НОВЫЙ МЕТОД ПОЛУЧЕНИЯ ЧИСЛЕННЫХ ЗНАЧЕНИЙ в применении к числу П

Джонни Пог, Джонни Пог

Со стола схватил пирог

И уселся в уголок. [2]


Проблема нахождения величины числа π, привлекавшая внимание математиков с самых давних времён, ближе к нашему времени стала рассматриваться как чисто арифметическая. Но именно нынешнему поколению предназначено было совершить открытие, что в действительности это всё-таки проблема из области динамики, и истинная величина пая, казавшаяся нашим предшественникам неким ignis fatuus [3], была получена в конце концов под давлением.

Ниже приведены основные обозначения.

Пусть U — это Университет, G — Греческий Язык, а P — Профессор. Тогда GP — Профессор Греческого Языка; приведём к несократимому виду, соответствующие младшие члены получат обозначение J [4].

Пусть также W — усилия, связанные с хождением в должность, Т — нонешние времена, ρ — жалуемая за те усилия плата, π — плата за то же в соответствие с Т, а S — вожделенная сумма, так что π = S.

Задача заключается в получении такой величины π, которая была бы соизмерима с W.

В прежних трудах, посвящённых этому предмету, было показано, что среднее значение пая составляет 40,000000. Позднейшие авторы заподозрили, что запятая случайно оказалась смещённой, и что истинное значение пая на самом деле [5] 400,00000; но так как подробности процедуры вычисления оказались утрачены, то вплоть до нашего времени дело на том и остановилось, хотя для решения этой задачи пытались применить некоторые чрезвычайно остроумные методы.

Ниже мы собираемся дать краткий обзор этих методов. На наш взгляд, более остальных заслуживают внимания Рационализация, метод Индифферентности, метод Пенрина и метод Исключения. Завершим мы рассказом о величайшем открытии наших дней, методе Вычисления под Давлением.


I. Рационализация

Своеобразие процедуры освобождения от иррациональностей заключается в её одинаковом воздействии на все величины с отрицательным знаком.

Покажем это на примере. Пусть Н — Высокая церковь, а L — Низкая церковь; тогда их среднее геометрическое будет √HL. Обозначим его «В» (Широкая церковь) [6].

=> HL = B2 [7]

Пусть, кроме того, x и y являются неизвестными.

Теперь процедура требует разбиения U на элементарные фракции [8], которые могут создавать различные объединения. Та из двух сформированных таким образом фракций большинства, которая соответствовала Р, в дальнейшем не представляла трудностей, зато рационализация второй казалась безнадёжной.

Вследствие этого попытались провести reductio ad absurdum [9], и уже раздавались вопросы: «Почему же величину π никак не оценят?». Главная трудность заключалась в нахождении у.

Тогда с целью упростить уравнение прибегли к некоторым оригинальным заменам и перестановкам, и одно время утверждали, хотя это никогда не было доказано, что все участвующие игреки оказываются на одной стороне. Тем не менее, предварительные слушания вновь и вновь приводили к одному и тому же иррациональному результату, поэтому данная процедура в конце концов была оставлена [10].


II. Метод Расхолаживания

Это была модификация «метода конечных Разностей», которую вкратце можно описать так.

Пусть Е — Очерки, а R — Рецензии, тогда геометрическая область точек (Е + R) в мультилинейной системе координат оказывается поверхностью (т. е. эта область имеет длину и ширину, но не имеет глубины) [11]. Пусть v — это новизна; предположим, что (Е + R) является функцией v.

Принимая эту поверхность в качестве базисной плоскости, получаем:

Е = R = B

=> EB = B2 = HL (См. предыдущий пункт).

Умножив на Р, получаем EBP = HPL [12].

Теперь оставалось исследовать геометрическое место ЕВР [13]; было показано, что оно является родом Цепной Линии [14], называемым Цепной Патристикой [15], которая обычно определяется как «оригенальный паттерн, содержащий много кратных точек». Геометрическое место HPL практически полностью с ней совпало.

Основные результаты ожидались из допущения, что (E + R) есть функция от v, но так как оппоненты этой теоремы решительно преуспели в доказательстве того, что переменная v даже не входит в данную функцию, то на получение реального значение π этим методом не осталось никакой надежды.


III. Метод Пенрина

Это была изнуряющая процедура вытягивания численного выражения пая рядом соглашений через нескончаемые голосования [16]. Получаемый таким способом ряд производил впечатление сходящегося, однако после всех вычетов результат всегда оказывался отрицательным, что, разумеется, делало процедуру вытягивания невозможной.

Следующая теорема ведёт своё происхождение от радикального ряда в Арифметической Прогрессии: обозначим сам ряд как АР, а его сумму как (А.Р.)S. Было найдено, что функция (А.Р.)S. в различных формах участвует в вышеописанной процедуре. Тогда эксперимента ради решили преобразовать (А.Р.)S. в какую-нибудь новую систему счисления, ведь первоначально, на протяжении длинного ряда... семестров, она существовала то в семиречной, то в двуречной системах счисления; отражённая в этих системах, наша функция предоставила нам много красивых выражений. Ныне она переведена в десятеричный вид [17].

Произведя эти преобразования, процедуру разделения голосов повторили, но с тем же отрицательным результатом, после чего попытки были оставлены, хоть и не без надежды на будущих математиков, которым после привлечения некоторого количества прежде не определившихся постоянных, возведённых во вторую степень, возможно, удастся достичь положительного результата.


IV. Исключение J

Давно было ясно, что основное препятствие к вычислению π — это присутствие J. В предыдущую эпоху развития математики ради устранения J не ограничились бы даже двумя секущими на прямоугольной площади, а произвели бы вдобавок отделение меньшей части от большей — так называемая процедура устранения по произволу, которая ныне считается не вполне законной.

Ныне же одни предлагали исключить J на основании процедуры, состоящей из двух действий, одно из которых называется «получением достатка», а второе — «обращением остатка»; до её применения, однако, дело не дошло, поскольку J сделались нерешительными. Другие сторонники данного метода предпочли бы, чтобы J исключались in toto [18]. Получившим классическое образование едва ли стоит напоминать, что toto есть аблятив от tumtum [19] и что это прекрасное и выразительное словцо знаменует желание устранить J через принудительное религиозное освидетельствование.

Затем предлагалось устранить J посредством канонизанта [20]. Главное возражение по поводу этой процедуры заключалось в том, что в результате J возводится в неоправданно высокую степень, а π в конечном счёте приобретает иррациональное значение [21].

Для оценки π предлагались и другие процедуры, которых нам нет нужды здесь рассматривать. Согласно одной из них, π должна считаться заданной величиной: эта теория была поддержана многими выдающимися мужами в Кембридже и кое-где ещё, но стоило её применить, как оказалось, что J отвечают отрицательным знаком — а это, разумеется, не способствовало делу.

Теперь мы приступаем к описанию новейшего метода, который увенчался блистательным и неожиданным успехом и который может быть назван как


V. Вычисление под Давлением

Математики уже исследовали геометрическое место точек HPL и ввели эту функцию в свои расчёты. Это, однако, не способствовало получению столь чаемого численного значения — даже при переносе HPL в противоположную сторону уравнения с изменением знака. Процедура, которую мы собираемся описать, заключается главным образом в подстановке G на место Р и в приложении давления.

Пусть функция φ(HGL) [22] развёрнута в ряд; допустим, что его сумма есть абсолютно твёрдое тело, двигающееся по фиксированной прямой. Буквой µ обозначим коэффициент морального обязательства, а буквой е — целесообразность. Буквой F обозначим Силу, действующую равным образом во всех направлениях и изменяющуюся обратно пропорционально Т; символ А пусть означает Компетентного, а символ Е — Просвещённого [23].

Разложим теперь φ(HGL) по теореме Маклорена [24]. Сама функция исчезает при исчезновении переменной:

φ(0) = 0

φ'(0) = С (простая константа)

φ''(0) = 2·J

φ'''(0) = 2·3·H

φ''''(0) = 2·3·4·S

φ'''''(0) = 2·3·4·5·P

φ''''''(0) = 2·3·4·5·6·J

и далее представленные буквами величины повторяются в том же порядке.

Приведённое выше доказательство взято из учёного трактата под названием «Augusti de fallibilitate historicorum» [25], где оно занимает целую главу; вычисление π приведено в следующей главе. Автор пользуется случаем указать на несколько замечательных свойств, которыми обладает вышеприведённая последовательность и существование которых едва ли можно было подозревать заранее. Эта последовательность является функцией как µ, так и е, но если рассматривать её в качестве твёрдого тела, то оказывается, что µ равняется нулю и остаётся только е.

Теперь мы имеем уравнение [26]:

φ(HGL) = 0 + C + J + H + S + P + J.

Такое суммирование дало минимальное значение пая; оно, однако, рассматривалось лишь как первое приближение, и вся процедура повторялась под давлением EAF, что дало для пая частное максимальное значение. Последовательно повышая EAF, в конце концов получили результат:

π = S = 500,00000.

Данный результат значительно отличается даже от предуказанной величины в 400,00000; но не должно возникнуть сомнений, что данная процедура выполнена корректно и что весь учёный мир теперь можно поздравить с окончательным решением этой труднейшей проблемы.

Загрузка...