казани, расселись за столами в общем обеденном зале. Подали еду, и мальчишки склонились над тарелками. Строгие воспитатели присматривали за пансионерами — никаких шалостей во время обеда. Но легко ли человеку 12 лет трапезничать в чинной обстановке, тем более, что вокруг десятки таких же озорных, непоседливых сверстников? Приходится изобретать тихие шалости — так, чтобы и развлечься, но и не получить замечания.
Однако сегодня сами воспитатели доставили развлечение пансионерам. Дверь открылась, и на пороге, сопровождаемый служителем, появился мальчик с опаленными волосами и бровями. В зале зашумели, раздался смех — на груди мальчика висела черная доска, на которой большими буквами было написано "ВЕЛИКИЙ ХИМИК".
За что же "наградили" скромного пансионера этим титулом?
Давно уже следил за миловидным сероглазым мальчишкой один из воспитателей, много раз отбирал у него какие-то склянки, пробирки, наказывал: ставил в угол, оставлял без обеда. Но мальчик заводил новые банки, колбы, и все повторялось сначала. Кончилось все это в один весенний вечер, когда на кухне раздался оглушительный взрыв. Преступление воспитанника было из ряда вон выходящим, необычным стало и наказание...
Мальчика звали Саша Бутлеров.
Так началась научная биография одного из крупнейших химиков-органиков прошлого века. "Его имя навсегда останется в науке",- сказал об Александре Михайловиче Бутлерове Дмитрий Иванович Менделеев.
В чем заслуга Бутлерова перед химией? На этот вопрос коротко можно ответить так: основными представлениями органической химии, теорией строения мы обязаны Бутлерову. Многое из того, что предложил ученый, что ему приходилось отстаивать, нам кажется само собой разумеющимся. И потому, чтобы лучше оценить вклад Бутлерова в химическую науку, необходимо хотя бы схематично представить, что же было до него.
Итак, совершим путешествие во времени. Как развивалась наука органическая химия?
Собственно, до XIX века такой науки не существовало. Но с органическими веществами и их превращениями люди имели дело еще в глубокой древности. Самой первой реакцией, видимо, была реакция брожения — превращение сахара в спирт. Уже древним народам были известны скипидар, уксусная кислота, они умели варить мыло.
Средние века — время расцвета алхимии. Алхимики знали, что из одних веществ можно получать другие и считали при этом, что таким превращениям подвержены также и элементы. Сверхзадачей алхимиков было получить из неблагородных металлов благородные, и прежде всего — золото. Алхимики не имели ясного представления об индивидуальном химическом соединении. Они считали, что свойства одного вещества (например, растворимость) можно постепенно передавать другому. Это было связано с тем, что они работали в основном со смесями, сплавами, растворами. Внимание алхимиков привлекали главным образом неорганические вещества.
В XVI веке Парацельс создал медицинскую химию, или ятрохимию, которая занималась изысканием новых лекарств. Тогда еще не делали никакого различия между веществами органическими и неорганическими. Вот, например, классификация соединений на основании знаний того времени: 1) масла — купоросное (серная кислота), оливковое, масло винного камня (расплывшееся на воздухе едкое кали); 2) спирты — винный, нашатырный, соляная кислота; 3) соли — поваренная, сахар и т. д. Конечно, такая "классификация" сейчас может вызвать только улыбку. Но, как видим, названия некоторых веществ пришли к нам из тех далеких времен.
В 1675 г. Николя Лемери издает "Курс химии", в котором определяет химию как "искусство разделять различные вещества, которые находятся в смешанных телах". Под "смешанными" телами он понимал минералы, растения и животных.
XVIII век — век господства теории флогистона, век, когда многие свойства веществ, различные их превращения объяснялись присутствием (или отсутствием) в них особого невесомого вещества — флогистона. Органическая химия еще не выделилась из химии, но в течение XVIII столетия происходит накопление новых сведений о веществах животного и растительного происхождения.
К началу XIX века стало ясно, что между животными и растительными веществами нет принципиальной разницы, но они сильно отличаются от веществ минеральных. Следующий шаг сделал Берцелиус. Он впервые определил органическую химию как химию веществ, типичных для живой природы; эти вещества получили название органических (к ним, скажем, относились оливковое масло, сахар, муравьиная кислота). Вещества, характерные для неживой природы (подобные, например, соли и воде), Берцелиус назвал неорганическими.
Самый термин "органическое вещество" означает: вещество, полученное из организма животного или растения. Однако сложность органических соединений, их многообразие представлялись Берцелиусу непознаваемыми. Насколько все казалось проще в мире минеральных веществ! На органические соединения, считал Берцелиус, нельзя распространить законы минерального мира; они образуются в живых тканях под действием "жизненной силы". Берцелиус был убежденным виталистом (латинское vitalis означает "жизненный"). Но именно его ученик Фридрих Вёлер осуществил синтез, который, по его собственным словам, был примечателен тем, что давал "образец искусственного получения органического вещества, так называемого животного вещества из неорганической материи": нагревая циановокислый аммоний, он получил мочевину. Произошло это в 1828 году. Подобных фактов становилось все больше.
1845 год — Кольбе синтезирует в несколько стадий уксусную кислоту, используя в качестве исходных неорганические вещества — древесный уголь (углерод), водород, кислород,серу, хлор.
1854 год — Бертло синтезирует жироподобное вещество.
1861 год — Бутлеров, действуя известковой водой на параформальдегид (полимер муравьиного альдегида) , осуществил синтез "метиленитана" — вещества, относящегося к классу сахаров.
1862 год — Бертло, пропуская водород между угольными электродами электрической дуги, полу-чает ацетилен. Это был первый полный синтез органического вещества из элементов, осуществленный в одну стадию.
Рухнула "китайская стена" между неорганическими и органическими соединениями.
Становилось ясно, что никакой жизненной силы не существует, что вещества, выделенные из организмов растений и животных, могут быть синтезированы искусственным путем, что они имеют ту же природу, что и все прочие вещества. Нужна была теория, которая объясняла бы, как построены органические вещества, почему они гораздо сложнее и много численнее веществ неорганических.
Одна из первых теорий органической химии — теория радикалов — тесно связана с электрохимической теорией уже известного нам Берцелиуса (расцвет ее приходится на 1820-1840 годы). Этот ученый занимался в основном неорганическими соединениями. Подвергая действию электрического тока соли, основания, кислоты, Берцелиус сделал вывод, что все вещества состоят из двух частей, несущих противоположные заряды. И хотя растворы большинства органических соединений электрический ток не проводят, Берцелиус утверждал, что все они также состоят из двух противоположно заряженных частей — радикалов. Радикалы столь же прочны, как и атомы в неорганических соединениях, при химических превращениях они переходят из одной молекулы в другую, не изменяясь. Получалось, что группа атомов — радикал — по своим функциям аналогична одному атому в неорганической химии.
В 1832 г. Либих и Вёлер выполнили классическую работу, которая способствовала укреплению авторитета теории радикалов. Эти ученые исследовали "горькоминдальное масло" (С7H5O). Оказалось, что из него молено получить ряд других соединений, содержащих группу C7H5O (эта группа была названа радикалом бензоилом): С7Н5O-ОН — гидроокись бензоила, С7Н5О-ONa — бензонатриевая соль. (Теперь мы знаем, что "горькоминдальное масло" — это бензойный альдегид, а гидроокись бензоила — это бензойная кислота.)
Заметим, что современные химики широко оперируют самим понятием "радикал" (вспомним, например, радикалы метил СН3, этил С2Н5). Но не стоит забывать, что мы вкладываем в понятие "радикал метил" совсем иной смысл, нежели сторонники этой теории. Так, они считали, что радикалы, как и атомы, могут спокойно существовать в свободном состоянии и что изменить радикал, как и атом, невозможно.
Каково же было замешательство Берцелиуса и его учеников, когда всего через несколько лет французский химик Дюма провел хлорирование уксусной кислоты! По теории радикалов уксусная кислота состоит из радикала ацетила С2Н3О и гидроксильной группы ОН. Дюма нашел, что в уксусной кислоте атом водорода легко замещается на хлор, причем образующаяся хлоруксусная кислота не сильно отличается по свойствам от уксусной:
Что же это значит? Радикал ацетил легко изменяется? Берцелиус, Вёлер и другие сторонники теории радикалов не могли смириться с этим открытием. Результат Дюма подвергся сомнению. Но факты — упрямая вещь. От теории радикалов пришлось все-таки отказаться. Ее сменила теория типов, развитая в 1840-1860 годах Жераром и Лораном. По этой теории молекула не состоит из разноименно заряженных частей, а представляет единое целое. При реакции молекулы распадаются на остатки, которые в отличие от радикалов не могут существовать в свободном состоянии. Исходя из реакций, характерных для данных соединений, эти вещества относятся к нескольким типам.
Жерар считал, что все органические соединения можно подразделить на четыре типа:
Ангидриды одноосновных органических кислот следовало, таким образом, отнести к типу воды, в молекуле которой оба атома водорода замещены на остатки кислот:
Позже Кекуле предложил новые типы соединений, в том числе и тип метана. К этому типу относились хлорпроизводные метана, нитрометан:
Пока химики имели дело с относительно простыми веществами, все было гладко. Теория типов позволяла даже наглядно и понятно записывать химические реакции. Например, замещение водорода на хлор в метане выглядело таким образом:
Но потом теория типов под натиском новых открытий начала трещать по швам. Вот пример "предсказательной" возможности этой теории: соединение с формулой С6Н6 должно существовать в виде двух изомеров:
тогда как на самом деле известен лишь один-единственный этан.
Был открыт глицерин, и оказалось, что в его молекуле три гидроксильные группы. Пришлось изобретать "кратные типы". А уже известную нам хлор-уксусную кислоту пришлось отнести к двум типам сразу — к типу воды и к типу хлороводорода:
Возникла путаница, и неудивительно, что и Жерар, и Кекуле считали, что формулами можно изобразить превращения веществ, но не их строение, что одному и тому же веществу может соответствовать несколько рациональных формул.
Да, в трудном положении оказались органики первой половины прошлого столетия. Уже известный нам сторонник теории радикалов Фридрих Вёлер писал в 1835 г., что органическая химия представляется ему дремучим лесом, чащей, из которой нельзя выбраться.
Вёлер ошибся. Выход из "дремучего леса" был найден в 1861 г.
19 сентября в городе Шпейере на съезде немецких естествоиспытателей и врачей был прочитан доклад, называвшийся "Нечто о химическом строении тел". Автором доклада был профессор Казанского университета Александр Михайлович Бутлеров.
Вот это самое "нечто" и составило теорию химического строения, которая легла в основу наших современных представлений о химических соединениях. Начинался доклад Бутлерова так: "Ныне, после открытия массы неожиданных и важных фактов, почти все сознают, что теоретическая сторона химии не соответствует ее фактическому развитию. Теория типов, принятая теперь большинством, начинает оказываться недостаточною..."
Бутлеров критикует теорию типов за положение о непознаваемости строения молекулы. Он говорит, что молекула — это частица с определенной химической структурой, т. е. с определенным расположением атомов, и это расположение можно установить опытным путем, исследуя химические свойства вещества. И наоборот, если известно строение вещества, то можно предсказать его свойства. Бутлеров не голословен: он не только предсказывает возможность существования не известных ему веществ, но и синтезирует некоторые из них.
"Химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением", — вот основная мысль Бутлерова. Что же такое химическое строение в понимании ученого? "Исходя из мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу".
Это понятие о химическом строении, или, в конечном счете, о порядке связи атомов в молекуле, позволило объяснить такое загадочное явление, как изомерия.
Явление это было известно с 1823 г. Берцелиус (1830) предложил называть изомерами вещества, имеющие одинаковый качественный и количественный состав, но обладающие различными свойствами. Обе ранние теории — теория радикалов и теория типов — не смогли дать удовлетворительного объяснения изомерии. Вместе с тем открывались все новые вещества, по составу идентичные известным, но имевшие совсем иные физические и химические свойства: к примеру, было известно около 80 разнообразных веществ, отвечающих составу С6Н12O2.
В 1861 г. загадка изомерии была разгадана. Больше того, Бутлеров объяснил явление таутомерии. Это динамическая изомерия, отличающаяся тем, что изомеры легко переходят друг в друга. Таутомерия легко объяснялась исходя из общей теории Бутлерова. Таутомерны, например, виниловый спирт, известный в виде своих производных, и уксусный альдегид:
СН2=СН-ОН ↔ СН3-СНО
Трудно переоценить роль А. М. Бутлерова в создании основ современной теории химии, и особенно органической химии. Вместе с тем теории химического строения пришлось нелегко уже с первых дней после рождения. Доклад Бутлерова на Съезде немецких естествоиспытателей был встречен весьма прохладно. В дальнейшем положение не изменилось к лучшему. Западные ученые были склонны недооценивать заслуги русского химика. Однако Бутлеров уверенно отстаивает свой приоритет. В статье 1867 г. он пишет: "Вообще в последние годы в химической литературе нередко встречались соображения, не сопровождавшиеся ссылкой, а между тем совершенно сходные с некоторыми из тех, которые уже были мною выражены печатно... Суждение о способе химической связи всех паев в частице (принцип химического строения) делается ныне господствующей основой теоретических воззрений в химии, а на необходимость его я указал уже в 1861 г. и считаю себя вправе утверждать, что мне принадлежит значительная доля первенства в полном и последовательном приложении этого принципа. Подробное знакомство с моими статьями, написанными с 1861 г., может, как я думаю, доказать основательность этого заявления".
Но отстаивать приоритет, тем более собственный, дело нелегкое и неблагодарное. Бутлерова обвинили в попытке присвоить себе чужие заслуги. Некоторые химики считали, что теория строения органических соединений создана Кекуле. В 1868 г. появилась статья друга Кекуле, Лотара Мейера, в которой он писал, что формулы строения — само собой разумеющееся следствие четырехвалентности углерода, предложенной Кекуле.
Мейер был неправ. Кекуле нельзя считать основателем теории строения хотя бы уже потому, что в изданном в 1863 г. учебнике он придерживается теории типов, Кекуле не считал формулу вещества отражением его реальной структуры. Каждое соединение Кекуле изображал не одной-единственной формулой, а несколькими (так, для уксусной кислоты у него было восемь формул).
Нельзя считать, как это делают некоторые западные ученые, основателем теории строения и шотландца Купера. В 1858 г. этот химик предложил формулы для ряда органических соединений, некоторые из них были правильными. Но, как заметил Вюрц, эти формулы слишком произвольны и чересчур удалены от опыта.
Однако в течение целого столетия в учебниках химии, написанных западными учеными, имя Бутлерова не упоминается вовсе. И только в последние годы лед, кажется, тронулся. Итальянский химик М. Джуа в предисловии к русскому изданию своей "Истории химии" (1966 г.) пишет: "Фундаментальное значение для науки имела разработка А. М. Бутлеровым теории строения, и я рад, что был одним из первых, кто обратил внимание на гениальные работы этого русского ученого".
Мы много говорили о предмете органической химии, об органических и неорганических веществах, приводили определение, данное органической химии Берцелиусом. Обратимся к другим авторитетам.
По Бутлерову, "...все тела, содержащие углерод, должны... войти в область органической химии, или, правильней, эта последняя должна получить название химии углеродистых соединений". Близкое по смыслу определение дает Менделеев: "Органическая химия есть отдел химии, занимающийся изучением свойств и изменений (реакций) непостоянных углеродистых соединений".
Итак, органическая химия — химия соединений углерода. Но ведь диоксид углерода (углекислый газ) — тоже соединение углерода, однако его относят к веществам неорганическим. Это же можно сказать про углекислый кальций (мел, мрамор), про карбид кальция.
Более конкретно определение К. Шорлеммера: "Органическая химия — химия углеводородов и их производных". Именно на этом определении строится классификация и номенклатура органических веществ, в большинстве учебников органической химии материал располагается в соответствии с этим определением. Действительно, в каждом органическом соединении имеется углеродный скелет, заимствованный от углеводородов, который "обрастает" функциональными группами различной природы. Собственно, именно способность углерода образовывать длинные прочные цепи однородных атомов и есть та его особенность, которая создает главное своеобразие органических соединений, отличает их от соединений неорганических. Правда, для некоторых очень сложных соединений, где и углеводородный скелет разглядеть трудно (например, витамин В12, нуклеотиды), это определение Шорлеммера уже не так удобно. Кроме того, известно много соединений металлов, в молекулы которых входят органические составные части (иногда это целые органические молекулы — этилендиамин, пиридин), но которые изучаются неорганической химией (точнее, химией координационных соединений). Как видим, определение Шорлеммера тоже "работает" в определенных пределах. Это и понятно: между веществами органическими и неорганическими четкой границы не существует.