Откуда у леопарда пятна

Сэмюэл Эббсман

Специалист по прикладной математике, старший научный сотрудник Ewing Marion Kauffman Foundation

В одной из своих знаменитых «Сказок просто так» Редьярд Киплинг повествует о том, как леопард обзавелся пятнами. Если довести этот подход до логического предела, выяснится, что нам нужны отдельные истории про самых разных животных, к примеру, про пятна леопарда, коровы или сплошную окраску пантеры. Пришлось бы добавить и рассказы о сложных узорах всевозможных других существ, от моллюсков до тропических рыб.

Но к счастью, существует единственное общее объяснение, показывающее, каким образом возникают все эти разнообразные узоры. Нужно лишь применить одну объединяющую теорию.

Еще в 1952 году, когда Алан Тьюринг опубликовал статью «Химические основы морфогенеза», ученые начали понимать, что простой набор математических формул может управлять всем разнообразием узоров и расцветок животного мира. Эта модель называется реакционно-диффузной и работает сравнительно просто. Представьте, что у вас есть несколько веществ, которые диффундируют по поверхности с различной скоростью и могут взаимодействовать друг с другом. В большинстве случаев процесс диффузии просто приводит к равномерному распределению того или иного вещества (скажем, сливки, влитые в кофе, в конце концов равномерно распределятся по всей кружке, и в результате мы получим светло-коричневую жидкость), однако при диффузии и одновременном взаимодействии нескольких веществ распределение цветов может оказаться неравномерным. Хоть наша интуиция, возможно, и противится этому, выясняется, что такой процесс не только происходит, но и может быть смоделирован при помощи простого набора уравнений, которые и объясняют невероятное разнообразие узоров и расцветок животного мира.

Биологи-математики исследуют свойства реакционно-диффузных уравнений с тех самых пор, как вышла статья Тьюринга. Они обнаружили, что варьирование параметров уравнений позволяет получить те самые «животные узоры», которые мы наблюдаем в природе. Некоторые математики изучают, как размеры и форма поверхности влияют на них. По мере изменения одного из параметров можно легко перейти от жирафьих пятен к кляксам, украшающим шкуру голштинских коров.

Эта изящная модель даже позволяет давать несложные прогнозы: к примеру, если пятнистое животное может иметь полосатый хвост (и очень часто имеет), то у полосатого животного никогда не будет пятнистого хвоста. И именно это мы и видим в жизни! Реакционно-диффузные уравнения не только дают все разнообразнейшие вариации узоров и расцветок, наблюдаемые в природе, но показывают и ограничения, присущие биологии. Киплинговское «просто так» можно без опасений променять на элегантность и универсальность этих уравнений.

Загрузка...