Система-200

Сергей Ганин Владимир Коровин Александр Карпенко Ростислав Ангельский

Акторы выражают глубокую благодарность за помощь ветерану войск ПВО Михаилу Лазаревичу Бородулину

Продолжение. Начало см. ТиВ №№ 11.12/2003 г. № 12/2004 г.


Зенитная управляемая ракета 5В21 скомпонована но двухступенчатой схеме с пакетным расположением четырех стартовых ускорителей. Маршевая ступень выполнена по нормальной аэродинамической схеме.

Конструктивно корпус маршевой ступени ракеты 5B21 состоял на семи отсеков.

Отсек № 1 длиной 1793 мм объединял в герметичный блок радиопрозрачный обтекатель и ГСП. Стеклопластиковый радиопрозрачный обтекатель покрывался теплозащитной шпаклевкой м несколькими слоями лака.

Бортовая аппаратура ракеты (блоки ГСН), автопилот, радиовзрыватель, счетно-решающий прибор) размещалась во втором отсеке длиной 1085 мм.

Третий отсек ракеты длиной 1270 мм предназначался для размещения боевой части, бачка горючего для бортового источника питания (ВИН). При снаряжении ракеты боевой частью головная часть изделия до стыка между отсеками № 2 и № 3 поворачивалась на 90 — 100 град, в сторону левого борта.

Отсек № 1 при длине 2440 мм включал баки окислителя и горючего и воздушно-арматурный блок с шар-баллонном в межбаковом пространстве.

Бортовой источник питания, бачок окислителя бортового источника питания, баллоны гидросистемы с гидроаккумулятором размещались в отсеке № 5 длиной 2104 мм. К заднему шпангоуту пятого отсека крепился маршевый жидкостный ракетный двигатель.

Шестой отсек длиной 841 мм прикрывал маршевый двигатель ракеты и обеспечивал также размение рулей с рулевыми машинками. Задние узлы крепления стартовых двигателей располагались на сбрасываемом после отделения кольцевом седьмом отсеке длиной 752 мм.

Все корпусные элементы ракеты покрывались теплозащитным покрытием.

Крылья сварной конструкции каркасного типа размахом 2610 мм были выполнены в малом удлинении с положительной стреловидностью 75 град, по передней кромке и отрицательной 11 град, по задней. Корневая хорда составляла 4857 мм при относительной толщине профиля 1,75".. концевая хорда — 160 мм. Для уменьшения габаритов транспортной тары каждая консоль крыла технологически делилась на переднюю и заднюю части, которые крепились к корпусу в шести точках. На каждом крыле размещался приемник полного воздушного давления.

Жидкостный ракетный двигатель 5Д12 одноразового действия (без повторного включения) с турбонасосной системой подачи компонентов топлива в камеру сгорания, выпускался в комплектации с топливной, воздушной и газовой системами. Двигатель работал на азотной кислоте с добавкой четырехокиси азота в качестве окислителя и триэтиламинксилидине, используемом как горючее. Температура газов в камере сгорания двигателя достигала 2500–300 °C.

Двигатель был выполнен по — открытой' схеме — с выбросом продуктов сгорания газогенератора турбонасосного агрегата через удлиненный патрубок в атмосферу При запуске турбонасосного агрегата его ротор раскручивался пиростартером, что сопровождалось характерным выхлопом темного дыма перпендикулярно оси корпуса ракеты.

С целью обеспечения максимальной дальности пуска ракеты либо полета на максимальной скорости при обстреле целей на малой дальности предусматривалось несколько режимов работы двигателя. Программы их реализации выдавались перед стартом ракеты на регулятор тяги двигателя 5Ф45 и программное устройство на основании решения баллистической задачи, выработанного ЦВМ "Пламя".

Режимы работы двигателя обеспечивали поддержание постоянных максимального (10000±300 кг) или минимального (3200±180 кг) значений тяги При отключении системы регулировании тяги двигатель "шел в разнос" с дальнейшим разрушением, при этом развивалась тяга до 13000 кг. Режимы переменной тяги обеспечивали постепенное снижение тяги от максимальной до минимальной со средним градиентом 97±8 кг/с или резкий спад тяги до минимального значения.

Комбинация режимов позволяла реализовать несколько программ изменения тяги двигателя в полете. Первая основная программа предусматривала запуск двигателя с быстрым выходом на максимальную тягу. Начиная с 43± 1.5 с полета начинался спад тяти с остановкой двигателя по выработке топлива через 6,5-16 с с момента подачи команды "Спад". Вторая основная программа отличалась тем, что после запуска двигатель выходил на промежуточную тягу 8200±350 кг со снижением се с постоянным градиентом до минимальной тяги и работой двигателя до полной выработки топлива на -100 с полета. Две промежуточные программы позволяли использовать максимальную тягу двигателя в течение любого временного интервала в пределах 0,2 — 50,8 с полегл с последующим спадом с постоянным градиентом до полной выработки топлива или производить запуск двигателя с тягой 8200 — 10000 кг с последующим снижением тяги с постоянным градиентом до полной выработки топлива в ходе полета.

В баках окислителя и горючего размещались специальные заборные устройства, при больших знакопеременных поперечных перегрузках отслеживающие положение компонентов топлива и обеспечивающие их подачу в двигатель при поступлении в баки сжатого воздуха для поддержания давления подпора Трубопровод подачи окислителя проходил под прикрытием короба по правому борту ракеты, а короб для проводки бортовой кабельной сети размещался с противоположной стороны корпуса.

Входивший в комплект двигателя турбонасосный агрегат обеспечивал компонентами топлива двигатель маршевой ступени, а также бортовой источник питания (при его работе от основных баков горючего и окислителя). Привод турбонасосного агрегата осуществлялся с использованием газогенератора, представлявшего собой автономную камеру сгорания компонентов топлива.

Бортовой источник питания 5И43 обеспечивал генерирование в полете электроэнергии (постоянного и переменного тока), а также создание высокого давления в гидравлической системе для работы рулевых приводов.

Ракеты оснащались стартовыми двигателями в одной из двух модификаций 5С25 и 5С28. Стартовый двигатель конструктивно состоял из четырех блоков, включавших корпус с отделяемыми носовым обтекателем и сопловым блоком, воспламенитель, и двух пиропат ронов. Нижний стартовый двигатель ракеты оснащался бугелями, закрепленными в носовой части на крестовине, и роликовыми опорами на хвостовой части, обеспечивающими опирание ракеты на транспортных машинах. механизированных стеллажах и пусковой установке, а при старте — движение ракеты по направляющей пусковой установки.

Н передней части каждого блока стартового двигателя находился технологический разъем для снаряжения двигателя твердым топливом.

Комплектом поставки допускалось оснащение ракеты двумя оборудованными роликовыми опорами "нижними" стартовыми двигателями типа 5С25. в этом случае один из них крепился на ракете сверху.

Стартовый двигатель 5С28 оснащался твердотопливным зарядом 5Б28 из топлива марки РАМ-10К, состоявшим из шашки и обеспечивающих се фиксацию в корпусе двенадцати "сухарей". Комплект поставки допускал только один "нижний" двигатель.

Сопла каждого ускорителя были наклонены относительно продольной оси корпуса таким образом, что вектор тяги проходил в районе центра масс ракеты и разнотяговость (до 8 % для 5С25 и до 14 % для 5С28) противоположных ускорителей не создавали неприемлемо высоких возмущающих моментов по тангажу и рысканию. В околосопловой части каждый ускоритель на двух консольных опорах крепился к седьмому отсеку маршевой ступени — литому кольцу, сбрасываемому после окончания работы ускорителей и их отделения.

В передней части ускоритель двумя аналогичными опорами был связан с силовым шпангоутом корпуса ракеты в районе межбакового отсека. Узлы крепления к седьмому отсеку обеспечивали проворот и последующее отделение ускорителей после разрыва передних связей противоположных блоков.

Для обеспечения аэродинамической устойчивости ракеты на стартовом участке полета на каждом из ускорителей размещалось по стабилизатору. На нижнем ускорителе стабилизатор складывался под углом 45 град, в сторону левого борта ракеты и занимал рабочее положение только после схода ракеты с пусковой установки.

Осколочно-фугасная боевая часть 5Ы41Н снаряжалась 87,6 -41 кг взрывчатого вещества ТГ-20 и оснащалась 37000 шарообразных поражающих элементов двух диаметров, включая 21000 элементов массой 3.5 г и 16000 массой 2 г. что обеспечивало надежное поражение целей при стрельбе на встречных курсах и вдогон. Угол пространственного сектора статического разлета осколков составлял 120 град., скорость их разлета — 1000–1700 м/с. Подрыв осколочной боевой части ракеты осуществлялся по команде радиовзрывателя при пролете ракеты в непосредственной близости от цели, а при большом промахе — в конце управляемого полета ракеты, по пропаданию бортового питания.

Аэродинамические поверхности на маршевой ступени были расположены Х-образно по "нормальной" схеме с задним положением рулей относительно крыльев.


ЗУР5В21.

1. Головка самонаведения 2. Автопилот 3. Радиовзрыватель 4. Счетно-решающий прибор 5. Предохранительно-исполнительный механизм 6 Боевой часть 7. Бачок горючего БИП 8. Бак окислителя 9. Воздушный баллон 10. Стартовый двигатель 11. Бак горючего 12. Бартовой источник питания /БИП) 13. Бачок окислителя БИП 14 Бак гидравлической системы 15. Маршевый двигатель 16. Аэродинамический руль


Ракета 5В21 скомпонована по двухступенчатой схеме с пакетным расположением четырех стартовых ускорителей.


Руль (руль-элерон) трапециевидной формы состоял из двух связанных торсионами частей, что обеспечивало автоматическое уменьшение угла поворота большей части руля при увеличении скоростного напора для сужения диапазона величин управляющих моментов. Рули устанавливались на шестом отсеке ракеты и приводились в движение гидравлическими рулевыми машинками. Максимальный угол поворота руля составлял ±-45 град.

Контроль за пространственным положением ракеты п функционированием ее бортовой аппаратуры во время полета осуществлялся по сигналу контрольного радиоответчика.

Во время предстартовой подготовки ракеты производилось включение бортовой аппаратуры, ее прогрев, проверка функционирования; раскручивались гироскопы автопилота. Питание бортовой аппаратуры производилось от наземных источников через бортовые разъемы. Для охлаждения аппаратуры на борт ракеты от магистрали пусковой установки подавался воздух. При выдаче команды на подготовку ракеты к пуску на 17 с производилось разарретирование антенны ГСН. "Синхронизация" головки самонаведения с лучом радиолокатора подсветки цели по направлению достигалась при повороте пусковой установки по азимуту в направление на цель и выдаче с ЦВМ "Пламя" расчетного значения утла места для наведения ГСП.

В соответствии с выданной командой головка самонаведения производила поиск и захват на автоматическое сопровождение назначенной для уничтожения воздушной цели. Не ранее чем за 3 с до пуска при отводе электровоздухоразъема производилось отключение ракеты от внешнего электроснабжения и воздушной магистрали с переходом аппаратуры на бортовой источник питания.

Бортовой источник питания предварительно запускался подачей электрического импульса на пиропатрон пускового стартера, после чего срабатывал воспламенитель порохового заряда. Турбина раскручивались сначала продуктами сгорания порохового заряда. Через 0.55 с осуществлялся перевод ее питания на жидкое топливо. После рас крутки турбины до 0,92 номинального числа оборотов проходила команда па разрешение старта ракеты и осуществлялся перевод всех систем на бортовое питание Рабочий режим турбины бортового источника питания, соответствующий 38200+3 % об/мин при максимальной мощности 65 л. с… поддерживался в течение 200 с полета. Топливо для бортового источника питания в ходе дальнейшего полета поступало из специальных топливных бачков.

При прохождении команды "Пуск" последовательно производились разарретирование гироскопа автопилота, уборка отрывного разъема, запуск бортового источника питания, подрыв пиропатронов запуска стартового двигателя. При запуске верхнего стартового двигателя продукты сгорания его топлива. поступая через пневмомеханическую систему, открывали доступ сжатого воздуха из баллона в баки горючего и окислителя маршевого двигателя и в топливные бачки бортового источника питания.

При достижении заданного скоростного напора сигнализаторами давления формировалась команда на подрыв пиропатронов двигателя 5Д12, включался исполнительный механизм регулятора тяги.

Первые 0.45 — 0,85 с после старта ракета летела без задействования рулей для управления и стабилизации.

Отделение блоков стартового двигателя происходило после 3–5 с их работы при скорости полета ракеты около 650 м/с на удалении порядка 1 км от пусковой установки. Противоположные стартовые ускорители при монтаже на ракете скреплялись в их носовой части натяжными лентами. проходившими через среднюю часть корпуса маршевой ступени. На участке спада тяги по достижении установленного давления при выработке топлива в одном из двигателей установленный на нем специальный замок освобождал ленту крепления, идущую от противоположного блока. После выгорания топлива и падения давления в противоположном двигателе происходило освобождение второй ленты, обеспечивающее одновременное отделение обоих ускорителей. Для гарантированного увода ускорителей от маршевой ступени они оснащались скошенными носовыми коническими обтекателями. При разрыве крепления в носовой части под действием аэродинамических сил блоки ускорителей поворачивались относительно узлов крепления на седьмом отсеке в хвостовой части ракеты. Отделение седьмого отсека происходит под действием осевых аэродинамических сил после отделения последней пары ускорителей.

Зона падения блоков ускорителя располагалась на удалении до I км от пусковой установки, что накладывало определенные требования по участкам размещения огневых средств системы в зоне охраняемых объектов и ограничения секторов стрельбы Через секунду после сброса стар товых ускорителей автопилот подключался к органам управления полетом ракеты.

При стрельбе в "дальнюю зону" через 30 с полета производилось переключение методов наведения: метод "с постоянным углом упреждения" сменялся методом пропорционального сближения. Подача сжатого воздуха в баки окислителя и горючего маршевого двигателя производилась до тех пор. пока давление в шар-баллоне не снижалось до 50 кг/см. После этого воздух подавался только в топливные бачки бортового источника питания для обеспечения управления па пассивном участке полета. В случае промаха по окончании работы бортового источника питания с предохранительно-исполнительного механизма снималось напряжение и с задержкой до 10 с выдавался сигнал на электродетонатор. что приводило к самоликвидации ракеты.

Автопилот ракеты, головка самонаведения. боевая часть и многие другие комплектующие поставлялись заводами-смежниками. Ленинградский Северный завод после проведения полной сборки маршевой ступени ракеты проверял все бортовые системы и узлы на правильность функционирования и соответствие изделия техническим требованиям. Ракеты с завода направлялись по разнарядке непосредственно в воинские части и на полигоны для отстрела.


ЗУР снабжалась стартовым двигателем, состоявшим из четырех блоков. На фото хорошо видно, что сопла каждого ускорителя наклонены относительно продольной оси корпуса


Ракеты могли транспортироваться автопоездами, железнодорожным, морским, речным и воздушным транспортом в специальной таре или на специальных транспортных тележках. Каждая ракета, произведенная па заводе, отправлялась на базы хранения, полигоны или в войска в возвратной таре, позволявшей при необходимости хранить в ней ракеты вне инженерных сооружений в течение 10 лет.

Для транспортировки ракет любыми видами транспорта и их хранения использовалась штатная тара в виде герметичных и негерметичных контейнеров, ящиков для размещения и укладки комплектующих ракеты. Разработкой тары занималось одно из подразделений КБ Ленинградского Северного завода.

В системе С-200 "Ангара" предусматривалось применение двух вариантов ракет:

5В21 (В-860, изделие "Ф") — первый серийный вариант ракеты в боевом исполнении. Ракета комплектовалась головкой самонаведения 5Г22. счетно-решающим прибором 5Э22, автопилотом 5A41. Ракеты 5В21 выпускались на ранней стадии отработки системы С-200;

— 5В21А (В-860П, изделие "1Ф") — усовершенствованный вариант ракеты 5В21. укомплектованный бортовой аппаратурой. усовершенствованной по результатам полигонных испытаний. На ракете В-860П применялись головка самонаведения 5Г23, счетно-решающий прибор 5Э23, автопилот 5А43.

Головки самонаведения 5Г22 и 5Г23 осуществляли захват цели только до старта, при нахождении ракеты на пусковой установке.

Для отработки у расчетов навыков по заправке ракет выпускались учебно-заправочные ракеты УЗ. на которых идентично боевым ракетам выполнялась только топливная система (баки, трубопроводы, заправочные горловины и т. п.). Отработка навыков по заряжанию пусковых установок производилась на габаритно-массовых макетах ракет УТМ. также выпускавшихся серийно. В ряде случаев в качестве учебных ракет после соответствующей "доработки" использовались частично разукомплектованные боевые ракеты с истекшим сроком службы или получившие повреждения в ходе эксплуатации. Выпускавшиеся Северным заводом учебные ракеты УР предназначались для обучения курсантов военных училищ устройству ракет и представляли собой изделие в инертном снаряжении с "четвертным" вырезом по всей длине.


Обратите внимание на стабилизаторы, которые устанавливались на ускорителях. Виден один из поворотных рулей на корпусе шестого отсека ЗУР


Зенитная ракетная система С-200В "Вега"

После принятия на вооружение первого варианта системы С-200 в дополнение к продолжавшимся интенсивным полигонным испытаниям, проводимым организациями-разработчиками. началась эксплуатация аппаратуры и техники в войсках. Выявленные при пусках недостатки, поступающие от строевых частей отзывы и замечания позволили выявить ряд недоработок, непредвиденных и неисследованных режимов работы, слабых мест техники системы. Кроме того, разработчиками было создано и испытано новое оборудование, обеспечивавшее повышение и расширение боевых возможностей и эксплуатационных показателей системы.

Уже к моменту приема на вооружение стало ясно, что система С-200 обладала недостаточной помехозащищенностью и могла поражать воздушные цели только в простой помеховой обстановке, при действии постановщиков непрерывных шумовых помех. Поэтому важнейшим из направлений совершенствования комплекса стало повышение помехозащищенности.

"Еще во время заводских испытаний системы С-200, — вспоминает М.Л.Бородулин, — в НИИ-108 выполнялась НИР "Партитура" по созданию новых средств радиопомех, при разработке которых якобы использовалась и аппаратура, снятая со сбитого американского самолета-разведчика U-2. Самолет, оборудованный макетом новой аппаратуры помех, по договоренности с НИИ-108 был перебазирован на полигон для проверки ее воздействия на радиолокатор подсвета цели и головки самонаведения системы С-200. Облеты системы С-200 этим самолетом показали, что РПЦ и ГСН не справляются с некоторыми видами создаваемых его аппаратурой радиопомех, ранее не заданных при создании аппаратуры системы.

Учитывая, что у вероятного противника уже существовала аппаратура, создающая подобные радиопомехи. еще в процессе испытаний системы С-200 было принято решение о проведении в КБ-1 научно-исследовательской работы "Вега". В ходе этой работы требовалось изыскать пути обеспечения возможности системе С-200 вести борьбу с постановщиками широкого класса специальных активных радиопомех — выключающихся, прерывистых и уводящих по скорости и дальности.

Работа проводилась па стендовой аппаратуре в КБ-1 и на реальных средствах системы на полигоне, где для этой цели с помощью НИИ-108 офицером Б.Д. Гоцом был создан наземный помеховый комплекс. НИР была успешно завершена и принята заказчикам еще до принятия системы С-200 на вооружение.

После принятия системы С-200 на вооружение войск ПВО страны вышло решение ВПК о реализации результатов НИР "Вега" путем проведения ОКР по модернизации стрельбового канат и ракеты системы С-200. Кроме того, в техническом задании на ОКР по предложении КБ-1 дополнительно предусматривались реализация захвата цели на автосопровожденне головкой самонаведения на шестой секунде полета ракеты для стрельбы со стартовых позиций с большими углами укрытия, применение средств коллективной защиты боевого расчета аппаратных кабин канала от боевых химических и радиоактивных отравляющих веществ, а также обеспечение проводки целей через курсовой параметр, когда радиальная скорость цели относительно РНЦ становилась равной нулю.

Модернизация стрельбового капала осуществлялась путем разработки ряда новых блоков и доработки части имевшихся. Для коллективной защиты от поражающих факторов оружия массового поражения предусматривались герметизация аппаратных кабин канала, а также разработка в КБ-1 специальных подкатываемых под кабины воздухоохладителей, на которые замыкалась вентиляция аппаратуры и установка на кабинах фильтровентиляционных установок для защиты боевых расчетов и создания избыточного давления внутри кабин.

Модернизация ракеты осуществлялась путем установки на ней новой головки самонаведения и нового радиовзрывателя. Модернизированный стрельбовый канал должен был допускать использование наряду с новой ракетой В-860ПВ также и ракеты В-86011 от исходной системы С-200.

Для ускорения работ по изготовлению опытных обращав модернизированного наземного оборудования и ракет 4 ГУ МО выделило разработчикам серийный стрельбовый канал системы С-200 и необходимое количество ракет этой системы. В начале 1968 г. опытный образец модернизированного стрельбового канала и первые образцы модернизированных ракет были поставлены на полигон.

Практически одновременно с началам ОКР по реализации результатов НИР "Вега" совместным решением Министерства обороны и Министерства радиопромышленности была задана модернизация командного пункта огневого комплекса системы С-200 с целью повышения его боевых возможностей.

Модернизированный командный пункт должен дополнительно обеспечивать применение автономных средств целеуказания РЛС П-14Ф ("Фургон" и радиовысотомера ПРВ-13, обеспечивающих при их совместной работе достаточную точность целеуказания по одиночным целям, не требующую секторного поиска РПЦ, использование радиорелейной линии РЛ-30 для получения радиолокационной информации от удаленных РЛС. Кроме того, предусматривалось оборудовать более удобное рабочее место командира комплекса и применить коллективную защиту боевого расчета командного пункта от отравляющих химических и боевых радиоактивных веществ.

Сопряжение РЛС П-14Ф (в последующем и РЛС 5Н84А — "Оборона-14") с модернизированным командным пунктом осуществляюсь непосредственно с помощью кабеля. Для сопряжения с РЛ-30 и радиовысотомером в модернизированном командном пункте имелись места для установки и подключения шкафа аппаратуры РЛ-30 и выносного шкафа радиовысотомера ПРВ13 (в последующем ПРВ-17). Обеспечение коллективной защиты боевого расчета модернизированного командного пункта от оружия массового поражения осуществлялось так же, как и аппаратных кабин, модернизированного стрельбового канала.

Модернизация командного пункта была выполнена КБ Московского радиотехнического завода при участии КБ-1. Опытный образец модернизированного КП в начале 1968 г. был поставлен на полигон.

Модернизированные стрельбовой канал, командный пункт и ракета составили модернизированную систему С-200, получившую обозначение С.-200В. Как это следует из изложенного, строго говоря, создание такой системы не задавалось правительственными документами и ТТХ на нее не выдавалось Однако принимать на вооружение целесообразно не отдельные модернизированные средства, а получившуюся фактически новую систему. Да и разработчикам это сулило большие премии.

В ходе испытаний системы С-200В требовалось проверить лишь те характеристики огневого комплекса и ракеты. которые изменились в результате модернизации. Поэтому для ускорения принятия системы на вооружение мы договорились с разработчиками провести испытания в один этап.

Для обеспечения испытаний были изготовлены и поставлены на полигон четыре оборудованных штатной аппаратурой активных помех самолета-мишени — по паре Ту-16М и МиГ-19М. Кроме того, без согласия КБ-1 мы привлекли к испытаниям самолет НИИ-108, оборудованный макетной аппаратурой, позволяющей создавать новые виды помех, более сложные, нежели создаваемые штатной аппаратурой. установленной на самолетах-мишенях. Разработчики новых видов активных помех были заинтересованы в проверке эффективности своих решений, а мы смогли проверить средства системы с помощью не только штатной аппаратуры помех.

Комиссию по проведению испытаний было решено создать на "рабочем уровне" без "высокого" начальства, чтобы она могла практически постоянно работать на полигоне. Трудно было подобрать ответственного и технически грамотного председателя комиссии. Удалось получить согласие на эту работу главного инженера ЗРИ ПВО генерал-майора Леонида Леонова и согласовать эту кандидатуру с КБ-1.

Решением ВПК комиссия по проведению испытании системы С-200Н была назначена в следующем составе:

— председатель — главный инженер ЗРИ ПВО страны генерал-майор Леонид Леонов;

— заместители председателя — начальник второго управления полигона полковник Борис Большаков и заместитель главного конструктора системы Валентин Черкасов;

— члены комиссии:

— от Министерства обороны — полковник Михаил Бородулин, подполковники Александр Ипполитов. Иван Кошевой, Игорь Солнцев, Рудольф Смирнов, Леонид Тимофеев, Евгений Хотовицкий. Александр Кутьенков, Виктор Гуров:

— от промышленности — Виктор Мухин, Борис Марфин. Александр Сафронов, Евгений Кабановский, Владимир Яхно, Борис Перельман, Лев Улановский.

Испытания системы проходили на полигоне с мая по октябрь 1968 года.

И качестве постановщиков помех для облетов огневого комплекса использовались самолеты — мишени и упомянутый выше самолет НИИ-108 с макетом аппаратуры помех. Правда, "промышленная" часть комиссии протестовала против использования этого самолета. Присутствовавший на этом заседании комиссии начальник 4 ГУ МО Байдуков отказался быть арбитром в этом споре. Он заявил — Комиссия назначена ВПК, которая и должна решать ваши разногласия". Тогда "военная" часть комиссии решила все-таки провести облет этим самолетом, несмотря на отказ "промышленности" участвовать в нем. Однако к началу облета все "промышленники" уже были на своих рабочих местах. Облет прошел нормально, с большой пользой д ля всех трех сторон.

Кроме того, были проведены и облеты для проверки сопровождения цели РПЦ при прохождении ее через курсовой параметр.

Стрельбовые испытания по постановщикам активных помех производились только по трем самолетам-мишеням. так как один самолет Ту-1бМ во время проведения облета упал в озеро.

Была также проведена и стрельба по самолету-мишени с захватом цели головкой самонаведения на шестой секунде налета ракеты.

Всего было выполнено восемь пусков ракет В-860ПВ системы С-200В. Были сбиты четыре самолета-мишени, из которых три были постановщиками активных помех. Один обычный самолет-мишень был сбит при пуске с захватом цели головкой самонаведения на шестой секунде полета ракеты.

Испытания показали, что огневой комплекс соответствует заданным требованиям и может обстреливать одиночный постановщик любого вида активных помех.

И начале ноября 1968 г. комиссия подписала акт испытаний, в котором рекомендовала принять систему С-200И на вооружение войск ПВО страны, что и было определено Постановлением ЦК КПСС и Совмина СССР, приняты м в 1969 г. Утвержденные Постановлением характеристики системы С-200В учитывали результаты выполненных на полигоне работ но расширению боевых возможностей системы С-200: максимальная дальность стрельбы была увеличена до 180 км. а нижняя граница зоны поражения снижена до 300 м. Необходимо отметить большую роль в разработке и организации выпуска этого Постановления сотрудника ВПК Сергея Нюшенкова.

Уже в 1969 г. началось серийное производство средств системы С-200В вместо средств системы С-200. Система С-200В существенно увеличила боевые возможности зенитных ракетных войск ПВО страны но борьбе с постановщиками различного рода активных радиопомех. Часть конструктивных решений стрельбового канала системы С-200В впоследствии была внедрена в стрельбовые каналы системы С-200, уже находившиеся в войсках. Создание системы С-200В было отмечено Государственной премией СССР. Лауреатами стали И.Л. Андреев, Е.Л. Афанасьев, Г.Ф.Байдуков, Б.В.Бункин, В.Л.Жабчук, Ф.Ф.Измайлов, К.Л.Князятов. Л.М.Леонов. Б.А.Марфин и В.Л.Черкасов.

Система С-200В включала в свой состав следующие основные элементы.

Командный пункт (К-9М) мог работать как с использованием упомянутых выше АСУ, так и с использованием автономных средств целеуказания: модернизированной РЛС П-14Ф "Фургон" (5Н84А) и радиовысотомеров ПРВ-13 (ПРВ-17). Командный пункт мог использовать радиорелейную линию для приема данных о воздушной обстановке от удаленной РЛС.

Новый радиолокатор подсвета цели 5Н62В внешне практически не отличался с РПЦ 5Н62. На новых РПЦ, выпускавшихся по-прежнему с широким использованием радиоламп, в заводских условиях были реализованы доработки аппаратуры, производившиеся на полигонах и в войсках за годы испытаний и эксплуатации комплексов системы С-200 "Ангара". Была применена новая модификация ЦВМ ("Пламя-КВ"), размещенная в кабине управления К-2В.

Пусковая установка 5П72В предназначалась для использования как ракет 5В21В системы С-200В "Вега", так и 5В21А системы С-200 "Ангара". Обеспечивалась перевозка пусковой установки на автопоезде 5П53М и ее работа со всеми заряжающими машинами. На установке применена новая стартовая автоматика и произведены доработки конструкции. Серийный выпуск осуществлялся с 1969 по 1990 гг. на заводах "Большевик" (Ленинград) и "Большевик" (Киев), т. к. пермский завод после выпуска двух опытных установок 5П72В передал производст во киевскому "Большевику".

Зенитная управляемая ракета 5В21В (В-860ПВ) — вариант ракеты, предназначенный для использования в составе комплексов С-200В. С цслыо повышения боевой эффективности на ракете применена помехозащищенная ГСН типа 5Г24 и радиовзрыватель 5Е50.

Проведенные доработки и усовершенствования аппаратуры и технических средств комплекса С-200В позволили не только расширить границы зоны поражения целей и условия применения комплекса, но и ввести дополнительные режимы боевой работы.

Режим стрельбы по "закрытой цели" позволял производить пуск ракет в направлении облучаемой и сопровождаемой РПЦ цели без захвата ее головкой самонаведения ракеты перед пуском. Захват цели ГСН ракеты производился в ходе полета — на шестой секунде, после отделения стартовых двигателей.

Наряду с реализацией режима "закрытой цели" ГСН 5Г24 позволила также производить и стрельбу по постановщикам активных помех с многократным переходом в полете ракеты от сопровождения цели ГСН в полуактивном режиме по отраженному от цели сигналу РПЦ к пассивной пеленгации и самонаведению на источник излучения — станцию постановки активных помех. Для наведения ракеты на цель применялись методы "пропорционального сближения с компенсацией" и "с постоянным углом упреждения".

При отсутствии отраженного сигнала ог цели в течение 5 с головка самонаведения самостоятельно переходила на режим поиска цели по скорости в таком диапазоне. После пяти сканирований в узком диапазоне начиналось сканирование в широком диапазоне. При возобновлении подсвета цели РПЦ происходил ее перезахват головкой самонаведения ракеты с возобновлением процесса самонаведения. При отсутствии подсвета ракета уходила вверх на самоликвидацию.

Кабина управления стартом К-ЗВ отличалась применением аппаратуры КПЦ — контроля подсвета цели ("малый КИПС") для проверки функционирования ГСН ракет, находящихся на пусковых установках. Во всех аппаратных кабинах предусматривалась возможность коллективной защиты боевого расчета от боевых отравляющих и радиоактивных веществ.

Размещение боевых элементов системы С-200В в различных природных и климатических зонах СССР вносило свои коррективы в конфигурацию стартовых и технических позиций. В "северном" исполнении практиковалось строительство инженерных сооружений и навесов над площадками технической позиции для уменьшения снежных заносов изделий и техники.


Автоматизированные средства управления

Большая дальность действия системы С-200 теоретически позволяла производить многократный обстрел одиночных высотных целей при их приближении к обороняемому объекту, вести эффективную борьбу с групповыми целями до разделения их боевых порядков при выходе к цели, производить обстрел целей, ведущих налет с различных направлений. Согласно техническим требованиям, заданным при проектировании новых с[Х!дств автоматизированного управления (АСУ) в конце 1950-х — начале 1960-х гг… требовалось обеспечить их сопряжение со средствами зенитной ракетной системы С-200, которая должна была поступать па вооружение зенитных ракетных соединений смешанного состава. Принятые ранее на вооружение КП и АСУ войск ПВО адаптировались и дорабатывались для обеспечения совместной работы С-200 с имеющейся на вооружении войск ПВО страны ракетной системой ПВО С-75. В начале 1960-х it. на вооружение была принята и система С-125, что потребовало дополнительных доработок АСУ.

Как и системы воздушного перехвата. зенитные ракетные системы ПВО и средства их управления создавались в предположении наличия единой территориальной системы информационного обеспечения.

Комплекс средств автоматизированного управления ракетными комплексами АСУРК-1М был принят на вооружение в середине 1960-х гг. и использовался для управления действиями комплексов С-75 всех модификаций и С-125. Модифицированный вариант автоматизированной системы управления АСУРК-1МА, разработанный под руководством главного конструктора B.C. Семенихина, позволял управлять действиями соединений зенитных ракетных комплексов С-75. С-125 и С-200 различных модификаций с использованием информации от внешних РЛС.

Мобильная автоматизированная система управления действиями группировки ПВО в составе ЗРВ и авиации ПВО "Вектор-2" также позволяла вести работу с комплексами систем С-75. С-125 и С-200. Средства системы автоматизированного управления позволяли осуществлять работу при ее размещении как в полевых условиях, гак и в укрытиях на подготовленных позициях. Обмен информацией между КП бригады и огневыми средствами велся либо по кабельной (проводной) линии связи, либо по радиорелейному каналу.

Автоматизированная система управления командного пункта (КП) 5С99М "Сенеж" (в модернизированном варианте — 5С99М-1 "Сенеж-М", экспортный вариант — "Сенеж-М1Э") была принята на вооружение войск ПВО и используется в настоящее время для централизованного автоматического и автоматизированного управления боевыми действиями группировки зенитных ракетных войск смешанного состава, включающей системы и комплексы С-300П, С-300В, С-200В, С-200Д С-75, С-75М1. С-75М4. С-125, С-125М2.

Системой "Сенеж" решаются задачи приведения группировки ПВО в боевую готовность, целераспределения и целеуказания комплексам и системам ЗРС по аэродинамическим целям, постановщикам помех, координации боевых действий огневых средств; автоматизированного наведения истребителей на воздушные цели, контроля за безопасностью полетов наводимых истребителей-перехватчиков и их привода на аэродромы базирования; комплексной тренировки боевых расчетов.

Аппаратура АСУ полка (бригады) ЗРВ ПВО "Сенеж" разработана в екатеринбургском ОКБ "Пеленг" и производится ГПО "Вектор".

Продолжение следует

Загрузка...