ГЛАВА 1 Евклид Александрийский

О жизни Евклида почти ничего не известно. Мы знаем, что он работал в Александрии, одном из главных интеллектуальных центров древнегреческого мира, и основал там знаменитую школу математики. Достижения великих ученых являются синтезом наследия предшественников и их собственной работы, результатом их интеллектуального труда и творчества. Это справедливо и в случае Евклида.

Нам почти ничего не известно о жизни Евклида, а теми немногими сведениями, которыми мы располагаем, мы обязаны древнегреческому философу-неоплатонику Проклу, который записал их через шесть веков после смерти математика. Прокл рассказывает, что Евклид работал в Александрии — городе, основанном Александром Македонским (356-323 до н. э.) в 332 году до н. э. и ставшем столицей империи во время правления египетского царя Птолемея I Сотера (Спасителя). Птолемей построил знаменитую библиотеку, которую его сын Птолемей II Филадельф расширил, основав Мусейон. Прокл утверждает, что Евклид учился в Академии Платона и был знаком с сочинениями Аристотеля. Переселившись в Александрию, он основал там школу и заложил основы математической традиции, которую изложил в нескольких сочинениях, в том числе «Началах», написанных в зрелом возрасте.

Евклиду приписывают два знаменитых высказывания. На вопрос царя Птолемея I «Нет ли пути короче, чем тот, о котором ты пишешь в «Началах», чтобы изучить геометрию?» он дал резкий ответ: «В геометрии нет царских путей». Второе — его реакция на вопрос ученика о том, какую пользу принесет ему изучение геометрии. Евклид приказал рабу: «Дай ему три обола[1 Медная монета в Древней Греции. — Примеч. ред.], раз он хочет извлекать прибыль из учебы». Этот великий грек оформил в «Началах» математическое учение, зародившееся за три века до этого и просуществовавшее до VI века, еще девять веков после его смерти, произошедшей около 265 года до н. э. Таким образом, Евклид осуществил великий синтез трех столетий древнегреческой математики, которая, судя по объему сочинения древнего мудреца, была очень развитой дисциплиной, особенно если учесть, что в «Началах» не рассматривались многие вопросы, изучавшиеся в Академии.


ПРОКЛ ДИАДОХ

Древнегреческий философ Прокл (412-485) был выдающимся представителем неоплатонизма. Он родился в Византии, но стал известен как Прокл из Ликии, потому что его родители, выходцы из Ксанфа, хотели, чтобы он получил начальное образование в этой юго-западной провинции Малой Азии. Подростком Прокл отправился в Афины изучать риторику, а затем получал образование в Византии. После этого он вернулся в Афины. Там Прокл учился у Плутарха Афинского (не путать с автором «Сравнительных жизнеописаний») и у философа-неоплатоника Сириана Александрийского. После смерти последнего Прокл принял руководство Академией, из-за чего получил прозвище Диадох («преемник»). Эту должность он занимал на протяжении 40 лет. Несмотря на то что это был период упадка эллинизма, его труды очень важны для лучшего понимания «Начал». Из огромного наследия Прокпа до нас дошли только несколько сочинений, написанных в духе платоновской теологии, поскольку в то время учение Платона считалось божественным, а доктрины Аристотеля — введением к нему.


Биографические заметки Прокла собраны в комментарии к первой книге «Начал» Евклида. В этом действительно очень важном тексте содержатся ценные исторические, эпистемологические и методологические сведения о Евклиде и его предшественниках. Прокл пишет:


«Немного младше последних [Гермотима и Филиппа] Евклид, составивший «Начала», собравший многое из открытого Евдоксом, улучшивший многое из открытого Теэтетом, а помимо этого сделавший неопровержимыми доказательствами то, что до него доказывалось менее строго.

Он жил при Птолемее I, потому что и Архимед, живший при Птолемее I, упоминает о Евклиде. [...] Он моложе платоновского кружка и старше Эратосфена и Архимеда. [...] Он принадлежит к платоникам и близок их философии, почему и поставил целью всего своего изложения «Начал» описание так называемых пяти платоновских тел».


Прокл ничего не говорит о месте рождения Евклида, из-за чего мы можем предположить, что он о нем не знал, но рассказывает знаменитый случай о «царском пути» в изучении геометрии. Вероятно, лучшее резюме биографии Евклида сделал английский писатель Эдвард Фостер в своем путеводителе по Александрии:


«Мы ничего о нем не знаем; честно говоря, сегодня он для нас — скорее свод знаний, чем человек».


ДРУГИЕ СОЧИНЕНИЯ ЕВКЛИДА

Известно, что кроме «Начал» Евклид написал и другие труды. В прологе ко второй части своего комментария Прокл приписывает ему следующие тексты:


«У него есть также много других математических сочинений, полных удивительной точности и научности. Таковы «Оптика», «Катоптрика», таковы также «Начала музыки» и книга «О делении фигур». А в «Началах» геометрии им в особенности следует восхищаться порядком и отбором приведенных теорем и задач. Ведь он берет не все, что можно сказать, а лишь самое основополагающее; кроме того, он применяет разнообразные виды силлогизмов, которые отчасти получают достоверность от причин, отчасти исходят из достоверных положений, но при этом все — неопровержимые, точные и свойственные науке. Помимо них он применяет все диалектические методы: метод разделения — при установлении видов, метод определения — при определении сущности, метод демонстрации — при переходе от начал к искомому, метод анализа — при восхождении от искомого к началам».


Люди умирают, но их труды остаются.

Последние слова математика Огюстена Луи Коши, сказанные архиепископу Парижа


Добавив к этому списку произведения, о которых упоминает Папп Александрийский (290-350) в своем «Математическом собрании», мы получим свод сочинений, приведенный в таблице на следующей странице.

В совокупности эти книги представляют собой довольно четкую программу изучения математики, а также касаются широкого ряда других вопросов геометрии (первые три — начального уровня, последние три — более сложные), астрономии, музыки, оптики и механики. Ниже приводится краткое содержание каждого сочинения, причем особое внимание мы уделим текстам по геометрии. Нам неизвестна их хронология, так что мы приводим труды в алфавитном порядке.

В «Данных» содержатся 94 предложения, в которых анализируется, какие свойства фигур можно вывести, если «известны некоторые из них». Евклид пишет, что данные могут быть нескольких типов: данные величины (касающиеся размеров), данные вида (касающиеся типа геометрических фигур) и данные положения (касающиеся их относительного расположения) или комбинация этих трех параметров. Сочинение можно назвать начальным учебником по элементарной планиметрии.


ПРЕДЛОЖЕНИЕ 45 ИЗ «ДАННЫХ» ЕВКЛИДА

Следующий пример иллюстрирует, какие вопросы разбираются в «Данных». Здесь изданных величины мы получаем данные вида. В предложении 45 говорится:

«Если дан угол АВС [на рисунке он соответствует углу < АВС] некоего треугольника и соотношение между суммой сторон АВ и ВС данного угла и третьей стороной АС, то треугольник определен (задан)».


Сочинения, приписываемые Евклиду
МАТЕМАТИКА «Начала» (геометрия): книги 1—XIII (написаны Евклидом) и два апокрифа (книга XIV написана Гипсиклом, книга XV — предположительно Исидором Милетским)
ГЕОМЕТРИЯ Начальная геометрия «Данные»
«О делении фигур»
«Псевдария»
Высшая геометрия «Поверхностные места»
«Поризмы»
«Конические сечения»
АСТРОНОМИЯ «Явления»
МУЗЫКА Введение в музыку «Гармоническое введение» (Клеонид)
«Деление канона»
ФИЗИКА МЕХАНИКА «О легкости и тяжести»
«О рычаге»
ОПТИКА «Оптика»
«Катоптрика» (Теон Александрийский)

В предложениях 84 и 85 этого трактата решаются уравнения второго порядка ах ± х² = b² так же, как это делали месопотамские математики (мы увидим это в главе 4), когда решали следующую систему уравнений:

у±х = а,

ху = b².

В сочинении «О делении фигур» рассматривается деление заданной фигуры одной или несколькими прямыми, «соблюдая некоторые условия», чтобы площади получившихся частей соотносились друг с другом определенным образом. Например, требуется произвести следующее деление:


Задача 20. Отделить треть треугольника ААВС с помощью прямой, которая проходит через точку D внутри треугольника.

Такие геометрические задачи скорее вписываются в математическую традицию Вавилона, чем в изложенную в «Началах». Фрагменты этого сочинения, известные нам, взяты из латинского перевода 1563 года и арабского перевода, обнаруженного в Париже в 1851 году. Единственные четыре предложения с доказательствами напоминают предложения из «Начал». Всего в сочинении содержится 36 предложений.

Сочинение «Псевдария» также не дошло до наших дней. О нем рассказывает Прокл:


«Это сочинение, в котором он дает нам такую подготовку, он назвал «Ложные умозаключения» и в нем перечислил в должном порядке их виды, дал нашей мысли упражнения в каждом виде, противопоставил лжи истину и дал опровержение лжи соответственно со способом ее проведения. Таким образом, эта книга — очистительная, имеющая целью упражнение, а «Начала» содержат неопровержимое и совершенное изложение самого научного рассмотрения предмета геометрии».


КОНИЧЕСКИЕ СЕЧЕНИЯ

Конические сечения (или просто коники) являются пересечением конуса (двойного) с плоскостью. Тип сечения зависит от угла плоскости. Как видно на рисунке 1, если плоскость параллельна оси конуса, мы получаем гиперболу ( состоящую из двух ветвей), если плоскость параллельна образующей конуса, то параболу, а в других случаях — эллипс (включая окружность как частный случай). На рисунке 2 изображены различные конические сечения в зависимости от соотношения фокуса и директрисы.

РИС. 1

РИС. 2



Это был самый настоящий учебник, об утере которого можно только сожалеть, так как он прояснил бы, какие ошибки Евклид считал геометрическими, а какие — логическими.

Еще одно утерянное сочинение, которое цитирует Папп, — «Поверхностные места». Содержание этого свода текстов по высшей геометрии было гораздо сложнее, чем в «Началах». Как говорит Папп, в нем рассматривались «места, а точнее положение, линии или фигуры, точки которых обладают некоторым свойством» и «построение таких мест», то есть линий, например квадратрисы, цилиндрической спирали и подобных, или таких фигур, как конусы, цилиндры, сферы или полученные путем вращения конических сечений (эллипса, гиперболы и параболы). В сочинении дается такая классификация конических сечений по соотношению фокуса и директрисы, при которой не нужно прибегать к трехмерному пространству:


«Геометрическое место точек, при котором отношение между расстоянием от заданной точки [фокусом] и от заданной прямой [директрисой] остается постоянным, является коническим сечением: эллипсом, параболой или гиперболой в зависимости от того, меньше, равно или больше единицы это расстояние».


Сочинение «Поризмы» включало 171 предложение, 38 лемм и 29 классов поризмов. Специалисты считают, что потеря этого труда является большой утратой. Евклид рассказывает о том, как можно получить неопределенные геометрические объекты, когда не заданы все их необходимые характеристики. Таким образом, поризм — это гибрид проблемы и теоремы: можно установить его наличие, но невозможно его продемонстрировать, так как он неопределен. В «Началах» термин «поризм» употребляется в значении непосредственного следствия из только что доказанной теоремы.

О «Конических сечениях» Франсиско Вера, переводчик «Начал» на испанский язык, пишет:


«...об их содержании мы можем только строить догадки. Современные критики полагают, что они были адаптацией сочинения Аристея на ту же тему и на основе него впоследствии написал свой трактат Аполлоний. Архимед несколько раз упоминает о различных свойствах конических сечений, которые, как он считал, были включены в сочинение Евклида».


Портрет работы фламандского художника Юстуса ван Гента называется «Евклид из Мегары» (1474), хотя на самом деле на нем изображен Евклид Александрийский.

Обложка «Математического собрания» Паппа Александрийского, издание 1589 года.

Марка Республики Сьерра Леоне с фрагментом «Афинской школы» Рафаэля, на которой изображен Евклид, делающий измерения циркулем.


ВОПРОС 8 ИЗ «ОПТИКИ» ЕВКЛИДА

«Оптика» имеет такую же структуру, как «Начала». В восьмом предложении Евклид дает геометрическое доказательство того, что видимые размеры двух равных и параллельных фигур обратно пропорциональны расстоянию от них до глаза. Возьмем два равных отрезка АВ и GD, расположенных на разном расстоянии от глаза Е. Проведем отрезки АЕ и EG. Взяв Е в качестве центра и EZ — за радиус, проведем часть окружности HZF. Треугольники EZG и EZD больше и меньше круговых секторов EZH и EZF соответственно.

Соотношение

ΔEZG/сектор (EZH) > ΔEZD/сектор (EZF)

Подставив другие значения, получаем

ΔEZG/ΔEZD > сектор (EZH)/сектор (EZF)

И объединив их, получаем

ΔEZG/ΔEZD = ΔEZG/ΔEZD + 1 > сектор (EHF)/сектор (EZF) = сектор (EZH)/сектор (EZF) + 1

Но ΔEZG/ΔEZD = GD/DZ = AB/DZ, поскольку GD=AB.

Поскольку AB/DZ = BE/ED получим:

BE/ED > сектор (E/HF)/сектор (EZF)

Соотношение между двумя отрезками одной окружности равно соотношению между соответствующими углами, то есть

BE/ED > (<НЕF)/(



Этот труд также был утерян. Возможно, он был сводом всех знаний того времени о конических сечениях и имел педагогическую направленность.

Во введении мы сказали, что Пифагор выделял четыре математы. Евклид должен был рассмотреть их все, если хотел предложить полный образовательный курс математики. Неудивительно, что ему приписываются следующие тексты.


Законы природы — это математические мысли бога.

Евклид


«Явления» — книга о началах астрономии, где описывается видимая часть движущейся небесной сферы (кроме движения планет). В ней рассматриваются восходы и закаты звезд и подразумевается, что читатель знаком с основами сферической геометрии, которая не объясняется в «Началах». Небольшой трактат «Начала музыки», об авторстве которого нет точных сведений, содержит теорию музыкальных интервалов, изложенную в духе пифагорейской школы. «Оптика» — сочинение о перспективе, в котором, как и в «Явлениях», ставится вопрос о нашем знании того, что мы видим. Его цель — установить размеры видимого в зависимости от положения наблюдателя и от масштабов наблюдаемого объекта. Евклид утверждал, что видимость создается по направлению от глаза к предмету, что считалось верным, пока арабский эрудит аль-Хайсам (965-1039) в своем труде «Китаб аль-Маназир» («Книга оптики») не заявил прямо противоположное: мы видим, поскольку глаз получает один или несколько лучей света, отражаемых предметом. Несмотря на это книга Евклида считается одним из важнейших трудов по оптике из тех, что предшествовали работам Ньютона, а такие мыслители Возрождения, как Филиппо Брунеллески, Леон Баттиста Альберти и Альбрехт Дюрер, опирались на Евклида при разработке собственных трактатов о перспективе.

Авторство «Катоптрики» весьма спорно. Тем не менее необходимо сказать, что в ней приведено строгое геометрическое доказательство закона отражения света. Он гласит, что солнечные лучи отражаются под равными углами относительно горизонтальной (или вертикальной) оси. На примере рисунка 1 угол падения 0 равен углу отражения Евклид основывается на геометрическом предложении из Книги 1 «Начал»:

РИС.1

РИС. 2


Предложение 20 .В любом треугольнике сумма двух его сторон больше третьей стороны.

Оно доказывается следующим образом. Если отраженный луч образует два равных угла, мы получим отрезки АС и СВ\ если же эти углы не равны, то мы получим отрезки AD и DB. Проведем прямую СЕ, симметричную отрезку АС, и прямую DE, симметричную отрезку AD. Получим треугольник BED, где сторона BE короче суммы сторон BD и DE. Сумма отрезков АС и СВ меньше, чем сумма AD и DB (см. рисунок 2).

Доказав, что луч по закону отражения всегда проходит наиболее короткий путь между точками А, С и В, Евклид выдвигает интереснейшую гипотезу: сама природа заставляет луч выбирать именно этот, самый короткий путь, следуя так называемому принципу наименьшего времени.

При помощи такого изящного доказательства Евклид выдвинул важнейшую идею: в законах природы всегда задействованы минимальные величины. Это значит, что физическая величина, указанная в задаче, например расстояние, затраченное время, энергия и так далее, всегда будет настолько мала, насколько это возможно. Много веков спустя Пьер Ферма (1601-1665), вероятно, обратился к этой мысли, чтобы сформулировать закон отражения света, который описывает трансформации луча солнца, проходящего через разные среды: сначала через воздух, а затем через воду. Ферма утверждал, что его «путь будет тем, который он преодолеет за меньшее количество времени». Эта гипотеза гениального французского математика была подтверждена Готфридом Лейбницем (1646-1716): он использовал ее для доказательства важности дифференциального исчисления, которое применяется в том числе для нахождения наибольших и наименьших величин. Основываясь на общем принципе определения наименьших величин, швейцарский ученый Леонард Эйлер (1707-1783) создал новую область математики — вариационное исчисление. Но окончательно сформулировал этот основополагающий закон природы Пьер Луи Моро де Мопертюи, назвав его принципом наименьшего действия.

Наконец, Евклиду приписываются два сочинения по механике, цитируемые арабскими переводчиками «Начал», но на самом деле их авторство неясно. «О легкости и тяжести» содержит самое точное изложение аристотелевской динамики свободно движущихся тел, дошедшее до наших дней; «О рычаге», напротив, описывает теорию равновесия, независимую от аристотелевской механики.


ГЕОГРАФИЯ ДРЕВНЕГРЕЧЕСКОЙ МАТЕМАТИКИ

Мыслители, чьи достижения собрал и дополнил Евклид, а также основные комментаторы его сочинений составляют целую плеяду математиков и философов-математиков, рассеянных по Греции и колониям на берегах Ионического моря, в Египте и в других местах Африки и Азии. Карта древнегреческой математики охватывает территорию от Сицилии до Ближнего Востока, включая современные Италию, Ливию и Турцию, с центром в самой Греции — Пелопоннесе, Аттике, Фессалии, Македонии и островах Эгейского моря. Наибольшая концентрация математиков была на востоке Эллады.

Объединяющий фактор всех этих мыслителей, дающий нам право называть их древнегреческими философами и математиками, — язык, письменный и устный. Это аркадо-кипрский, дорийский, эолийский или ионийский диалекты древнегреческого языка, в зависимости от места рождения ученого. В конце III века до н. э. появилась новая разновидность аттического диалекта — койне («общий язык»), широко использовавшийся в эллинистическом мире. Он обошел македонский, начавший распространяться при Александре Македонском. Иногда койне называют эллинистическим греческим, ведь именно от него произошел современный греческий язык. На койне написаны «Начала» Евклида.


Места, где родились древнегреческие философы и математики
Территория Город Имя Период
Сицилия 1. Сиракузы Архимед 287-212 до н. э.
Италия 2. Рим Боэций 480-524 до н. э.
3. Элея Парменид 570-470 до н. э.
Зенон 490-430 до н. э.
4. Кротоне Филолай ок. 470-385 до н. э.
Аристей Старший 370-300 до н. э.
5. Таранто Брисон ок. 450-390 до н. э.
Архит 428-347 до н. э.
6. Метапонт Гиппас 574-522 до н. э.
Ливия 7. Кирена Феодор 427-347 до н. э.
Эратосфен 276-194 до н. э.
Пелопоннес 8. Элида Гиппий 465 - ок. 396 до н. э.
9. Афины Антифонт 480-411 до н. э.
Сократ ок. 469-399 до н. э.
Платон 427-347 до н. э.
Теэтет 417-369 до н. э.
Плутарх V ВЕК
10.Херонея Плутарх ок. 45-127 до н. э.
Македония 11. Менде Филипп IV—III века до н. э.
12. Стагира Аристотель 384-322 до н. э.
13. Абдера Демокрит 460-370 до н. э.
Турция 14. Византий Прокл 412-485
15. Кизик Менехм 380-320 до н. э.
16. Киликия Симпликий 490-560
17. Питана Автолик 360-290 до н. э.
18. Колофон Гермотим IV век до н. э.
19. Клазомены Анаксагор 500-428 до н. э.
20. Траллы Антемий
21. Эфес Гераклит 544-483 до н. э.
22. Милет Фалес ок. 624 - ок. 545 до н. э.
Анаксимандр ок. 610-540 до н. э.
23. Перге Аполлоний 262-190 дон. з.
24. Исаврия Леонт V ВЕК до н. э.
25. Фасос Леодамант IV ВЕК до н. э.
26. Хиос Энопид ок. 500-420 до н. э.
Гиппократ ок. 470-410 до н. э.
27. Самос Пифагор 570-490 до н.э.
Мелисс ок. 485 - ок. 425 до н. э.
Конон Ill век до н. э.
28. Родос Евдем ок. 370-300 до н. э.
29. Книд Евдокс ок. 408 - ок. 355 до н. э.
Египет 30.Александрия Гипсикл ок. 190 - ок. 120 до н. э.
Герои ок. 10-70
Птолемей ок. 100-170
Диофант ок. 201 - ок. 285 до н. э.
Папп ок. 290 - ок. 350
Теон ок. 335 - ок. 405
Сириан ок. 380 - ок. 437
31.Гераса Никомах ок. 60 - ок. 120

К тому моменту, когда Евклид стал знаменитым, многочисленные мыслители уже внесли важный вклад в развитие математики и подготовили почву для расцвета геометрии, основой которого также стали труды современников Евклида — Архимеда и Аполлония.


ДРЕВНЕГРЕЧЕСКИЕ ТЕКСТЫ, ДОШЕДШИЕ ДО НАШИХ ДНЕЙ

В следующей таблице приведены результаты анализа древнегреческих математических текстов по предметам и эпохам. Примерно половина из них посвящена геометрии, на втором и третьем месте стоят астрономия и механика соответственно. Появляется также интерес к прикладной математике. Справедливо ли полагать, что чем удаленнее от нас во времени эпоха, тем меньше текстов до нас дошло? В таком случае текстов эллинистического периода должно быть больше всего. От доплатоновской и доаристотелевской эпох до нас дошли только отрывки работы Евдема по истории математики и сочинений Автолика Питанского. К сожалению, труд Евдема был утерян, и мы знаем о нем лишь частично и косвенно, из цитирующих его авторов, живших на несколько веков позже.


Дисциплина
Арифметика 3
Геометрия 34
Астрономия 15
Оптика 2
Гармония (музыка) 5
Механика 10
Математическая география 1
Геодезия 2
Логистика («Задача о быках» Архимеда) а»
Другие 3
Итого 75 (76)
Распределение по периодам
Эллинистический период (300-30 до н. э.) 21
Римский период (30 до н. э. - 300) 24
Поздний период (300-550) 20
Неизвестная датировка 10 (11)

Источник: Рамон Масиа, «Корпус древнегреческой математики с введением».


ДО ЕВКЛИДА

В своем «Комментарии» Прокл перечисляет достижения, сделанные в геометрии до «Начал». Без всякого сомнения, этот список составлен не беспристрастно (см. таблицу на стр. 32- 33): особое внимание в нем уделено работе Академии, которую Прокл возглавлял, в ущерб аристотелевскому Ликею. Текст состоит из 80 строк, и приводить его здесь полностью было бы излишне. Мы процитируем некоторые отрывки, где говорится об открытиях каждого, а также упомянем, какими знаниями они должны были располагать для того, чтобы правильно их доказать, как это делается в «Началах». Прокл пишет:


«Но поскольку приходится рассматривать начала искусств и наук применительно к данному периоду, мы говорим, что согласно свидетельству наибольшего числа исследователей геометрия впервые открыта у египтян и возникла она от измерения земельных участков, [...] как точное знание о числе возникло у финикийцев благодаря торговле и обмену. [...] Фалес, посетивший Египет, перенес в Элладу этот вид научного рассмотрения. [...] После них Пифагор перевел любовь к геометрической мудрости в разряд общеобразовательных дисциплин. [...] За ними в геометрии прославились Гиппократ Хиосский, открывший квадрируемые луночки, и Феодор Киренский, [...] Платон, стараниями которого геометрия — как и остальные науки — получила величайшее развитие. [...] Евдокс Книдский был... дружен с окружением Платона».


Математики, которые, по мнению Прокла, являются предшественниками Евклида
Имя Цитата из Прокла Сведения из разных книг «Начал», которые предположительно были им известны
Фалес Милетский Первым перенес в Элладу эту теорию. Многое открыл сам, а для многого указал путь последователям, представив одно более общим способом, другое — более наглядным. Определение 17 из книги 1, предложения 5,15, 26 и, возможно, 32. Предложение 12 из книги III.
Пифагор Преобразовал доктрину в разряд общеобразовательных дисциплин. Рассмотрел принципы геометрии с самого начала. Исследовал теоремы умозрительно, открыл иррациональные величины и строение космических тел. Книга 1: определения 1, 3 и 6; общее понятие 5; предложения 2,17, 32, 36, 37, 45 и 47.
Книга II: предложения 14 и 20.
Книга III: предложения 11 и 14.
Книга IV: предложения 11,12 и 15.
Книга VI: предложения 25, 28, 29 и 31.
Книга VII: определения 3, 4, 5,11 и 13.
Энопид Касался многих геометрических вопросов и многим дал наилучшее решение с использованием линейки и циркуля. Книга 1: постулаты 1, 2 и 3, предложения 12 и 23.
Гиппократ Открыл квадрируемые луночки. Написал свои «Начала». Использовал метод сведения в задаче об удвоении куба. Книга 1: предложения 9,10,11, 12,18,19, 20, 23, 24, 25, 28, 29, 31, 32, 45 и 47.
Книга II: предложения 6,12,13 и 14.
Книга III: определение 11; предложения 3, 20, 21, 22, 26, 27, 28, 29, 30 и 31.
Книга IV: предложения 5, 9,15.
Книга VI: предложения 19 и 20.
Книга VII: предложение 2. Книга
XIII: предложение 12.
Феодор Знаменитый геометр. Результаты книги II или 1, предложение 47.
Платон Математические науки получили его стараниями величайшее развитие. Его математические рассуждения пробуждают восторг в философах всех времен.
Ледамант, Архит и Теэтет Жили в одно время с Платоном. Благодаря им появились новые теоремы и геометрия стала более научной. Результаты книг X и XIII.
Леонт Составил свои «Начала» и нашел условия, при каких некоторые задачи могут быть разрешены и при каких нет.
Евдокс Увеличил число так называемых общих теорем и, воспользовавшись результатами Платона о сечениях, разработал множество их видов. Книга V:определения 4 и 5 и общие предложения.
Книга X: предложения 1 и 2.
Книга XII: предложения 5,6, 7 и 10.
Менехм и Динострат Первый был учеником Евдокса, второй известен как его брат. Сделали геометрию еще более совершенной.
Филипп из Менде Работал под руководством Платона. С ним геометрия достигла зрелости.

Сочинение Прокла написано под явным влиянием «Истории геометрии» Евдема Родосского и неоплатонизма. В нем не указаны имена астрономов — последователей Евдокса, не упоминаются перипатетики и сам Аристотель, а также Аристей Старший, который, возможно, был отцом учения о конических сечениях и геометрических местах. В нем нет Гиппаса из Метапонта и Филолая, нет софистов Антифонта, Брисона и Гиппия Элидского, нет атомистов Парменида, Зенона и Демокрита и даже Автолика Питанского, наконец, в комментариях не сказано ни слова об ученых-арифметиках. И все же этот текст заслуживает пристального внимания.

Фалесу и Пифагору различные авторы приписывают одни и те же достижения, а в случае с Гиппократом мы опираемся на свидетельство римлянина Симпликия, в свою очередь ссылающегося на «Историю геометрии» Евдема.


Загрузка...