В камне есть своя жизнь, темная и неисследованная, проявляющаяся в форме кристаллизации, в сопутствии известным горным породам, в антипатии к другим, в отношениях к свету, электричеству и химическим реагентам… Мертвая земля смотрит на человека этими цветными глазами, говорящими о тайниках скрытой в ней жизни. Это — «последняя улыбка» цепенеющей в мертвом холоде неорганизованной природы…
В эпоху древнего каменного века — палеолита — использовались 13 видов различных минералов и горных пород. Полмиллиона лет назад первым полезным минералом стал кварцит, из которого вытачивались топоры и наконечники для копий. Остатки примитивных орудий из кварцита найдены археологами на стоянках синантропов и питекантропов. Использовались не только камни, найденные в осыпях скал, но и кремниевые желваки, добытые из меловых и известняковых отложений. Сами известняки стали первым строительным материалом. Нашли применение песок, глина, базальт, каменная соль.
В бронзовом веке человеку стали известны медь и золото, а также нефрит и некоторые цветные камни.
В период 3500–3000 лет до нашей эры велась широкая мировая торговля драгоценными камнями, она охватывала Вавилон, Ассирию, Индию и Египет. Египтяне искали и высоко ценили различные самоцветы, особенно синие и голубые, например ляпис-лазурь, бирюзу. В то время снаряжались целые геологоразведочные экспедиции. Одну из них (египетскую, в Синай за бирюзой) возглавлял первый в истории «геолог-разведчик» и мореплаватель Гароэрис. Разведочные работы того времени велись с большим размахом. Установлено, что египтяне прошли сотни разведочных шахт для добычи изумрудов на побережье Красного моря. Глубина некоторых шахт при этом превышала 200 м.
На территории Советского Союза древние разведчики, «рудознатцы», судя по раскопкам, открыли многие рудные районы, а также россыпи на Урале, в Казахстане, Средней Азии и Сибири.
Множество месторождений в предшествующие века обнаружено охотниками, скотоводами, пахарями, лесниками. Это относится прежде всего к давно разрабатываемым полезным ископаемым: железным, медным, оловянным, свинцовым, золотым, серебряным рудам, самоцветам, каменному углю, глинам, известнякам, пескам.
Некоторые из полезных ископаемых разрабатывались давно, как, например, олово в Корнуолле (Великобритания) и медь в Есиока (Япония), — за тысячу лет до нашей эры, а железо в Энгерлянде (ФРГ) — более чем за две тысячи лет.
Но и в недавнее время, уже в нашем веке, подобные открытия не редкость. Так, Карагандинское угольное месторождение было обнаружено пастухами-казахами. Они находили в степи черные блестящие камни и издавна знали их замечательное свойство — гореть в костре, давая тепло в холодные ночи.
Несметны и неисчерпаемы богатства Земли. Содержание в земной коре, считая до глубины 16 км, даже самого редкого элемента — радия — составляет 55,5 млн т, золота — около 500 млн т, меди — 2 000 000 млрд т. А таких элементов, как алюминий, железо, кальций, в недрах Земли содержится гораздо больше— сотни миллионов миллиардов тонн.
Однако использовать эти колоссальные богатства не так просто. Природа тщательно перемешала все элементы, соединила их друг с другом прочными физическими и химическими связями, одни оставила почти у поверхности Земли, другие запрятала глубоко в ее недра. Кислород по процентному содержанию составляет почти половину земной коры, по тот кислород, который содержится в горных породах, хотя и в количестве большем, чем в воздухе, связан с другими химическими элементами и непригоден для дыхания. Из алюминия, составляющего почти 8 % земной коры, нельзя сделать даже простой ложки, если не извлечь его из глип.
Однако природа сама помогла человеку освоить полезные ископаемые, сконцентрировав их в месторождениях. Почти все минералы могут образовывать более или менее крупные скопления — самородки золота и меди, кристаллы каменной соли, глыбы галенита, горы магнитного железняка. Их в первую очередь и использовали люди. К сожалению, сейчас все реже удается находить такие крупные образования ценных минералов, а потребность в минеральном сырье возрастает.
Приходится извлекать из земной коры все более и более сложно извлекаемые элементы. Полмиллиона лет назад кварцит стал первым полезным минералом, из которого изготовлялись топоры и наконечники для копий. Всего лишь три века назад люди использовали только девятнадцать элементов из девяноста, имеющихся в природе. Ныне используются почти все элементы, притом в огромных количествах.
Запасы даже такого нехитрого ископаемого, как камни, пригодные для изготовления первобытных орудий, которых, казалось, было достаточно в осыпях и долинах рек, со временем иссякли. Первобытным людям пришлось заняться горным промыслом, добывать желваки кремния из меловых и известняковых отложений. С разработки таких «каменных» месторождений началась история развития горного промысла, а ручной сортировкой камней положено начало обогащению полезных ископаемых.
Извлечение золота из золотоносного песка стало для людей первой школой извлечения полезных ископаемых из руд. Уроки, полученные в этой «школе», пригодились, когда настала очередь извлекать полезные минералы из бедных руд.
С развитием техники становится все более стремительным рост производства металлов. В 1840 г. во всех странах было выплавлено всего 2,3 млн т стали, а в 1960 г. — уже 225 млн т. В 1985 г. только в одной пашей стране выплавлено 160 млн т стали.
И все же из огромной сокровищницы земной коры, содержащей примерно 775 000 000 млрд т железа, человечество пока взяло немногим более 5 млрд т. Капля в море! Но все дело в том, что запасы богатых железных руд, из которых можно легко и дешево получать высококачественную сталь, ограниченны.
Что же такое руда? Во всякой горной породе в том или ином количестве содержится железо, по не всякая может считаться железной рудой. Руда — это такая порода, из которой возможно и экономически выгодно на данном уровне развития техники извлекать полезные минералы. Следовательно, с развитием техники изменяется оценка горных пород, и то, что раньше не было рудой, становится ею. Например, раньше железной рудой считали только такую породу, которую можно было загружать непосредственно в доменную печь и выплавлять чугун. Такая руда содержала около 60 % железа — почти одни только железные минералы. Потом, с развитием металлургии, научились выплавлять железо из более бедной руды, содержащей кроме железных минералов некоторое количество кремнезема и известняка» Для того чтобы получить чугун из такой руды, добавляли в плавку некоторое количество флюсов известняка и других компонентов, связывающих примеси. При современном колоссальном производстве железа, конечно, уже не хватает богатых руд. Теперь железной рудой считается и такая, где железа всего 30–40 %.
Древние люди пользовались медью, находящейся только в самородках, т. е. считали рудой почти 100 %-ную медь. Затем медь стали выплавлять из других минералов, в которых ее содержание вдвое-втрое меньше; в начале нашего века медной рудой считали породу с содержанием меди 5–10 %, а сейчас научились перерабатывать руду, содержащую менее 0,5 % меди. Такая руда не может сразу подвергаться металлургической переработке: она должна обогащаться на фабрике, где медные минералы отсортировываются от других. Полученный медный концентрат содержит уже не 1, а 20–30 % меди и идет на плавку в отражательную печь.
При современном гигантском производстве металлов уже почти не осталось руд, которые можно сразу плавить, минуя стадию обогащения. Руды свинца содержат 1–2 % этого металла, а на плавку идет 60 %-ный концентрат. Молибдена в руде — десятые и сотые доли процента, а металлургам нужен концентрат, содержащий не менее 47–50 % молибдена и не слишком много мышьяка и фосфора, так как эти примеси вредны для специальных сталей, в которые добавляют молибден.
Металлурги прошлого века никогда не признали бы рудой породу, в которой содержатся доли процента ценного металла, а сейчас большинство металлов извлекается именно из таких руд. Этим занята самая молодая отрасль горной промышленности — обогащение полезных ископаемых. Сейчас все полезные ископаемые проходят стадию обогащения. Даже уголь, который залегает в земле целыми пластами. Даже один из самых распространенных минералов — полевой шпат, применяемый в керамической промышленности.
Металлургия является древнейшим промыслом. В гробницах древних индусов и финикиян обнаружено холодное оружие из стали, возраст которого около 4000 лет. Очевидно, технологический процесс выплавки железа из богатых железных руд был освоен еще на заре цивилизации… Руду смешивали с восстановителем, например древесным углем, и нагревали. Окислы восстанавливались до металла, и из его расплава формовали готовое изделие. Если примесей в руде немного, то добавлением (шихтовкой) некоторых компонентов можно получить шлак, который легче металла и всплывает на поверхность расплава. Например, кварц можно сплавить с известью и получить легкоплавкий CaSiO3.
Выплавка металлов из руд получила название «металлургия» (от греч. «эрго» — работа, дело). Отрасль промышленности, вырабатывающая железо, марганец и хром, — черная металлургия. Производство 70 других металлов, в том числе меди, алюминия, цинка, свинца, никеля, золота, относится к цветной металлургии.
С помощью того же греческого корня образуется слово «галургия» — выработка солей (по-гречески «гало») галогенидов — фтора, хлора, брома и йода. В основе галургии лежат процессы растворения и кристаллизации солей NaCl, КСl, NaF, NaBr и др.
Для металлургии самым важным свойством руд и минералов является химический состав. Например, сульфиды железа малопригодны для плавки, так как сера делает хрупким и ломким и чугун, и сталь. Слишком дорого обходится выплавка чугуна и из руды, в которой содержание железа менее 30–40 %. Такие руды, прежде чем пустить на плавку, необходимо «обогатить» — отобрать из них железные минералы и отбросить пустую породу. Об этом знали еще древние металлурги. «Плавить негодную руду вместе с годной невыгодно, — писал в середине XVI в. Агрикола. — Поскольку природа рождает металлы по большей части не в чистом виде, а в смешанном с землями, загустелыми растворами и камнями, необходимо эти ископаемые по возможности отделить еще до плавки».
Разделение природных смесей на минералы, основанное на различии их физических и химических свойств, можно назвать, используя тот же греческий корень, минералургией.
Большинство минералов различаются по внешнему виду. Но внешний вид — цвет, блеск, форма кристаллов, спайность, зернистость — играет самую незначительную роль в сортировке минералов. Разнообразие других физических и физико-химических свойств минералов не менее велико, чем внешние признаки. Такие свойства, как плотность, электропроводность, магнитная проницаемость, смачиваемость водой, жиром, ртутью и другие, используются в различных аппаратах для сортировки минералов.
Минералы, обладающие близкими свойствами, например плотностью, в этих аппаратах собираются вместе, в один продукт. Этот продукт, называемый концентратом, богаче ценным минералом, чем исходная руда. Произошло частичное обогащение руды. Продукт, обедненный ценным минералом, состоящий в основном из пустой породы, получил название «хвосты».
Если в концентрат с минералами, близкими по плотности, входят минералы с различной электропроводностью, то можно провести дальнейшее обогащение — разделение минералов по электропроводности. Так, используя различные физические свойства, можно получать все более и более богатые концентраты.
Но минералы— это еще не чистые металлы, а их химические соединения, которые можно разрушить только химическими методами. Этим занимаются металлурги, применяющие растворы кислот и солей или высокие температуры для выделения металлов из концентратов.
Граница между физикой и химией минералов — это граница между минералургией и металлургией. Разумеется, эта граница, как и вообще все границы в науке и технике, весьма условна. Она стирается все больше и больше, как и граница между современной физикой и химией. Все теснее переплетаются между собой смежные отрасли науки и техники. Они не могут существовать друг без друга — физика и химия, мипералургия и металлургия.
Разделение компонентов по их свойствам (плотности, магнитной восприимчивости, электрической проводимости, смачиваемости и т. д.) основано на создании градиента концентрации, т. е. расслоении частиц минералов, ионов или молекул в жидкой или газовой средах, а также их концентрировании на границах раздела фаз: жидкость-газ; твердое тело — жидкость. «Растаскивание» частиц различных минералов, их размещение в различных зонах обогатительных аппаратов производится с помощью силовых полей: магнитных, электрических, гравитационных, адсорбционных и т. д. Комбинированная переработка осуществляется при использовании нескольких свойств с применением сочетания полей в одном аппарате (комбинированный процесс) или в ряде последовательно расположенных аппаратов (комбинированная технологическая схема). Комбинированное обогащение минерального сырья производится без изменения фазового и химического состава входящих в руду минералов, т. е. в результате сочетаний обогатительных методов. Комбинированные обогатительные схемы обычно включают в качестве первичного процесса гравитационный (обогащение в тяжелых суспензиях, отсадку, обогащение в винтовых сепараторах, на шлюзах и т. д.), а затем магнитную сепарацию или флотацию. Такие схемы обогащения типичны для железных (гравитация — магнитная сепарация), марганцевых (гравитация-флотация) и редкометальных руд (гравитация — магнитная или электрическая сепарация — флотация).
Если обогатительными методами или их комбинацией не удается получить кондиционные концентраты, применяется гидро- или пирометаллургическая доводка. Гидрометаллургическая доводка — это выщелачивание вредных компонентов из черновых концентратов, например фосфора или кремнезема из железных, марганцевых, вольфрамовых концентратов. Комбинированные схемы, в которых последовательно применяются различные методы, позволяют наиболее полно извлекать ценные компоненты из минерального сырья; комбинированные процессы дают наиболее высокую чистоту концентратов.
Технологию переработки соответствующих руд, схему минералургии определяют история образования месторождения, химия и физика процессов кристаллизации рудного тела — как говорят геологи, генезис месторождения — и связанный с этим парагенез минералов и элементов. Более того, генезис руды определяет концентрацию минералов, их взаимное прорастание, вкрапленность, а следовательно, схему рудоподготовки, последовательность методов обогащения, всех технологических операций.
По существу, природные и технологические процессы подчиняются одним и тем же физическим и химическим законам с той разницей, что в природе они могут протекать тысячелетиями до установления термодинамического равновесия, а в технологических процессах время зависит от производительности аппаратов.
Различным генетическим типам месторождения присущи определенные процессы природной концентрации элементов и минералов.
Гравитационные свойства минералов играют решающую роль при образовании осадочных месторождений — россыпей всех видов. Магматические процессы являются некоторым аналогом пирометаллургических, по происходят при высоких давлениях. К собственно магматическим относятся процессы непосредственной кристаллизации минералов из магмы.
Концентрация элементов в природе связана главным образом с процессами гравитации, выщелачивания, фильтрации, осаждения, сорбции, сублимации (возгонки), плавления и кристаллизации. Эти процессы имеют определенные технологические аналоги, но их значение существенно различно в геологии и минералургии.
Из большого числа известных в природе минералов в промышленных месторождениях встречаются лишь несколько сот. Для технологии обогащения руд представляют интерес минералы, содержащие ценные компоненты, и минералы вмещающих пород. Таких минералов (не считая разновидностей) насчитывается около 250.
При переработке минерального сырья существенны не только отдельные свойства минералов, но и их сочетания, а также крупность частиц. Далее мы покажем, какие физические свойства можно использовать при обогащении смеси минералов, в каком диапазоне крупности «работают» те или иные обогатительные процессы и аппараты.