ГЛАВА 4 Метод танграма в «Началах»

Одним из важнейших достижений китайской геометрии было изобретение танграма, позволяющего составлять различные фигуры с одинаковой площадью. Древнегреческие математики развили и обобщили эту технику, придав ей огромный дедуктивный потенциал. В частности, метод танграма позволил Евклиду доказать одну из основополагающих теорем древнегреческой геометрии, знаменитую теорему Пифагора, и решить задачи тысячелетней давности, унаследованные от месопотамских мыслителей.

Классический китайский тантрам — это элементарный геометрический метод, который основывается на следующем фундаментальном постулате.


Две фигуры, состоящие из равных частей, равны между собой.


В Китае этот метод был известен с незапамятных времен и назывался qi qiao ban — «семь дощечек мастерства». В Европу танграм попал как игра-головоломка и в таком виде распространился по всему миру. Изначально семь составляющих его частей сложены так, что образуют квадрат (см. рисунок 1 на следующей странице). Площади фигур, составленных из всех этих частей, равны площади квадрата (рисунок 2). Эта особенность позволяет, помимо прочего, показать значение диагонали квадрата. Итак, из данного квадрата можно сложить еще два с равной площадью (рисунок 3). Таким образом, мы видим, что при помощи диагонали квадрата справа можно построить еще один (как данный первоначально) с площадью, вдвое большей. Мы использовали термин «показать», поскольку в этом случае речь идет о простом наблюдении фигур без использования каких-либо логико-дедуктивных методов.

Такой вид рассуждения тесно связан с диалогом Платона о воспоминании «Менон», где Сократ показывает: раб знает то, о чем он не знает, что знает. Рассуждение Сократа строится по принципу следующего: возьмем квадрат (со сплошным контуром, см. рисунок 4). Повторив его четыре раза, мы получим квадрат с пунктирными сторонами, как видно на том же рисунке. Затем проведем диагональ и на ней построим еще один квадрат. Получаем наклонный квадрат с пунктирными сторонами. Очевидно, что площадь этого квадрата равна сумме площадей двух квадратов, равных данному.

РИС. 1

РИС. 2


Танграм работает по такому же принципу, только используются прямоугольные равнобедренные треугольники, построенные на диагонали квадрата, в который части танграма сложены изначально. Евклид использовал в своей геометрии (точнее, в геометрии, основанной на его постулате о параллелях) обобщенный метод танграма: для деления отрезка таким образом, чтобы его части образовывали прямоугольник с площадью, большей, меньшей или равной площади данного квадрата; для геометрического решения месопотамской задачи, применяемой в решении уравнений второго порядка; для построения квадратуры многоугольников — то есть квадрата с площадью, равной площади данного многоугольника; наконец, для определения золотого сечения — операции, заключающейся в разделении отрезка на две части так, чтобы меньшая относилась к большей так, как большая относится к целому.

Евклид располагал базовым инструментом — параллелизмом, с помощью которого смог доказать следующие результаты.


Книга I, предложение 29. Накрест лежащие углы равны между собой.

Книга I, предложение 32. Сумма трех внутренних углов треугольника равна сумме двух прямых углов.

Книга I, предложение 34. Противоположные стороны и углы параллелограммов равны между собой.

РИС.З

РИС. 4

Предложения 29 и 34 позволяют применить обобщенный метод танграма, то есть использовать тантрам, не ограничиваясь изначально заданными фигурами, на которые он разделен. Для этого нужны теоремы, устанавливающие равенство их площадей.


Книга I, предложения 35 и 36. Параллелограммы, находящиеся на одном и том же основании и между одними и теми же параллельными прямыми, равны между собой.

Книга I, предложение 37. Треугольники, находящиеся на одном и том же основании и между одними и теми же прямыми, равны между собой.

РИС. 5

Рисунок 5 иллюстрирует предложения 35 и 26 первой книги.


Евклид говорит, что параллелограммы ВС и IH обладают одинаковой площадью. Сегодня это утверждение кажется нам очевидным. У фигур одинаковое основание и одинаковая высота, а площадь получается путем умножения этих двух величин (хотя это тоже требует доказательства). Однако древнегреческая геометрия оперирует размерами, у которых вследствие несоизмеримости нет длины. Из-за этого один или оба отрезка не могут быть измерены (этот вопрос мы рассмотрим подробнее в главе 5). Следовательно, необходимо найти способ доказать равенство этих двух площадей. Евклид использовал общее понятие 1. Если бы ему удалось доказать, что площади параллелограммов ВС и AJ с общим основанием равны и что площадь второго равна площади параллелограмма IH с которым у него одинаковое основание, то и параллелограммы ВС и IH были бы равны.


Точка обозначает конец линии или ее начало?

Кто знает. Никто.

Мо-цзы (479-400 до н. э.)


Начнем с первого вопроса. Евклид анализирует все фигуры (то есть пользуется методом китайского танграма) и применяет общие понятия 2 и 3. Треугольники BAI и DCJ состоят из белой фигуры и серой, которая является общей для них обоих. Если мы отнимем у них этот общий кусок («от равных отнимем равное»), то получится, что площади четырехугольников BAMD и IMCJ равны, хотя они и имеют разную форму.

Теперь добавим к этим четырехугольникам треугольник АМС (темно-серый), который станет их общей частью. Поскольку мы прибавили «к равным равное», получается, что площади параллелограммов ВС и AJ с общим основанием АС равны. В чем разница между случаем, который мы только что доказали, и общим утверждением предложений 35 и 36 первой книги? Она состоит в том, что, как мы уже видели, в этом случае речь идет не просто о равных основаниях, а об одном и том же основании (в паре ВС и AJ — отрезок АС, в паре AJ и IH — отрезок IJ).

В этом доказательстве Евклид, возможно, использовал предложение 4 из первой книги (критерий равенства по двум сторонам и углу), которое устанавливает равенство треугольников BAI и DCJ. Для этого ему были необходимы некоторые свойства, вытекающие из постулата о параллельных (см., в частности, предложения 34 и 29 первой книги). После того как Евклид пришел к этому результату, он мог использовать метод танграма, при котором части не равны друг другу, но имеют одинаковую площадь. В этом и состоял принцип обобщенного танграма, который Евклид использовал с большим мастерством. Предложение 37 первой книги является простым выводом из предыдущих, поскольку сводится к доказательству того, что площадь треугольников равна половине площади параллелограмма (см. рисунок 6).


Разум не сосуд, который надо наполнить, а факел, который надо зажечь.

Плутарх


Евклид, как до него и другие древнегреческие математики, вывел геометрию на новый уровень и придал ей большую ясность, обобщив простые и очевидные результаты. В данном случае он установил, правда не объясняя это отдельно, а сразу используя в своих доказательствах, что площади можно высчитывать при помощи различных по форме фигур (параллелограммов и треугольников).

РИС. 6


Еще одно геометрическое понятие, позволившее Евклиду использовать обобщенный метод танграма,— гномон. Геродот так говорит о нем во второй книге «Истории»:


«Сесострис разделил землю между всеми жителями и дал каждому по квадратному участку равной величины. От этого царь стал получать доходы, повелев взимать ежегодно поземельную подать.

Если река отрывала у кого-нибудь часть его участка, то владелец мог прийти и объявить царю о случившемся. А царь посылал людей удостовериться в этом и измерить, насколько уменьшился участок, для того чтобы владелец уплачивал подать соразмерно величине оставшегося надела. Мне думается, что при этом-то и было изобретено землемерное искусство и затем перенесено в Элладу.

Ведь «полос» и «гномон», так же как и деление дня на 12 частей, эллины заимствовали от вавилонян».


РИС. 7

Евклид дал определение гномону в книге II, хотя уже в книге I установил характеристики, благодаря которым он имеет такое большое значение.


Книга II, определение 2. Во всякой образованной параллельными линиями площади каждый из расположенных на ее диаметре параллелограммов вместе с двумя дополнениями будем называть гномоном.


Его интересная особенность:


Книга I, предложение 43. Во всяком параллелограмме дополнения расположенных по диаметру параллелограммов равны между собой.


Как видно на рисунке 7, гномоном, согласно определению 2 книги II, является серая фигура, состоящая из четырех частей: двух параллелограммов IH, GC и двух треугольников IGD и JDG, явно равных. Треугольники, на которые параллелограмм делится диагональю, то есть белые и темно-серые, равны по признаку равенства треугольников, то есть применяется общее понятие 3. Следовательно, фигуры разной формы (которые нельзя наложить одну на другую) равновеликие, в этом и заключается обобщенный метод танграма.


ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА

Игра в танграм позволила Евклиду дать очень изящное и в то же время очень оригинальное доказательство теоремы Пифагора.

Доказательство Евклида из предложения 47 книги I.


Теорема Пифагора. В прямоугольном треугольнике ΔАВС квадрат на гипотенузе ВС равен сумме квадратов, построенных на катетах АВ и АС.


Как видно на рисунке 8, из вершины А проводится прямая, перпендикулярная гипотенузе ВС, до пересечения со стороной Н1 квадрата В1. Мы получаем прямоугольники CJ и В]. Необходимо доказать, что прямоугольник С] равен квадрату AD и что прямоугольник BJ равен квадрату AG. Евклид строит треугольники AACI и ADCB. Они равны, как можно легко убедиться, поскольку имеют равные стороны и угол между ними (общее понятие 2). Итак, у треугольника AACI и прямоугольника CJ общая сторона СI, а его вершина А находится на той же параллельной прямой, AJ, на которой у прямоугольника CJ расположена сторона KJ, противоположная стороне CI. Следовательно, площадь прямоугольника CJ в два раза больше площади треугольника ΔACI. Таким же образом, площадь квадрата AD в два раза больше площади треугольника ADCB. Следовательно, площадь квадрата AD равна площади прямоугольника IK (первое равенство, которое мы должны были доказать). Аналогично, площадь квадрата AG равна площади прямоугольника BJ (второе равенство, которое мы хотели доказать). Следовательно, согласно общему понятию 2, теорема доказана.


ОБОБЩЕННЫЙ МЕТОД ТАНГРАМА В КНИГЕ II

Термин «геометрическая алгебра» в свое время вызывал споры, но в любом случае он очень удобен из-за своей лаконичности. Дисциплина заключается в том, чтобы выразить площади прямоугольников и квадратов в числовой форме. Ее пионерами были Диофант Александрийский и арабские математики. Например, знаменитое дистрибутивное свойство умножения, представленное в алгебраическом виде как а (b + с + d +...) = (a x b) + (a x c) + + (а х d) + ..., в геометрии Евклида будет записано так:

Книга II, предложение 1.

Если имеются две прямые и одна из них рассечена на сколько угодно отрезков, то прямоугольнику заключающийся между этими двумя прямыми у равен вместе взятым прямоугольникам, заключенным между нерассеченной прямой и каждым из отрезков (см. рисунок 9).

РИС. 8

РИС. 9

Аналогичным образом можно выразить и другие алгебраические равенства, например (а ± b)² = а² + b² ± 2aby (а + b) х (а - b) = а² - b². Рассмотрим только (а + b) х (а - b) = а² - b². Будем исходить из альтернативной формулировки предложения 5 книги 2. Возьмем фигуру, как на рисунке 10. Разобьем прямоугольник HJ. В первую очередь установим равновеликость прямоугольников FN и NB, используя свойства гномона. Прямоугольник NB равновелик прямоугольнику BI по построению, так как DB = DF = а, BJ = FH = b, DJ = а + b, JI = DH = а - b. Получается, что прямоугольник HJ состоит из квадрата KD (а²), поскольку прямоугольники GJ и FN равны, но остается квадрат MG (b²).

РИС. 10

РИС. 11

Второе применение танграма позволяет доказать, что многосторонние фигуры могут трансформироваться в равновеликий квадрат. Для доказательства мы будем постепенно уменьшать количество сторон многосторонней фигуры, сведя ее к треугольнику. Возьмем многостороннюю фигуру ABCDEFG (см. рисунок 11). Соединим две ее любые вершины, между которыми есть хотя бы одна другая вершина, например D и F. Проведем параллельную прямую через вершину Е. Продлим сторону CD, пока она не пересечет эту параллельную в точке I. Соединим точки I и F. Треугольники IFD и EFD равновеликие (книга I, предложение 35). Таким образом, фигуры ABCDEFG и ABCIFG также равновеликие, но у первой на одну сторону больше, чем у второй. Повторив эту процедуру, мы получим прямоугольник, равновеликий заданному многоугольнику. Следовательно, всякую многоугольную фигуру можно свести к треугольнику.

РИС. 12

Затем мы можем доказать, что любой треугольник можно преобразовать в прямоугольник, что наглядно показано на рисунке 12.

Остается разобрать последний вариант: доказать, что всякий прямоугольник можно свести к квадрату (книга II, предложение 14). Возьмем прямоугольник AD и попробуем преобразовать его в квадрат. Рассмотрим рисунок 13. Отложим отрезок, равный CD, на продолжении стороны АС. Разделим отрезок АВ пополам точкой G. Проведем полуокружность с центром G и радиусом GB и полухорду FC, перпендикулярную АВ и пересекающую ее в точке С. Отрезок FC будет стороной квадрата, равновеликого данному прямоугольнику.

Все эти построения можно сделать исключительно при помощи линейки и циркуля. Необходимо доказать, что FC соответствует нужным требованиям. Рассмотрим отрезки r [=GF=AG=GB] и s [=СС]. Получается, что прямоугольник равновелик (r + s) (r - s), то есть r² - s². FC — катет прямоугольного треугольника FCG. По теореме Пифагора его квадрат равен r² - s². Следовательно, прямоугольник AD равновелик квадрату ЕС, что мы и хотели доказать. Евклид провел это доказательство при помощи метода танграма; мы же использовали алгебраические формулировки, чтобы упростить объяснение, не искажая его.

РИС. 13


ЗОЛОТОЕ СЕЧЕНИЕ

Золотым сечением называется такое соотношение двух отрезков a и b, при котором соотношение сумм их длин а + b к большей длине а равно соотношению а к b (см. рисунок 14). Предположительно своим названием соотношение обязано частым использованием в произведениях архитектуры и искусства, которым оно придает, как пишут некоторые авторы, особую гармонию. Его также называют золотым отрезком (когда подразумевается некий наибольший отрезок), золотым числом, божественной пропорцией, или, в терминологии Евклида, делением в крайнем и среднем отношении. Оно обозначается греческой буквой фи (Ф) и соответствует значению:

РИС. 14

РИС. 15

Ф = (1+ √5)/2 = 1,618033988749894848204586834365638117720309...

Это иррациональное число, то есть число, которое не может быть представлено в виде дроби целых чисел. С геометрической точки зрения для построения золотого отрезка надо разделить данный отрезок АВ в точке Е так, чтобы квадрат с большей стороной АЕ совпал с прямоугольником с меньшей стороной ЕВ и первоначальным отрезком (книга II, предложение 11), как видно на рисунке 15.


ПИФАГОРЕЙСКАЯ ЗВЕЗДА

Евклид использовал золотое сечение для промежуточного этапа построения правильного пятиугольника, в частности чтобы получить равнобедренный треугольник, у которого углы в основании были бы в два раза больше угла у вершины. Это удивительное построение можно объяснить, только предположив, что у Евклида уже был пример такого пятиугольника, причем идеального, и что анализируя эту фигуру, он пришел к выводу о необходимости вышеуказанного треугольника. Это еще один пример анализа и синтеза, о которых мы говорили в главе 2. Действительно, при рассмотрении пятиугольника видно, что две диагонали и одна его сторона образуют равнобедренный треугольник, углы в его основании вдвое больше угла у вершины. Диагонали ЕВ и AD пересекаются в точке F, которая делит их в крайнем и среднем соотношении. По всей вероятности, правильный пятиугольник имел особое значение для пифагорейской школы, символом которой, как говорят, была пятиугольная звезда, получаемая путем проведения диагоналей внутри фигуры (непрерывные линии).


ЗОЛОТОЙ ПРЯМОУГОЛЬНИК

При помощи золотого отрезка можно построить прямоугольник, сторонами которого будут первоначальный отрезок АВ и самая длинная часть золотого отрезка, АЕ; поэтому он и называется золотым прямоугольником. На рисунке 15 мы видим, что точка Е делит АВ в крайнем и среднем соотношении. Особенностью этого прямоугольника является то, что он может самовоспроизводиться следующим образом (см. рисунок 16): меньший отрезок BE делит больший отрезок АЕ в крайнем и среднем соотношении и становится таким образом большим отрезком нового деления (точка J делит отрезок ВН(=АЕ) в крайнем и среднем соотношении). Прямоугольник АН является золотым прямоугольником, так же как ЕН, LH и так далее до бесконечности.

РИС. 16


ЗОЛОТОЙ ПРЯМОУГОЛЬНИК И ДОДЕКАЭДР

В заключении «Начал» рассматривается построение Платоновых тел и доказывается, что их существует только пять. В «Тимее» Платон классифицирует природные элементы по пяти телам (см. рисунок 17): тетраэдр он относит к огню из-за его легкости; куб, или гексаэдр, — к земле из-за их стабильности; октаэдр — к воздуху из-за его неустойчивости; икосаэдр — к воде из-за текучести, а додекаэдр — к элементу космоса, пятому, божественному элементу.

РИС. 17

Пять Платоновых тел. Слева направо: тетраэдр, октаэдр, икосаэдр, куб и додекаэдр.

Книга XIII, предложение 18. Кроме упомянутых пяти тел невозможно построить другого тела, заключенного между равносторонними и равноугольными равными друг другу многоугольниками.

Доказательство. Представим, что на листе бумаги стоит точка. Нарисуем вокруг нее 3,4 или 5 равносторонних треугольников, 3 или 4 квадрата и 3 пятиугольника. Если посчитать градусы углов, становится понятно, что другие фигуры невозможны. Следовательно, не могут существовать другие правильные многоугольники, кроме упомянутых выше.


ЗОЛОТОЙ ПРЯМОУГОЛЬНИК В ДВУХ ШЕДЕВРАХ

Существует мнение, что золотой прямоугольник встречается во многих произведениях искусства (в частности, в афинском Парфеноне и «Менинах» Веласкеса). Но даже когда искусство прервало классические традиции, как в случае кубизма, прямоугольник остался важным структурным элементом картины. Парфенон — один из самых известных дорических храмов, сохранившихся до наших дней; он был построен между 447 и 432 годами до н.э. Его размеры составляют примерно 69,5 м в длину, 30,9 м в ширину, высота колонн —10,4 м. Храм посвящен богине Афине, которую жители города считали своей покровительницей. А полотно Веласкеса было написано в 1656 году и его размеры — 318 х 276 см. Как видно на рисунках, пропорции их основных элементов образуют золотые прямоугольники. Необходимо уточнить, что хотя эти пропорции и не были результатом специальных построений, все же вряд ли они получились по чистой случайности.



Но существуют ли пять Платоновых тел? Построить первые три относительно легко, а в случае с икосаэдром и додекаэдром все не так просто. Евклид в предложениях с 13 по 17 книги XIII объясняет эти фигуры и вычисляет их стороны

в соответствии с диаметром сферы, в которую они вписаны. Задача сводится к тому, чтобы построить круг, заключающий одну из сторон многоугольника. Это построение является результатом анализа. В качестве примера рассмотрим построение стороны правильного тетраэдра (см. рисунок).

Разделим диаметр АВ круга в точке С так, чтобы АС = 2ВС, Проведем через С прямую, перпендикулярную АВ, пересекающую полукруг ABD в точке D. Проведем окружность с радиусом CD и рассмотрим заключенный в ней равносторонний треугольник. Мы получим три точки: Е, F, G. Проведем через центральную точку Я треугольника EFG прямую НK, перпендикулярную плоскости и равную АС. Соединим К с вершинами Е, F, G и получим тетраэдр. Еще раз отметим, что для этого построения необходимо произвести предварительный анализ, как мы видели в отступлении, посвященном правильному пятиугольнику. Без этого анализа построение невозможно, так как мы не знали бы, какие действия предпринимать.

Францисканский монах и математик Лука Пачоли, итальянец, решает одну из задач евклидовых «Начал». Картина 1495 года, музей и галерея Каподимонте, Неаполь.

Обложка первого английского издания «Начал» Евклида, опубликованного в 1570 году Генри Биллингсли.

«Начала» Евклида. Латинская копия XII века.


Тем не менее в случае с икосаэдром и додекаэдром не все так просто — именно поэтому Гипсикл отвел значительную часть книги XIV построениям этих фигур. Но самое необычное построение предложил Лука Пачоли (1445-1517) в сочинении «О божественной пропорции» (1494). Этот трактат известен не только тем, что в нем крайнее и среднее соотношение получило одно из самых ярких названий, но и благодаря своему научному содержанию, а также великолепным рисункам полиэдров работы самого Леонардо да Винчи. Шедевр Пачоли «Сумма арифметики, геометрии, учения о пропорциях и отношениях», в котором автор хотел рационализировать бухгалтерские методы того времени, стал завершением математики XIII и XIV веков и открыл новую эру в алгебре.


В 1507 году Пачоли сделал точный перевод «Начал» на латынь. Как видно на рисунке, он вставил один в другой три равных золотых прямоугольника перпендикулярно друг другу по срединной параллели. Затем ему оставалось только соединить ближайшие друг к другу вершины. Чтобы построить додекаэдр, итальянец соединил центры граней икосаэдра. Великолепный пример ясности рассуждений!


Загрузка...