Лазер на полпути к звездным войнам

Продолжение. Начало см. ТиВ № 9-12/2003 г..№ 1,2/2004 г.

С 1988 г. работы по программе "Космическая лазерная триада" вступили в новую фазу. Фирма Martin Marietta со своими субподрядчиками — TRW и Lockheed Missiles начала работы, связанные с подготовкой осуществления космического эксперимента по программе Zenith Star ("Зенит Стар"), Предполагалось оценить лазер "Альфа" и зеркало, а также выявить возможность их объединения в единую систему для испытаний в космосе, разработать график наземных и летных испытаний, определить порядок проведения испытаний в космосе и оценить их стоимость.

Экспериментальный космический комплекс "Зенит Стар" представлял собой образец лазерной системы оружия, созданной на основе химического лазера "Альфа" (длина 2–4 м. ширина 4.5 м. общая масса 45–50 т) с главным зеркалом диаметром 4 м. В первой половине 1988 г. МО США проверило ход подготовки Управления СОИ к осуществлению этого эксперимента. Макет экспериментального космического комплекса "Зенит Стар" в натуральную величину изготовили и продемонстрировали президенту Р.Рейгану в конце ноября 1987 г. во время посещения им завода фирмы Martin Marietta в Денвере (шт. Колорадо).

Первоначально проведение космического эксперимента "Зенит Стар" намечалось на первую половину 1990-х гг, В его ходе планировали получить необходимые данные для создания средств для быстрого и точного наведения лазерного луча на цель, удержания его на цели в течение необходимого времени и быстрого перенацеливания лазерной системы оружия, а также для разработки механизмов, способствующих гашению вибрации.


Юстировка 80-см телескопа, установленного в отсеке полезной нагрузки МТКК" Спейс Шаттл" для эксперимента "Старпэб".


Вывод комплекса "Зенит Стар" в космос предполагали осуществить двумя ракетами "Титан-4": сначала — модуль с главным зеркалом, датчиками подсистемы захвата, слежения и прицеливания и маломощным лазером. а затем, примерно через четыре месяца — лазер "Альфа". Работы по сборке комплекса в космосе предполагалось производить с помощью роботов под контролем человека. По заявлению представителя фирмы Martin Marietta, запуск комплекса двумя модулями обеспечит то преимущество, что сначала основное внимание будет сосредоточено на технике захвата, слежения, прицеливания и быстрого перенацеливания. С выводом па орбиту лазера будет изменен режим эксперимента, чтобы сконцентрировать внимание на характеристиках луча.

В середине 1980-х гг. в американской печати особо подчеркивалось, что принимаются все меры, чтобы данный эксперимент соответствовал условиям Договора по ПРО от 1972 г. В частности, в ходе эксперимента "Зенит Стар" будут использоваться небаллистические мишени, оборудованные аппаратурой "запрос-ответ", отражателями лазерного излучения и другими устройствами.

Пока во второй половине 1980-х гг. шла подготовка к проведению космических экспериментов "Старлэб" и "Зенит Стар", не прекращались рабо ты по созданию и отработке лазерного оружия наземного базирования и тактического лазерного оружия. К сожалению, формат дайной публикации не позволяет подробно осветить все эти интересные и уникальные эксперименты, поэтому остановимся лишь на наиболее значительных.

Наиболее перспективным типом лазера для создания систем оружия ПРО наземного базирования в США считался лазер на свободных электронах (ЛСЭ). Впервые об этом заявил начальник Управления СОИ генерал-лейтенант Дж. Абрахамсон в ноябре 1085 г. на совещании в министерстве обороны, когда было сообщено, что ЛСЭ наземного базирования с длиной волны около 1 мкм принят в качестве основного типа лазера для разработки оружия ПРО.

Достоинствами ЛСЭ является высокая средняя мощность, перестройка длины волны излучения в широком диапазоне. высокий КПД н малая дифракционная расходимость. Наземная система оружия, созданная на его основе, была бы менее уязвима по сравнению с другими типами лазерных систем оружия, так как необходимые для нее космические зеркала, по мнению специалистов. будут "иметь сравнительно небольшие размеры", а дорогостоящие и более тяжелые компоненты системы будут находиться на земле. Наиболее активно разработками ЛСЭ для военных целей в те годы в США занимались Ливерморская и Лос-Аламосская национальные научно — исследовательские лаборатории, Стэмфордский университет. фирмы TRW и "Боинг". Па начало 1988 г. насчитывалось восемь действующих ЛСЭ коротковолнового диапазона. несколько ЛСЭ сантиметрового диапазона, еще шесть лазеров находились на различных стадиях создания.

Основными целями НИОКР по ЛСЭ по-прежнему оставались разработки лазера с длиной волны около 1 мкм, повышение КПД и отработка методов масштабирования ЛСЭ до уровня мощности. достаточной для решения задач ПРО. Так. в Л иверморской лаборатории с 1986 г. проводились эксперименты по программе Paladin с ЛСЭ ИК-диапазона, связанные с повышением КПД и мощности. Учитывая большую важность работ, приняли решение построить на полигоне Уайт Сэндз экспериментальную наземную систему оружия на основе ЛСЭ. Использовать ее предполагалось с применением зеркала-переотражателя. выводимого на геостационарную орбиту высотой около 33 тыс. км, и боевых зеркал на более низких орби тах для направления луча на цель.

Работы по строительству технических и вспомогательных сооружений дня экспериментальной лазерной системы оружия на полигоне Уайг Сэндз начались в 1986 г. фирмами Fluor и Bechtel. По первоначальному плану Управление СОИ в 1988 г. намеревалось заключить два контракта: на разработку и изготовление ЛСЭ и создание подсистемы управления лучом для этого ЛСЭ. Конкурентами на заключение контракта по созданию лазера выступили Ливерморская лаборатория совместно с фирмой TRW, которые предлагали ЛСЭ с индукционным ускорителем, и Лос-Аламосская лаборатория с фирмой "Боинг", ведущие разработку ЛСЭ с ВЧ-ускорителсм.

Фирма-подрядчик должна была спроектировать, изготовить и смонтировать на полигоне Уайт Сэндз ЛСЭ — средней мощности" (предположительно в десятки мегаватт). Уровень мощности этого лазера, как сообщалось, должен быть меньше, чем требуется для боевой системы оружия, но достаточен для проведения чрезвычайно важных экспериментов по прохождению излучения и исследованию поражающих возможностей ЛО данного типа. В дальнейшем при проведении экспериментов мощность лазера на полигоне должна будет постепенно наращиваться от "средней" до десятков мегаватт, а впоследствии до 1 ГВт. Но из-за недостатка финансовых средств в 1988 г. контракт не был подписан, и конкурс на его заключение планировали провести в первой половине 1989 г., а его подписание должно было состоя ться в середине 1989 г.

Контракт стоимостью 179 млн. долл. на создание подсистемы управления лучом для данного ЛСЭ был подписан с фирмой Lockhecd Missiles and Space на пять лет. Фирма-подрядчик должна была разработать, изготовить и смонтировать подсистему с 3.5-м зеркалом. Субподрядчиками являлись фирмы United Technologies Optical Systems, North East Research Associates, Ralph M. Parsons, Jaycor и Perkin-Elmer.

МО США планировало приступить к проведению экспериментов на испытательной площадке "Орогранде" полигона Уайт Сэндз с указанной экспериментальной лазерной системой оружия на ЛСЭ в конце 1992 г. Однако, в связи с тем что конгресс США уменьшил на 25 % запрошенную админист рацией сумму на финансирование НИОКР по программе СОИ на 1988 ф.г., расходы на реализацию проекта создания системы оружия на ЛСЭ были сокращены с 212 до 155,5 млн. долл. (на 27 % по сравнению с запросом). Из заявления начальника Управления СОИ и представителя командования стратегической обороны армии, осуществлявшего непосредственное руководство работами по данному проекту, следовало, что в такой ситуации лазер и подсистема управления лучом, по-видимому. не смогут быть готовы ранее конца 1993 г.

МО США планировало, используя экспериментальную лазерную систему оружия на ЛСЭ, провести начиная с 1991 г. целый ряд комплексных технических экспериментов, в том числе испытания зеркал космического базирования и подсистемы управления лучом с применением адаптивной оптики. Большое внимание предполагалось уделить отработке методов компенсации искажений луча высокомощного лазера при прохождении через атмосферу. С целью получения необходимых данных о прохождении и воздействии излучения в пределах атмосферы и в космосе должны были использоваться специально оборудованные аэростаты, беспилотные ЛА, зондирующие ракеты, спутники на орбитах 300–500 км. В итоге планировалось оценить возможности применения ЛО наземного базирования для поражения ракет противника на активном участке траектории их полета и получение необходимых данных для создания подобной системы оружия ПРО.


Проверка на оптическое качество большого 1,55-м зеркала на оптическом стенде фирмы "Литтон Айтек". Впоследствии на легкое плоское зеркало (разгруженное от напряжений) будет нанесено алюминиевое отражающее покрытие толщиной в несколько микрон.


Технологический макет изготовленного в Европе космического модуля "Спейслэб", используемого на борту МТКК "Спейс Шаттл" в эксперименте"'Старлзб". Макет использовался как функциональный имитатор для подготовки экипажа, участвовавшего в эксперименте.


Другим типом лазера, который оценивался как перспективный для создания наземных систем оружия ПРО и ПКО. являлся эксимерный. Работы по лазерам на галогенидах инертных газов в США вели различные научно-исследовательские организации и фирмы. среди них Лос-Аламосская и Ливерморская национальные лаборатории, научно-исследовательские лаборатории — ВМС, им. Максвелла, фирмы Avco, Rockwell International, Northrop. TRW, Western Research и др. В разработках эксимерных лазеров для систем оружия наибольших успехов достигли фирма Avco, отделение Rocketdyne фирмы Rockwell International и фирма Western Research.

Фирма Avco и отделение Rocketdyne фирмы Rockwell International создали XeF-лазер EMRLD. Финансирование работ осуществляли ВВС и Управление СОИ. причем последнее рассматривало этот тип лазера в качестве возможного кандидата для создания ПРО, а ВВС — для оружия ПКО. Первый образец лазера EMRLD прошел испытания в 1986 г. на полигоне фирмы. Второй модернизированный образец этого лазера было решено смонтировать и испытать на полигоне Уайт Сэндз. В 1987 г. началась его сборка на полигоне, детали и узлы доставлялись с предприятий, находящихся в г. Эверетт и Уилмингтон (шт. Массачусетс) и г. Канога-Парк (шт. Калифорния). Конструкция лазера EMRLD состояла из трех основных элементов — задающего генератора, усилителя мощности и основной ВКР- ячейки. 21 мая 1988 г. на полигоне Уайт Сэндз начались испытания задающего генератора, испытания всей системы лазера EMRLD предполагалось начать в 1990 г.

Другой эксимерный лазер в рамках программы СОИ создала фирма Western Research. 11 и 15 марта 1088 г. прошли первые его испытания, в ходе которых была достигнута импульсная мощность 800 МВт. Ширина луча составила 20 см, длительность импульса 0,5 мкс. энергия 400 Дж на длине волны 0,333 мкм. Лазер излучал со сдвигом частоты благодаря использованию вынужденного комбинационного рассеяния (ВКР).

Главные цели НИОКР, проводимых с эксимерными лазерами в интересах МО, заключались в разработке методов их масштабирования, средств и способов компенсации атмосферных искажений луча и в создании аппаратуры для точного наведения луча на цель. Кроме того, весьма важны были работы по сопоставлению характеристик эксимерных лазеров и ЛСЭ для решения вопроса о целесообразности их применения при создании противоспутниковых систем оружия. По расчетам специалистов ВВС США, демонстрационные испытания эксимерного лазера можно было подготовить раньше ЛСЭ. По их мнению, при создании оружия ПКО на основе эксимерного лазера не потребуются зеркала-переотражатели космического базирования. а в случае использования его в качестве оружия ПРО применение таких зеркал необходимо.

Важность работ по созданию противоспутникового оружия подтвердило и решение министра обороны США Ф.Карлуччи модернизировать экспериментальную систему оружия на базе химического лазера MIRACL, которая с 1984 г. использовалась в экспериментах на полигоне Уайт Сэндз Управлением СОИ и ВМС. За 6–8 месяцев предстояло усовершенствовать лазер и подсистему управления лучом для полномасштабной отработки доставки МЛИ через атмосферу и системы наведения.

Создание новой вакуумной камеры (27 х 9 м) свидетельствовало также и о том, что лазер MIRACL продолжал играть важную роль в программе СОИ, несмотря па финансовые ограничения. По словам сотрудника полигона Уайт Сэндз Дэвиса, сообщения в прессе о "преждевременной кончине" MIRACL появились в связи с тем, что этот мощный химический лазер использовался для решения двух различных задач, причем финансовые ограничения коснулись только одной из них. Одна из задач, непосредственно входящих в перечень главных задач Управления СОИ. это использование MIRACL в качестве источника интенсивного излучения в испытаниях по проверке поражающей способности и уязвимости ОВТ. В странах. Запада подобной установки для проведения таких экспериментов не было и нет. Другая задача, ранее так же финансировавшаяся Управлением СОИ, заключалась в изучении возможности применения высокоэнергетических лазеров в тактических целях, таких как системы ПВО для поражения ракет с ВРД и самолетов, Эга задача побудила ВМС США финансировать разработку лазера MIRACL в целях создания системы корабельной обороны по программе Sea Lite.

ВВС также выполняли большой объем работ по созданию оружия наземного базирования, предназначенного для борьбы со спутниками. Специалисты этого ведомства посчитали наиболее приемлемыми для систем ПКО эксимерный и йодно-кислородный лазеры. Поэтому ВВС США принимали даже более активное участие, чем Управление СОИ, в работах с эксимерным лазером EMRLD на полигоне Уайт Сэндз и выполнили значительный объем НИОКР но дальнейшему усовершенствованию йодно-кислородных лазеров, проводимых лабораторией оружия ВВС.


Система наведения и слежения Sea Lite фирмы Hughes.


По свидетельству генерал-майора Р. Рэнкина, руководившего работами ВВС, выполняемыми в рамках космической программы и программы СОИ, в 1988–1089 гг. ВВС должны были выбрать тип лазера для создания системы оружия ПКО и приступить к развертыванию двух или трех боевых систем. В 1988 г. продолжались работы по выбору места расположения позиций под эти лазерные системы, разместить которые собирались в пустынной местности, высоко над уровнем моря с таким расчетом, чтобы в любое время года и суток хотя бы одна из позиций не была закрыта плотными облаками. Напомним. что еще на 1982–1983 гг. намечалось начало строительства двух высокомощных противоспутниковых систем оружия на DF-лазерах в районах авиабазы Киртленд и центра оружия Чайна-Лейк (шт. Калифорния), но затем стройки законсервировали и отложили до завершения комплексных космических испытаний.

Одновременно с другими типами лазеров министерство энергетики США в рамках программы СОИ при активном участии МО США вело интенсивные работы по созданию системы оружия на основе рентгеновского лазера с ядерной накачкой. Министерство энергетики в рамках программы СОИ также выполняло и другие НИОКР, связанные с разработкой лазеров оптического диапазона, оружия на пучках частиц и микроволнового оружия, гиперзвуковых снарядов и др. Основным центром по разработке системы оружия на основе рентгеновского лазера с ядерной накачкой являлась Ливерморская лаборатория. В работах участвовали также Лос-Аламосская и Сандийская национальные лаборатории, с 1987 г. — фирма "Мартин-Мариетга" со своими субподрядчиками Honeywell, Hughes, Sparta, Photon Research Associates и Applied Research, Национальные лаборатории разрабатывали рентгеновский лазер с ядерной накачкой в вариантах Excalibur и еще более мощный Superexcalibur, предназначенные. соответственно, для создания систем оружия ПКО и ПРО. Фирма "Мартин-Мариетта" занималась конструкцией платформы для размещения и вывода в космос этой системы оружия, а также подсистемы захвата, слежения и прицеливания для нее. В рентгеновском лазере для ПКО предполагали использовать ядерный заряд мощностью 150 кт (масса около 455 кг).

Для испытаний различных типов лазеров и анализа излучения различных длин волн вновь понадобился самолет- лабораторня КС-135 (борт. № 60- 0371). В конце 1986 г. его вновь доработали, самолет получил новое имя "Аргус". На борту смонтировали пять видеокамер с высокой разрешающей способностью, работающих в видимом спектре, две камеры, работающие в ИК-диапазоне, и ИК-спектрометр. Всю аппаратуру установили с левого борта в отсеке возле грузовой двери, она наводилась на цель с помощью компьютерной системы целеуказания и слежения.

Часть аппаратуры сделали сменной и смонтировали на поддонах, чтобы облегчить переоборудование самолета под конкретное полетное задание. Кроме многочисленных датчиков на борту "Аргуса" устанавливали лазерные "прицелы". астросектанты и ИК-радиометры. Место между пилотской кабиной и грузовой дверью занимала фотоаппаратура "Каст Глане" ("брошенный взгляд"), разработанная Тихоокеанским центром испытания ракетного оружия ВВС США. Она состояла из семи фотокамер, сопряженных с телескопом, и использовалась в экспериментах. проводимых в интересах ВМС, ВВС, НАСА и по программе СОИ. Сопровождение цели производилось вручную, поэтому область применения аппаратуры "Каст Глане" в ряде испытаний была ограничена.

С левого борта на самолете выполнили целый набор квадратных окон. Их остекление было сменным, и в зависимости от задачи и характера установленной аппаратуры могли быть установлены окна из кварца, германия или сульфида цинка (прозрачные для лазерного излучения различных участков спектра). С правого борта над передней кромкой крыла появились два внушительных квадратных наплыва с круглыми окнами, покрашенными в белый цвет. На фюзеляже нанесли разнообразные метки для замеров при съемках (утверждали, что к прямому назначению самолета эти метки отношение не имели).

Борт 60-0371 эксплуатировался 4950-м истребительным авиакрылом, хотя был приписан не к авиабазе Райт- Паперсон, а к авиабазе Киртленд, Перед каждым испытательным полетом спецоборудование проходило тщательную проверку, для чего к левой стороне подгоняли специальный "сухой док", плотно прилегавший к фюзеляжу, чтобы внутрь не попала пыль и фязь и не вывела из строя нежную аппаратуру.

Несмотря на то что затраты на создание тактического оружия в середине 1980-х гг, составляли чуть менее 4 % от общего финансирования программы СОИ. виды вооруженных сил США провели ряд интересных экспериментов по лазерному оружию. Наиболее "продвинутым" оказался лазер MIRACL. выступавший в роли "слуги двух господ" — Управления СОИ и ВМС США.

С октября 1987 г. ВМС начали новую программу работ Shipboard Laser Weapons (Корабельное лазерное оружие). Этому предшествовала передача в середине 1987 г. в распоряжение ВМС от Управления СОИ уже неоднократно упоминавшейся экспериментальной системы ЛО. созданной на основе лазера MIRACL, созданного фирмой TRW по программе ВМС Sea Lite. Подсистему управления лучом лазера Sea Lite изготовила фирма Hughes Aircraft, а подсистему управления огнем — фирма Unisys. В 1984 г. экспериментальную лазерную систему оружия передали Управлению СОИ, использовавшему ее на полигоне Уайт Сэндз для изучения прохождения лазерного излучения ИК-диапазона в атмосфере, исследования поражающих способностей ЛО данного типа, а также для изучения возможностей применения высокомощных лазеров для решения задач ПВО (оборона от тактических ракет и самолетов).


Куполообразные сооружения полигона Уайт Сэндз, в них раньше размещались приемная и передающая антенны РЛС. После модернизации сооружений полигона в них находится оборудование независимых систем управления высокоэнергетических лазеров ВМС США (фирмы TRW) и армии США (фирмы Bell).


18 сентября 1987 г. ВМС провели первое успешное испытание лазерной системы оружия MIRACL с СНС Sea Lite, по поражению управляемой ракеты- мишени BQM-34s Firebee-1, летевшей со скоростью 926 км/ч на высоте 450 м и по своим параметрам близкой к боевым крылатым ракетам ВМС США с дальностью более 1000 км. (Однодвигательная турбореактивная телеуправляемая мишень BQM-34S Firebee имела длину 7 м, размах крыльев 3,9 м, диаметр корпуса 0,95 м, стартовый вес 1135 кг, скорость полета 1100 км/ч, дальность полета 1245 км.) Эксперимент проводился с целью определения возможности применения МЛИ в качестве оружия для обороны надводных кораблей. 2 ноября 1987 г. эксперимент повторили, вновь в полете была уничтожена телеуправляемая ракета-мишень BQM-34S, дистанция до цели в этот раз была удвоена. В обоих случаях лучом лазера выводились из строя электронные компоненты системы самонаведения. в результате чего ракета- мишень теряла управление, входила в штопор и разбивалась. ВМС планировали провести еще несколько подобных испытаний, для чего в 1988 г. фирма Teledyne оснастила несколько ракет- мишеней Firebee-1 специальными подкрыльевыми отражателями, что предотвратило бы разрушение мишеней и обеспечило возможность их многоразового использования. Испытания MIRACL с использованием таких мишеней запланировали и на 1989 г. В апреле того же года было принято решение о модернизации стенда с лазером MIRACL для определения возможности его использования в системе ПКО ASAT,

По заявлению представителей ВМС США, эти испытания достигли своей цели — они "продемонстрировали возможности лазерного оружия обеспечить оборону кораблей от быстродвижущихся целей", однако, по мнению ряда специалистов, "необходимо уменьшить габариты силовой установки, применяемой для генерации энергии этого лазера". В связи с этим в ВМС США посчитали, что лазерная система оружия для обороны кораблей может быть создана не ранее чем через 15–20 лет. Возможность поражения быстролетящих целей на малых высотах, что весьма важно для обороны крупных надводных кораблей, подтвердилась 23 февраля 1989 г., когда лучом MIRACL сбили противокорабельную ракету Talos, летевшую на низкой высоте со скоростью 2400 км/ч. Уже упоминалось, что армия США с начала 1980-х п. приступила к разработке экспериментальной лазерной системы оружия FALW-D (Forward Area Laser Weapons Demonstrator — демонстрационная система лазерного оружия передового базирования) с использованием ряда наземных транспортных средств ПВО. В 1983 г. начались испытания лазерной системы Roadrunner, установленной на модернизированной плавающей машине, предназначенной для высадки морской пехоты.

Использование в сухопутных войсках оружия на химических DF-лазерах, считавшихся в тс годы наиболее перспективными, представляло опасность из-за токсичности фтора и продуктов его сгорания. Поэтому армия США активно проводила работы, направленные на изыскание путей безопасного применения химических лазеров. Для этого проводились демонстрационные испытания по программе MAD (Mobile Army Demonstration), использовалась мобильная установка с DF-лазером мощностью 100 кВт. Основной задачей испытаний являлась отработка технологии "сменных патронов" химического лазера, т.с. создание такой системы, в которой одни сменные патроны будут содержать, лазерное вещество, а другие — поглощать отработанные газы.

Во второй половине 1980-х гг. армия США вела разработки тактического лазерного оружия по нескольким проектам в рамках программы Laser Weapon Technology — "Технология лазерного оружия".

По проекту Stingray фирма "Мартин- Мариетта" на основе маломощного твердотельного лазера фирмы General Electric создала и в 1986–1987 гг. испытала на полигоне Уайт Сэндз демонстрационный образец мобильной системы оружия (на шасси танка). Система предназначалась для постановки помех и вывода из строя оптико-электронных средств бронетехники противника. Командование связи и электроники армии США намечало опубликовать в конце 1988 г. запрос на предложение о разработке опытного образца системы лазерного оружия Stingray. Однако нельзя было исключить возможность создания опытного образца данной системы оружия и на основе другого типа лазера, например СО2, если учесть, что все виды вооруженных сил, и особенно армия, накопили богатый опыт в разработке СО;-лазеров для тактического ЛО.

В интересах ПВО для поражения воздушных целей фирмы МВВ и Diehl предлагали использовать бронемашину с подъемной платформой, на которой устанавливалось фокусирующее зеркало диаметром более 1 м и следящая система (то есть поворотный механизм и некоторые электронные устройства), а также система пассивного наблюдения и целеуказания, позволявшая осуществлять одновременное слежение за несколькими целями. Подъемная платформа существенно расширяла обзор. Интервал времени между захватом цели и поражением ее лазерным излучением был очень короткий. В качестве самоходной платформы предлагалось использовать шасси танка "Леопард-2". Кроме лазера на нем можно было разместить контейнер с топливом, окислитель и водяной охладитель. Решетка сопл для газового лазера могла быть размерами 2,0x0.5 м и обеспечивать выходную мощность излучателя в несколько мегаватт. Общая масса всей системы составляла около 20 т. и. по мнению специалистов, для обслуживания такой установки было достаточно двух человек.

В течение ряда лет по проекту Cameo Bluejay проводились работы по созданию бортовой вертолетной системы оружия, предположительно на основе маломощного лазера. Она предназначалась для вывода из строя оптикоэлектронных систем и их элементов, а также, как указывалось в ряде сообщений, для противодействия лазерным средствам противника. Принятие на вооружение тактической системы лазерного оружия Cameo Bluejay намечалось на 1992 г. Главным подрядчиком по этой системе оружия являлась фирма Sanders Associates (филиал фирмы "Локхид"). На более раннем этапе работы вели фирмы Loral и Perkin-Elmer.

По программе Dazer разрабатывалась переносная лазерная установка для пехоты армии США. Цель программы — создать лазерное устройство для выведения из строя танковых лазерных дальномеров, приборов ночного видения, а также для временного ослепления живой силы противника. Стоимость единичного разрабатываемого устройства при серийном производстве должна была составить, по некоторым оценкам, до 50 тыс. долл.

После испытаний ЛЛЛ NKC-135A в 1983 г. ВВС США временно отложили проект создания ЛЛЛ второго поколения. однако вовсе не исключалась его "реанимация" на основе химического лазера. Во второй половине 1980-х гг. работы по созданию тактического лазерного оружия ВВС осуществляли по программам Advanced Radiation Technology — "Перспективная лучевая техника" и частично по Advanced Weapons: Laser Application — "Перспективные виды оружия: Применение лазеров". В 1988–1989 гг. ВВС намечали провести летные испытания бортовой авиационной лазерной системы оружия Coronet Prince, а затем принять решение о разработке ее опытного образца. Данная система создавалась на основе маломощного твердотельного лазера и предназначалась для вывода из строя оптико-электронных средств противника. Устанавливать се предполагалось под фюзеляжем самолета на специальной платформе.

По заказу ВВС США, известному под названием Sigma, фирма Rocketdyne изготовила цилиндрический химический лазер мощностью 2.2 МВт с прокачкой горячей газовой смеси. Лазер Sigma мощностью примерно в два раза меньше по сравнению с разрабатываемым лазером "Альфа" в конечном итоге был предназначен для установки на борту самолета. По словам представителей МО, он имел ценность с точки зрения отработки технологии изготовления цилиндрических лазеров.

Без преувеличения можно сказать, что 1987 г. стал "золотым веком" программы "звездных войн" 1980-х гг. XX столетия. Уже в следующем, 1988 ф.г. бюджетные ассигнования на программу СОИ урезали более чем на четверть, и далее они постепенно снижались. Основной причиной явилась наступившая в СССР "эпоха перестройки и гласности". "Империя зла" рассыпалась буквально па глазах, а пришельцы с далеких звезд и планет все не прилетали, вот и оказалось, что воевать в космосе было просто не с кем. В итоге снижение бюджетных ассигнований привело к тому, что большинство запланированных на конец 1980-х — начало 1990-х гг крупномасштабных и комплексных экспериментов по программе СОИ на земле и в космосе в полном объеме так и не провели.


Один из трех стационарных контрольно-измерительных пунктов на трассе полигона для оценки характеристик пучка высокоэнергетических лазеров и крупногабаритных оптических систем. Пункт находится на расстоянии -450 м от лазера, другие — на удалении -0,8 км и 2 км


Это касалось в первую очередь экспериментов "Зенит Стар" и "Старлэб", кроме того, значительно урезали программу экспериментов на полигоне Уайт Сэндз с ЛО наземного и космического базирования. Еще на 1988 г. в соответствии с реализацией программы "Зенит Стар" на комплексе HELSTP полигона были запланированы испытания химического HF-лазера космического базирования "Альфа", объединенного с оптической системой LODE/LAMP и "предназначенного для демонстрации возможности создания высокомощных химических лазеров с излучением в ИК-области спектра для применения в космосе". Главное зеркало и другие оптические компоненты подсистемы управления лучом этого лазера разработала по проекту LODE фирма Lockheed Missiles and Space. В рамках этого же проекта осуществлялись работы и по программе LAMP (Large Advanced Mirror Program — создание крупногабаритного адаптивного зеркала). Стендовая отработка "Альфы" проходила на полигоне Сан-Хуан Капистранос 1988 г. В апреле 1989 г. впервые получили генерацию излучения в течение 0,2 с.

Другими экспериментами, запланированными на 1989–1990 гг. на комплексе HELSTF полигона Уайт Сэндз. являлись полномасштабная экспериментальная проверка прохождения МЛИ через атмосферу и отработка наведения излучения лазера MIRACL с системой наведения и слежения (СНС) Sky Lite на космические объекты (до 1993 г.), а также завершение подготовки к космическому эксперименту "Зенит Стар" с проведением наземных испытаний лазера "Альфа" с элементами LODE/LAMP, предусматривавших соответственно испытания устройств управления лучом и крупногабаритных с малым весом оптических устройств, предназначенных для эксплуатации в космосе (до 1990 г.).

На экспериментальном комплексе оружия наземного базирования с ЛСЭ (площадка "Орогранде") на 1990–1995 гг. были запланированы:

— 1990 г. — ввод в эксплуатацию лазерной установки на свободных электронах для наземных испытаний МЛН мощностью в несколько мегаватт:

— 1991 г. — испытания ЛСЭ мощностью 10–30 МВт;

— 1992 г. изучение прохождения излучения ЛСЭ через атмосферу и демонстрация возможности переотражения луча зеркалом космического базирования:

— 1995 г. — эксперимент с использованием ЛСЭ с мощностью излучения до 100 МВт и космического переотражающего зеркала диаметром 4 м.

До 1993 г. также намеревались провести эксперимент с демонстрацией прохождения высокоэнергетического луча эксимерного лазера через атмосферу.

Однако не следовало забывать и об опубликованном еще 25 апреля 1987 г. в Вашингтоне докладе 'Научно-технические аспекты оружия направленной энергии" объемом 424 с., подготовленном группой из 17 экспертов — членов Американского физического общества. Все они также представляли научную общественность, оборонную промышленность, федеральные лаборатории. вооруженные силы и имели доступ к секретным материалам. Подготовка доклада заняла полтора года, еще более полугода заняла его проверка в МО США. Американские физики, в их числе было немало крупных специалистов по лазерной технике, сделали вывод, что "даже при самых благоприятных обстоятельствах потребуется десять или более лет интенсивных научных исследований", прежде чем можно будет принять обоснованное решение о возможности создания лазерного и пучкового оружия для решения задач ПРО.

В докладе содержались следующие оценки состояния разработок высокомощных лазеров в рамках программы СОИ:

— химические HF- и DF-лазеры для поражения ракет нуждаются в увеличении выходной мощности по крайней мере на два порядка по сравнению с достигнутой:

— мощность эксимерных лазеров необходимо повысить по крайней мере на четыре порядка и увеличить частоту повторения импульсов;

— ЛСЭ как более новый и менее изученный тип лазеров "требует проверки нескольких физических концепций", его мощность необходимо увеличить на шесть порядков;

— рентгеновские лазеры с ядерной накачкой "требуют проверки многих физических концепций", прежде чем могут использоваться в качестве оружия;

— методы коррекции оптического качества лазерного луча "необходимо усовершенствовать на много порядков"; даже в космосе необходимо использовать новые адаптивные методы фазовой коррекции, чтобы получить близкую к дифракциооной расходимость луча;


Главное зеркало диаметром 4 м фирмы ltek (элемент оптической системы LAMP), используемое в программе "Зенит Стар"


— потребность в электроэнергии для работы платформы с космическим оружием вызывает необходимость в создании значительно более мощных ядерных реакторов. По мнению авторов доклада, это предполагает "решение многочисленных, пока не рассматривавшихся инженерных проблем".

В заключение ученые-физики отметили: "Каков бы ни был порядок усовершенствования оперативных параметров, потребуется много новых открытий и изобретений. Несоответствие между нынешним этапом развития оружия направленной энергии и требованиями к нему настолько велико. что для достижения намеченных целей необходимо ликвидировать крупные пробелы в технических знаниях". Названный в докладе возможный срок принятия решения о создании лазерных систем оружия ПРО. по- видимому, не слишком отличался от сроков, фигурировавших в планах МО США. Так. в начале 1987 г. при обсуждении вопросов о возможном начале в 1993–1994 гг. первого этапа развертывания системы ПРО администрация и конгресс США указывали, что на этом этапе активными средствами ПРО будут ракеты наземного и космического базирования. Лазерное оружие рассматривалось как оружие второго поколения.

В результате получилось так, что осторожные научно-технические прогнозы и мировая геополитическая ситуация, "объединившись", начали свое движение "в едином строю" После распада СССР в 1991 г. о полномасштабном выполнении всех лазерных экспериментов по программе "звездных войн" речь уже не шла. В январе 1993 г. уходивший с президентского поста республиканец Дж. Буш-старший даже подписал с первым президентом России Б.Н. Ельциным договор об очередном сокращении СНВ. С приходом к власти в США демократов во главе с Б. Клиитоном "звездные войны" потеряли актуальность, и произошла очередная определенная переоценка взглядов на лазерное оружие. Программу СОИ официально не закрыли, но постепенно стали сворачивать, одновременно пытаясь найти "Конверсионное" применение всем этим накопленным научнотехническим и технологическим наработкам. Появились различные проекты уничтожения с помощью мощных лазеров малоразмерного (до 10 см) космического мусора, в большом количестве засоряющего низкие (200–600 км) околоземные орбиты. Начались поиски соисполнителей среди стран Запада и закупка технологий в бывших странах социалистического лагеря, в первую очередь в странах СНГ.


Виктор Сергеев

Загрузка...