Одним из важнейших достижений Академии была разработка теории отношений, приписываемая великому древнегреческому математику Евдоксу Книдскому.
Благодаря ей Евклид смог сделать шаг вперед по сравнению с прямыми и окружностями и заняться изучением объемов. Еще одной знаменательной находкой классической математики был метод исчерпывания, с помощью которого Евклид решил задачу, унаследованную еще от Древнего Египта и связанную с расчетом объема пирамиды.
Как мы уже говорили, V книга «Начал» не зависит от предыдущих, хотя после установления теории отношений между величинами они становятся необходимы для применения общей теории геометрии. Этот метод практически единогласно приписывается Евдоксу Книдскому.
Первая проблема — похожая на заключенную в понятии прямой, но более сложная — кроется в самом термине «величина». Евклид использовал его, нигде не объясняя его значения. Любопытно, что Архимед, напротив, избегал этого термина и говорил только о «прямых, поверхностях и телах». Отсутствие определения величины вызвало серьезные философские споры, оказавшие влияние и на математику. Главный вопрос, вокруг которого развернулась дискуссия, звучал так: можно ли разделять величины до бесконечности? Самый заметный вклад в его решение внес Зенон Элейский со своими апориями, или парадоксами.
Зенон предложил собственную формулировку вопроса о величинах, в которой рассматривал время и пространство: они делимы до бесконечности или же состоят из неделимых мгновений и промежутков? Для древнегреческой философии того времени обе гипотезы были неприемлемы. Первая подразумевает, что мы должны принять актуальную бесконечность, которую, как мы уже знаем, Аристотель отверг окончательно и бесповоротно в IV веке до н. э., а во второй кроется парадокс: каким образом, соединяя «мгновения» или «неделимые промежутки», которые не содержат в себе ни времени, ни пространства, то есть нулевые, мы получаем некий временной или пространственный промежуток, отличный от нуля? Зенон пошел еще дальше и сформулировал четыре парадокса, о которых рассказывается в «Физике» Аристотеля. Два из них вытекают из гипотезы о том, что время дискретно и состоит из частей, не содержащих времени, а два других — из представления, согласно которому и время, и расстояние можно дробить до бесконечности. Рассмотрим два парадокса — по одному каждого типа.
Я постоянно встречаю людей, которые сомневаются, обычно без всякой на то причины, в своих математических способностях. В первую очередь надо выяснить, понимают ли они что-нибудь в геометрии. Не важно, что они не любят или что для них сложны другие области математики.
Джон Литлвуд
Вспомним стрелу, выпущенную Улиссом, чтобы доказать, что он и есть муж Пенелопы и готов защитить ее от разгула женихов. За мгновение своего полета стрела не двигается, потому что если бы она двигалась, то ей потребовалось бы полмгновенья, чтобы пройти половину этого отрезка. Но этой половины не существует, поскольку мы предполагаем, что мгновенье — это минимальная временная единица. Значит, на самом деле стрела не двигается. Но если она не двигается «ни в один миг своего полета», то как она попала из лука в грудь Антиноя — первого жениха, убитого Улиссом? Можно было бы ответить, что за мгновение стрела передвигается на невидимое расстояние, то есть расстояние без расстояния. Но это вернуло бы нас к исходной точке: как можно получить расстояние, складывая «невидимые расстояния» (то есть нулевые)?
Зенон родился в Элее, современной Кампании, в 490 году до н.э. Он был учеником Парменида (ок. 540-475 до н. э.) и вместе с ним в середине V века до н. э. переехал в Афины, где, по свидетельству Платона, познакомился с тогда еще молодым Сократом. Зенон умер в 430 году до н. э., пытаясь освободить свою родину от поработившего ее тирана. Легенда гласит, что он отрезал себе язык, чтобы не выдать имена других заговорщиков.
От его сочинения «О природе», в котором он отстаивает тезисы Парменида, до нас дошло пять фрагментов. Благодаря комментариям Симпликия (490- 560) к аристотелевской «Физике» они считаются подлинными. В этом тексте, чтобы доказать свои гипотезы и опровергнуть теории противника, тезисы доводятся до абсурда (что-то вроде апагогии применительно к философии) методом рассуждений (logoi). Благодаря своим апориям Зенон может считаться отцом парадоксальных рассуждений: он никогда не доказывал тезисы своего учителя напрямую, а тонко запутывал противника, приводя его к неприемлемым выводам. В его философии существует только одно бытие, единое и неподвижное. Множественность и движение ведут к концептуальному несоответствию. Благодаря Аристотелю мы знаем четыре апории: о стреле, черепахе, движении и стадионе.
Ахиллес, более быстрый, чем черепаха, никогда ее не догонит, если она в момент движения находится на некотором расстоянии впереди. Ахиллес начинает движение из точки А, чтобы догнать черепаху, находящуюся в точке 5 (см. рисунок). Как бы быстро ни бежал Ахиллес — если только его скорость не бесконечна, что недопустимо,— когда он достигнет точки В, черепаха, как бы медленно она ни ползла, уже будет в точке B1. Поскольку мы предполагаем, что пространство дискретно и его можно делить бесконечно, то между двумя точками B и B1 всегда будет некоторое расстояние. Пока Ахиллес преодолевает отрезок BB1, черепаха дойдет до точки B2, и так до бесконечности. За конечный промежуток времени Ахиллес никогда не догонит черепаху.
Необходимо было преодолеть эту двойственность, чтобы дать геометрии твердые основы. Геометрические величины — линии, поверхности и тела — являются делимыми до бесконечности или состоят из атомов? Евклид в «Началах» и Архимед в «О шаре и цилиндрах» утверждают, что...
«...величины делимы до бесконечности и, следовательно, не содержат атомов».
Ахиллес и черепаха.
Таким образом, делая выбор из двух одинаково приемлемых (или неприемлемых) положений, мыслители преодолевают сложности, возникающие из-за отсутствия четкого определения величины. Вполне вероятно, что в геометрии важнее не что такое величина, а как с ней работать. Однако отсутствие концептуальной ясности в какой бы то ни было области может привести к парадоксальным ситуациям, которые невозможно предвидеть в самом начале. Как трактуются величины в «Началах»? Нарушает ли это понятие строгий порядок изложения геометрической теории?
Если вместо UV мы выберем единицей измерения
U1V1 = k x UV = UV + ...(k раз) + UV, то
AB = m/k x U1V1 и CD = n/k x U1V1.
Другими словами, k х АВ = m х U1V1, k x CD = n x U1V1, и они относятся друг к другу как m/n, поскольку, по предложению 3 книги V,
АВ/CD = (k x AB)/(k x CD) = (m x U1V1)/(n x U1V1) = m/n.
Если мы говорим об отношении между величинами, необязательно использовать отдельную единицу измерения для каждого типа величины.
Уже в пифагорейской школе обозначился кризис, позже названный некоторыми историками первым кризисом устоев математики. Ранее считалось, что два отрезка всегда соизмеримы. Если даны два отрезка АВ и CD, всегда можно найти общий для них обоих (с точки зрения их размера) отрезок UV] другими словами, всегда существует отрезок UV, который точно измеряет эти два отрезка. Следовательно, АВ = m х UV, a CD = n х UV. Мы также можем сказать, что между АВ и CD есть отношение, которое выражается как m/n, или m : n. Понятие отношения имеет огромное значение, поскольку позволяет обойтись без конкретного мерного отрезка UV. Не важно, какую меру длины мы используем — метры, сантиметры или километры, — отношение двух длин не меняется в зависимости от изменения единицы их измерения. Но не всегда мы можем выразить это отношение в виде чисел: не все можно свести к числовым вычислениям (с натуральными числами, то есть положительными и целыми). Если взять теорему Пифагора, можно вычислить диагональ АС квадрата с произвольной стороной АВ (см. рисунок 1). Поскольку АС = АВ,
АС² = АВ² + ВС² = АВ²+АВ² = 2хАВ².
Предположим, что АВ и АС несоизмеримы. Мы получим: АВ = m х UV, АС = n х UV. Следовательно, АВ² = m² х UV², АС² = n² х UV². Отсюда n² х UV² = 2 х m² х UV² и, следовательно, n² = 2 х m², что невозможно. Диагональ квадрата несоизмерима с его стороной. Все, что мы только что рассмотрели (это не объясняется отдельно в «Началах», но позволяет лучше понять результаты и пределы такого объяснения), стало трагедией для пифагорейской школы, которая утверждала, что «[натуральное] число есть отношение всего ко всему».
РИС. 1
По мнению пифагорейцев, все можно было измерить натуральными числами, другими словами, все величины соизмеримы между собой. Но, как мы только что увидели, существуют отрезки, у которых нет никакой общей единицы измерения. Более того, Феодор Киренский разработал метод для геометрического построения бесконечного числа несоизмеримых отрезков — спираль Феодора Киренского. Она строится начиная с отрезка, длина которого принимается за единицу. С помощью итеративного алгоритма затем строится последовательность прямоугольных треугольников с общей вершиной, а первоначальный отрезок остается коротким катетом первого из них (см. рисунок 2).
РИС. 2
Гипотенузы прямоугольных треугольников, составляющих спираль, последовательно равны квадратному корню из 2, 3, 4, 5, 6, 7 и 8 (хотя третье число в этой последовательности является натуральным — 2). Большая часть этих чисел иррациональные, то есть их нельзя записать как отношение двух натуральных чисел. Сегодня мы бы сказали, что любое действительное число (этого понятия в Древней Греции не существовало), выраженное как √n, где n — натуральное число, не являющееся идеальным квадратом (то есть квадратом без десятичных долей другого целого числа), иррациональное. Изучению несоизмеримых линий Евклид посвятил книгу X.
Несоизмеримость стороны и диагонали квадрата можно доказать чисто геометрически, в том числе и методом доведения до абсурда. Для этого надо применить итеративный алгоритм: исходя из конкретного случая строятся другие, более мелкие фигуры, сохраняющие такие же соотношения. Рассмотрим квадрат ABCD со стороной а=АВ и диагональю d = АС.
Отложим сторону на диагонали. Мы получим отрезок АВ’. Проведем касательную к полуокружности ВВ', касающуюся ее в точке В она пересечет сторону ВС в точке А'. Соединим В' и А' и получим прямоугольный равнобедренный треугольник СВ'А' и квадрат СВ'А'D'. Мы построили новый квадрат со стороной А'В' = АС - АВ [а' = d - а] и диагональю А'С = ВС - А'В [d' = а - а' ], где АС > А'С и АВ > В'С. Ясно, что если u измеряет одновременно и а = АВ, и d = АС, то будет измерять а' и, следовательно, d'. Мы можем повторить проделанное и получить пары [a, d] > [а', d ] > [а", d"] > [а'", d'"] > ... соизмеримых сторон и диагоналей квадратов. В какой-то момент диагональ или сторона станут меньше единицы измерения и, что невозможно.
Но возможно ли рассмотреть соотношение несоизмеримых величин? Отвечая на этот вопрос, нельзя не обратиться к наследию гениального Евдокса Книдского, автора идей, содержащихся в V и VI книгах. Начнем анализ книги V с первых четырех определений.
Определение 1. Часть есть величина от величины, меньшая от большей, когда она измеряет большую.
Определение 2. Кратное же — большая от меньшей, когда она измеряется меньшей.
Определение 3. Отношение есть некоторая зависимость двух однородных величин по количеству.
Определение 4. Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга.
В понятиях части и кратности содержится также понятие соизмеримости или делимости. Кратное число — повторение одной и той же величины определенное количество раз. Если у нас есть величина A, a m — произвольное натуральное число, то кратное будет m х A. Оно равно сумме величин A, взятых m раз. Делитель или часть D величины A — это величина «такого же рода», что и A, такая что A кратна D то есть такая, что если взять определенное натуральное число m, то A = m х D. Подразумевается, что мы знаем, в каких случаях величина «больше, равна или меньше другой», и это, как мы увидим, имеет огромное значение.
Зенон и Евдокс были представителями двух совершенно противоположных школ в математике: критически- деструктивной и критически-конструктивной. Оба были проникнуты столь же сильным критицизмом, как и их последователи...
Эрик Белл «Творцы математики»
Существуют объекты, подтверждающие определение, — свойства, которые устанавливаются в постулате или предложении. Это придает определению смысл. Но есть и другие объекты — не подтверждающие определение.
Возникает следующий вопрос: есть ли в «Началах» пары величин, не связанные никаким отношением? Ведь определение не может и не должно устанавливать, что «все величины, взятые кратно, имеют отношение между собой». Архимед не попал в эту ловушку, и в работе «О шаре и цилиндре» (пятое допущение, или постулат Архимеда) мы читаем:
Большая из двух неравных линий, поверхностей или тел превосходит меньшую на такую величину, которая, будучи складываема сама с собой, может превзойти любую заданную величину из тех, которые могут друг с другом находиться в определенном отношении.
Древнегреческий математик и астроном Евдокс (ок. 408-355 до н.э.) родился и умер в Книде. Он был сыном Эсхина и учеником Платона, происходил из семьи медиков и также несколько лет занимался медициной. В возрасте 23 лет Евдокс уехал в Афины и поступил в Академию Платона, где изучал философию. Несколько лет спустя он узнал об астрономических исследованиях, проводимых в то время в Египте. Питая огромный интерес к этой дисциплине, Евдокс решил переехать в Гелиополь. Благодаря поддержке и покровительству царя Агесилая у него был доступ к результатам исследований и теориям священнослужителей города. Вернувшись в Грецию, Евдокс основал собственную школу философии, астрономии и математики. Впоследствии он написал свою первую книгу «Явления», в которой рассматривал восходы и закаты звезд. Его геометрия (в частности, теория отношений и метод исчерпывания) оказала большое влияние на Евклида.
Теория отношений была самым древним решением проблемы иррациональных чисел, а метод исчерпывания позволил ему решать задачи нахождения площадей и объемов, напримерплощади круга, пропорциональной квадрату его диаметра, и объема пирамиды, который равен трети призмы с таким же основанием и такой же высотой. Большой интерес представляют определения 3 и 4. Выражение «некоторая зависимость» не имеет смысла. К тому же Евклид пишет об отношении по количеству, которого в случае несоизмеримости не существует. Четвертое определение заслуживает более пристального анализа:
Величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга.
Это определение устанавливает, при каких условиях две величины «имеют отношение между собой»; если они не выполнены, между ними не будет отношения. Сравним это определение со следующими.
Утверждение | Определение |
Две прямые параллельны друг другу, | если они, продленные бесконечно, не встречаются. |
Одна прямая перпендикулярна другой, | если при их пересечении образуются прямые углы. |
Две величины имеют отношение между собой, | если они, взятые кратно, могут превзойти друг друга. |
Число является простым, | если измеряется только единицей. |
Два числа простые между собой, | если их единственная общая часть — единица. |
Для математика не так важен онтологический аспект («что это?»), сколько методологический («как это работает?»). Следовательно, его интересует, одинаковы два соотношения, или одно больше другого, даже если ему и не совсем ясно, что такое, собственно, соотношение. Именно об этом говорится в определениях 5, 6 и 7.
Определение 5. Говорят, что величины находятся в том же отношении первая ко второй и третья к четвертой, если равнократные первой и третьей одновременно больше, или одновременно равны, или одновременно меньше равнократных второй и четвертой каждая каждой при какой бы то ни было кратности, если взять их в соответственном порядке.
Определение 6. Величины же, имеющие то же отношение, пусть называются пропорциональными.
Определение 7. Если же из равнократных кратное первой превышает кратное второй, а кратное третьей не превышает кратного четвертой, то говорят, что первая ко второй имеет большее отношение, чем третья к четвертой.
Возьмем две пары однородных величин: А — В и Г — Δ (термин «однородные» нигде не объясняется, но очевидно, что имеются в виду две поверхности, два числа, два тела и так далее; напротив, линия, число и тело будут неоднородными величинами). Каждая пара образует соотношение, которое мы запишем как
А/B и Г/Δ.
Возникает вопрос: в каком случае мы можем сказать, что
А/B = Г/Δ, а когда А/B > Г/Δ ?
Теперь возьмем два произвольных множителя: множитель т для А и Г и n для В и А. При этом m х А и n х В — однородные величины, значит, их можно сравнивать; то же верно и для m х Г и n х Δ.
Следовательно, каково бы ни было значение множителей тип, каждый раз, когда мы имеем
то имеем и
То есть А/B = Г/Δ
Если же у нас такая пара множителей при которых
m х A > n х B, но m х Г < n х Δ,то
А/B > Г/Δ
Из-за чего Евклиду понадобилось такое сложное определение? Из-за несоизмеримости. Рассмотрим одно и то же предложение в двух разных случаях: в первом отрезки будут соизмеримы, а во втором — нет.
Книга VI, предложение 1. Треугольники и параллелограммы, имеющие одинаковую высоту, относятся друг к другу как их основания.
Рассмотрим доказательство этого предложения в случае соизмеримости. Если основания двух треугольников соизмеримы, то мы можем использовать общий измеритель для того, чтобы разложить их на равновеликие треугольники методом танграма (см. рисунок).
Если АВ и ΓΔ являются соизмеримыми основаниями двух треугольников, заключенных между одними и теми же параллельными, то существует общий отрезок LM, который делит основание АВ на т количество частей и основание ΓΔ — на п количество частей. Если мы соединим точки концов каждого из т отрезков, на которые LM делит основание АВ с вершиной С, и точки концов каждого из п отрезков, на которые LM делит основание ΓΔ с вершиной Е, то получим, соответственно, тип количество треугольников, равновеликих треугольнику LMN, где N — любая точка, взятая на прямой СЕ, параллельной А. Следовательно, АВС = m х (LMN), ΔΓΕ = m х (LMN). То есть
АВ/ΔΓ = (m х LM)/(n х LM) = (m х (ΔLMN))/(n х (ΔLMN)) = ΔABC/ΔAГ.
РИС. 3
РИС. 4
Но если отрезки АВ и ΓΔ взяты произвольно, мы не можем знать, соизмеримы ли они. Действительно, любой отрезок имеет гораздо больше несоизмеримых ему отрезков, чем соизмеримых. Таким образом, доказательство, изложенное выше, является не общим, а, напротив, сугубо частным случаем. Рассмотрим теперь общее доказательство. Оно будет основано на следующей идее: если метод танграма нельзя применить внутри фигуры, это не значит, что его нельзя применить вне ее. Вместо того чтобы строить общий треугольник и помещать его в каждый из заданных, построим отрезки, равные каждому основанию, и соединим получившиеся точки с вершиной, как показано на рисунке 3. Таким образом, мы получим треугольники, кратные тип раз заданным:
ΔΑ"CΒ = m x (ΔΑCΒ), ΔΝ'" РМ = n x (ΔΝΡΜ).
Не нужно верить никаким предсказаниям, сделанным по гороскопам, основанным на дате рождения. Влияние звезд настолько трудно рассчитать, что на Земле нет никого, кто мог бы это сделать.
Евдокс
Теперь мы должны только убедиться, что из двух треугольников, заключенных между двумя параллельными прямыми (то есть одинаковой высоты), большая площадь — у того, у которого большее основание. Ответ, разумеется, утвердительный (см. рисунок 4). Основание АВ меньше основания ΓΔ. Следовательно, мы можем отложить АВ на ΓΔ (в «Началах» не объясняется понятие большего и меньшего, но интуитивно всегда используется верно: большее — то, что содержит часть, равную меньшему) и построить треугольник, равный АСВ, внутри ΓΕΔ.
Значит, площадь треугольника с большим основанием больше. Следовательно, если
то
Теперь, применив определение Евдокса, мы получаем, что
АВ/ΓΔ = ΔАСВ/ΔΓΕΔ,
Ч.Т.Д.
В предыдущем примере мы установили равенство соотношений между парами величин различных видов: прямых в первом случае и площадей — во втором. Отсюда вытекает необходимость уточнения, которое содержится в определении 5 книги 5. Благодаря этим определениям Евклид располагал весьма полезным инструментом для получения конкретных геометрических результатов в области прямых и плоских многосторонних фигур. Эти результаты составляют основное содержание книги VI, в которой Евклид излагает в том числе предложения, указанные в следующей таблице. Это геометрическое ядро теории отношений.
Применение теории отношений в геометрии | ||
Предложение | Название | Содержание |
2 | Теорема Фалеса | Если в треугольнике параллельно одной из сторон проведена некоторая прямая, то она рассечет стороны треугольника пропорционально. |
19 | Теорема сторон | Подобные треугольники находятся друг к другу в двойном отношении соответственных сторон. |
5, 6 и 7 | Теоремы площадей | Критерий пропорциональности трех сторон; критерий пропорциональности двух сторон и критерий равенства одного угла. |
11 и 13 | Критерий подобия треугольников | Треугольники могут быть построены, исходя из двух данных прямых. |
12 | Третья и средняя пропорциональная (теорема высот прямоугольных треугольников) | Треугольник может быть построен, исходя из трех данных прямых. |
8 (вывод) | Четвертая пропорциональная | Если в прямоугольном треугольнике из прямого угла к основанию проведен перпендикуляр, то треугольники при перпендикуляре подобны и целому, и между собой. |
У теории отношений открылся огромный — и неожиданный, что говорит о гениальности Евдокса,— математический потенциал для определения площадей и объемов. Для этого метод танграма должен был применяться до бесконечности, что невозможно из-за наложенного Аристотелем ограничения. Следовательно, необходимо прибегать к двойному методу доведения до абсурда — в XVII веке его назвали методом исчерпывания. Евклид использовал его для доказательства следующих предложений.
Книга XII, предложение 2. Круги относятся друг к другу как квадраты их диаметров.
S1/S2 - d12/d22
Книга XII, предложение 7. Всякая призма, имеющая треугольное основание, разделяется на три равные друг другу пирамиды, имеющие треугольные основания.
P1/П1 = 1/3
Книга XII, предложение 18. Сферы находятся друг к другу в тройном отношении собственных диаметров.
Е1/Е1 = d13/d23
Рассмотрим, как Архимед использовал метод исчерпывания для решения задачи о квадратуре параболы. В некотором смысле оно похоже на решение задачи о квадратуре круга, предложенное Евклидом. Его основная цель — вписать в площадь параболы треугольники и сложить их площади, уже известные нам. Архимед писал:
Квадратура параболы. Площадь сегмента параболы относится к площади вписанного в нее треугольника как один к трем.
Рассмотрим треугольник АСВ, вписанный в сегмент параболы ADCEBA, где вершина С — точка, через которую проходит касательная к параболе, параллельная хорде АВ. В этом случае Архимед утверждал, что площадь S (ADCEBA) равна 4/3 площади треугольника Т = АСВ. То есть
S(ADCEBA) = 4/3 x S(ΔABC) = 4/3 х Т,
Теперь мы должны вписать в оставшиеся сегменты параболы треугольники Т1 = ADC, Т2 = ВЕС и сегменты ADA, DCD, СЕС, ВЕВ и так до бесконечности, поскольку величины делимы до бесконечности. Все это бесконечное множество треугольников покрывает площадь, равную трети треугольника Т=АСВ. Тем не менее прибегать к бесконечному необязательно, так как мы можем воспользоваться методом исчерпывания. Можно убедиться с помощью танграма, что треугольники Т1 = ADC и Т2 = ВЕС «покрывают соответственно больше половины сегментов параболы ADCA и ВЕСВ». Очевидно, что площадь треугольника T1=ADC равна половине прямоугольника АН. При этом сегмент параболы ADCEBA меньше этого прямоугольника.
Следовательно, Т1 = ADC покрывает больше половины сегмента ADCEBA. То же самое происходит с Т1 = ADC, сегментом параболы СЕВС и прямоугольником CF. Такой метод рассуждений справедлив последовательно для каждого остающегося сегмента параболы. Важно обратить внимание на то, что хотя в данном случае мы применили его к параболе, он работает и для других кривых, включая окружности.
Однако полностью потенциал этого метода раскрыл Архимед, самый выдающийся математик античности.
Евклид дает следующее определение методу исчерпывания:
Книга X, предложение 1. Для двух заданных неравных величину если от большей отнимается больше половины и от остатка больше половины и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины.
Это предложение равнозначно определению 4 книги V: если верно одно, то верно и другое, и наоборот. Архимед обратил на это внимание и решил ввести предложение в ранг постулата, который сегодня известен как принцип (или аксиома, или свойство) Архимеда.
Принцип Архимеда. Если имеются две величины одного порядка А и Bf то всегда существует натуральное число пу при котором п х А > В или п х В > А.
Доказав предложение 7 книги XII, Евклид решил задачу расчета объема пирамиды, унаследованную от египетских математиков. Вопрос о возможности ее решения с помощью метода танграма стоял на третьем месте в составленном Давидом Гильбертом в начале прошлого века списке из 23 задач, представляющих особый интерес для математики. Ответ, разумеется, был отрицательным. А предложение 2 дает ответ на один из важнейших вопросов классической геометрии, которому и посвящена следующая глава.