10. Атом водорода: квантовая теория

В 1925 году Шрёдингер и Гейзенберг независимо друг от друга разработали квантовую теорию. Созданные ими два формализма различались с математической точки зрения, но оба были точными и стали основанием для современной квантовой теории. Примерно в то же время Дирак также сделал крупный вклад в науку. Во-первых, он предложил объединённый взгляд на квантовую теорию, в рамках которого показал, что теории Шрёдингера и Гейзенберга, несмотря на математические различия, являются эквивалентными представлениями квантовой механики. Кроме того, он разработал квантовую теорию атома водорода, совместимую с теорией относительности Эйнштейна.

Для описания атомов и молекул обычно используется формулировка Шрёдингера. Поэтому в большинстве случаев мы будем начинать с атома водорода, а затем переходить к более крупным атомам и молекулам, опираясь при этом на понятия и язык, соответствующие шрёдингеровскому подходу.

Уравнение Шрёдингера

Мы использовали очень простой, но корректный математический метод определения энергетических уровней и волновых функций частицы в ящике, но этот метод не является универсальным. Например, он не может использоваться для определения энергетических уровней и волновых функций атома водорода. На самом деле используемые нами понятия, такие как волновые функции и волны амплитуды вероятности, пришли из шрёдингеровской формулировки квантовой механики. Уравнение Шрёдингера — это сложное дифференциальное уравнение в трёх измерениях. Мы не будем касаться математического аппарата, позволяющего решать уравнение Шрёдингера для атома водорода или других атомов и молекул. Однако мы воспользуемся многими полученными с его помощью результатами, чтобы ознакомиться с устройством атомов и молекул, начиная с атома водорода.

Решение задачи об атоме водорода с помощью уравнения Шрёдингера особенно важно, потому что оно является точным. Атом водорода — это пример так называемой задачи двух тел. В ней рассматриваются лишь две частицы: протон и электрон. Следующим по простоте является атом гелия, состоящий из ядра с зарядом +2 и двух отрицательно заряженных электронов. Это задача трёх тел, которую невозможно решить точно. Задача определения орбиты Земли, обращающейся вокруг Солнца, с Луной, обращающейся вокруг Земли, не имеет точного решения в классической механике. Однако и в квантовой, и в классической механике есть очень изощрённые приближённые методы, позволяющие с необходимой точностью решать задачи, которые нельзя решить аналитически. То, что метод является приближённым, не означает, что он грубый. И всё же поскольку задачу об атоме водорода в квантовой механике можно решить точно, она является важной отправной точкой для понимания более сложных атомов и молекул.

Что уравнение Шрёдингера говорит нам о водороде

Что даёт нам решение уравнения Шрёдингера для атома водорода? Оно позволяет определить энергетические уровни атома водорода и волновые функции, связанные с каждым состоянием этого атома. Волновые функции — это трёхмерные волны амплитуды вероятности, которые описывают области пространства, где может быть обнаружен электрон. Решение Шрёдингера для задачи об атоме водорода даёт значения энергетических уровней, совместимые с эмпирически полученной формулой Ридберга:

En=−RH/n2,

где n — главное квантовое число. Это целочисленная величина, которая может принимать значения ≥1, то есть быть больше либо равной единице.

Разница в энергии между любыми двумя энергетическими уровнями даётся формулой Ридберга. Однако в решении Шрёдингера величина RH не является эмпирическим параметром. Решая эту задачу, Шрёдингер нашёл, что постоянная Ридберга связана с фундаментальными постоянными формулой

RH=−μe4/8∙ε02h2.

Здесь h — постоянная Планка;

e — заряд электрона;

ε0=8,54∙10−12 Кл2/Джм — постоянная, называемая диэлектрической проницаемостью вакуума;

μ — приведённая масса протона и электрона:

μ=mpme/(mp+me),

где mp и me — массы протона и электрона соответственно. Значения заряда и массы электрона и протона уже приводились выше.

Если Ридберг получил экспериментальные данные и вывел эмпирическую формулу, описывающую линии спектра атома водорода, то в решении Шрёдингера для задачи об атоме водорода квантовая теория используется совершенно иным образом. Мы немного задержимся, чтобы восхититься триумфом квантовой теории, достигнутым в 1925 году. При выводе Шрёдингером энергетических уровней атома водорода не использовалось никаких подгоночных параметров. Все необходимые константы — это фундаментальные свойства частиц и электростатического взаимодействия, благодаря которому отрицательно заряженный электрон притягивается к положительно заряженному протону. Шрёдингер не обращался к экспериментальным данным, чтобы подогнать константу RH для лучшего совпадение с ними. Он создал теоретический формализм и применил его к атому водорода. Его теория в точности воспроизвела результаты экспериментальных наблюдений — спектральные линии атома водорода, опираясь только на фундаментальные постоянные.

В отличие от теории Бора уравнение Шрёдингера с успехом применялось к огромному числу других задач, включая атомы, отличные от водорода, а также небольшие и крупные молекулы. Как уже упоминалось, для систем крупнее атома водорода, то есть для атомов и молекул, состоящих более чем из двух частиц, уравнение Шрёдингера нельзя решить точно. Однако было разработано множество эффективных приближённых методов решения уравнения Шрёдингера для атомов, молекул и других типов квантовомеханических систем. Благодаря развитию компьютеров и их огромной вычислительной мощности стало возможно решать уравнение Шрёдингера для очень больших и сложных молекул. В следующих главах рассказывается о формах молекул. Решение уравнения Шрёдингера для молекулы даёт её энергетические уровни и волновые функции. Волновые функции содержат информацию, необходимую для определения формы молекул.

Четыре квантовых числа

Энергии различных состояний атома водорода описываются единственным квантовым числом n. Однако в действительности есть четыре квантовых числа, связанных с электронами в атомах. Они появляются при решении задачи об атоме водорода в рамках квантовой теории. Одно из них существенно лишь для атомов и молекул, имеющих более одного электрона. В этом смысле атом водорода является частным случаем, поскольку в нём всего один электрон. Для атома водорода, помимо главного квантового числа n, есть ещё два квантовых числа — l и m. Число l называется орбитальным квантовым числом, m — магнитным квантовым числом. От них в сочетании с квантовым числом n зависит, сколько различных состояний связано с конкретным значением энергии, они также определяют форму волновых функций. Четвёртое квантовое число обозначается s. Его называют спи́новым квантовым числом.

Когда Бор решал задачу об атоме водорода, в рамках старой квантовой теории считалось, что электрон движется по орбитам, имеющим разные формы и значения энергии. Корректное квантовое решение Шрёдингера для атома водорода даёт энергетические уровни и волновые функции, которые соответствуют боровским орбитам и называются «орбиталями». Обсуждая атомы и молекулы, мы часто используем термины «волновая функция» и «орбиталь» в качестве синонимов. Орбитали являются волнами амплитуды вероятности, которые подчиняются принципу неопределённости Гейзенберга, чем отличаются от боровских орбит.

Как уже отмечалось выше, главное квантовое число n может принимать целочисленные значения n≥1, то есть 1, 2, 3, 4 и так далее, а l может принимать значения от 0 до n−1 с целым шагом. Число m может иметь значения от l до l с целым шагом. Наконец, число s может принимать только два значения: +½ и −½. Сводка возможных значений квантовых чисел приведена в таблице ниже.

По историческим причинам состояния с различными значениями квантового числа l имеют индивидуальные обозначения. Состояние l=0 называется s-орбиталью. При l=1 говорят о p-орбитали, при l=2 — это d-орбиталь, а при l=3 — f-орбиталь. Для обсуждения всех атомов нам не понадобится заходить далее f-орбиталей, то есть l=3. Как показано ниже, различные орбитали имеют разные формы.

Поскольку энергии состояний (орбиталей) атома водорода зависят только от квантового числа n, для n>1 имеется более одного состояния с одинаковой энергией. Для n=1 имеем l=0 и m=0 (см. таблицу), поэтому существует единственная орбиталь с n=1. Для этой орбитали l=0, так что её обозначают как 1s-орбиталь. Для n=2 число l может быть равно 0, что даёт 2s-орбиталь. Однако для n=2 число l также может равняться 1. При l=1 число m может быть равно 1, 0 или −1 (см. таблицу). При l=1 — это p-орбиталь, причём существуют три разные p-орбитали, обозначаемые 2p1, 2p0 и 2p−1. Здесь 2 — это главное квантовое число n, p означает l=1, а три индекса— это три возможных значения m. Таким образом, для n=2 существует четыре различных состояния.

Если n=3, то l может быть равно нулю, что даёт 3s-орбиталь. Также l может быть равно 1, что при m = 1, 0 и −1 даёт орбитали 3p1, 3p0, и 3p−1. Кроме того, l может быть равно 2. Для l=2 число m может иметь значения 2, 1, 0, −1 и −2. Это d-орбитали: 3d2, 3d1, 3d0, 3d−1 и 3d−2. Всего имеется пять d-орбиталей. Таким образом, для n=3 имеется девять различных состояний: одна s-орбиталь, три p-орбитали и пять d-орбиталей. Когда n=4, есть 4s-орбиталь, три различные 4p-орбитали (4p1, 4p0 и 4p−1), пять различных 4d-орбиталей (4d2, 4d1, 4d0, 4d−1 и 4d−2). Дополнительно имеется семь f-орбиталей: 4f3, 4f2, 4f1, 4f0, 4f−1, 4f−2 и 4f−3. Таким образом, для n=4 имеется в общей сложности 16 состояний: одна s-орбиталь, три p-орбитали, пять d-орбиталей и семь f-орбиталей.

Как уже говорилось, каждая из этих орбиталей имеет свою форму. Довольно часто орбитали называют в соответствии с их формой. Например, три различных 2p-орбитали, вместо того чтобы обозначать их 2p1, 2p0 и 2p−1, называют 2px, 2pz и 2py. Связь между этими индексами и формами прояснится, когда мы познакомимся с соответствующими формами.

Энергетические уровни атома водорода

На рис. 10.1 представлена диаграмма энергетических уровней атома водорода. Изображены уровни с n от 1 до 5. Для удобства восприятия масштаб интервалов не соблюдается, но, как и показано, с увеличением n интервал между уровнями становится меньше. Также с увеличением n возрастает число различных состояний (орбиталей), соответствующих конкретному значению n. Водород — это особый случай, поскольку у него имеется лишь один электрон. Для водорода все орбитали с одинаковым значением n обладают равной энергией. В следующей главе будет объяснено, что в атомах с несколькими электронами орбитали с разными значениями l при одном и том же n обладают разными энергиями.

Рис. 10.1. Диаграмма энергетических уровней водорода. Изображены первые пять энергетических уровней. Для удобства восприятия масштаб интервалов между уровнями не соблюдается. Энергия зависит только от главного квантового числа n. Показано количество орбиталей каждого типа. При n=4 имеется одна s-орбиталь, три разные p-орбитали, пять разных d-орбиталей и семь разных f-орбиталей{13}. Диаграмму можно продолжить для n=6. Различные уровни иногда называют оболочками

s-орбитали атома водорода

Хотя значения энергии в атоме водорода зависят только от главного квантового числа n, квантовые числа l и m тоже играют важную роль. Они определяют форму орбиталей и другие свойства, присущие атому водорода. Например, квантовое число m называется магнитным квантовым числом. Три 2p-орбитали (2p1, 2p0 и 2p−1) различаются значениями квантового числа m. Когда атом водорода помещают в магнитное поле, энергии этих трёх орбиталей перестают быть одинаковыми.

Из диаграммы энергетических уровней, вычисленных с помощью уравнения Шрёдингера (см. рис. 10.1), становится ясно, как возникает эмпирическая диаграмма, представленная на рис. 9.3. Оптические переходы, видимые как линии в спектре атома водорода и описываемые формулой Ридберга, — это переходы между энергетическими уровнями атома водорода, энергии которых вычисляются на основе квантовой теории без каких-либо подгоночных параметров.

Как уже упоминалось, квантовые числа n, l и m вместе определяют формы волновых функций. Для s-орбиталей l=0. Это означает, что электрон не имеет углового момента{14} в своём движении относительно ядра атома. Все направления выглядят равноценными, так что s-орбитали — это сферически симметричные трёхмерные волны амплитуды вероятности. На рис. 10.2 схематически показаны орбитали (волны амплитуды вероятности) 1s, 2s и 3s. Более тёмный тон означает бо́льшую вероятность обнаружить электрон на соответствующем расстоянии от центра. Расстояния, на которых вероятности достигают максимума, показаны сплошными окружностями. Середины белых областей внутри орбиталей 2s и 3s (пунктирные окружности) — это узлы, то есть области, где вероятность обнаружить электрон обращается в нуль. При переходе от 1s к 2s и 3s размеры орбиталей значительно возрастают. С увеличением квантового числа n повышается вероятность обнаружить электрон вдали от ядра.

Рис. 10.2.Двумерные представления орбиталей 1s, 2s и 3s. В действительности они сферические. Более тёмный тон соответствует более высокой вероятности обнаружения электрона. Сплошными окружностями обозначены максимальные значения этой вероятности. Пунктирные окружности — это узлы, где данная вероятность обращается в нуль. При данном способе изображения орбитали имеют довольно чёткую внешнюю границу. Орбитали — это волны, которые становятся очень малыми на больших расстояниях, но обращаются в нуль лишь тогда, когда расстояние от центра стремится к бесконечности


Увеличение размера орбиталей — одна из причин того, что энергия возрастает с увеличением квантового числа n. Формула для энергетических уровней атома водорода начинается со знака «минус»: En=RH/n2. Принято считать, что более низкая энергия — это бо́льшая по абсолютной величине отрицательная энергия. Атом водорода состоит из протона и электрона, притягивающихся друг к другу в результате кулоновского, то есть электростатического, взаимодействия. Противоположные заряды притягиваются. Протон — это положительно заряженная частица, а электрон заряжен отрицательно. Когда протон и электрон разнесены бесконечно далеко, они не ощущают влияния друг друга. Взаимодействия между ними из-за большого расстояния нет. Система имеет нулевую энергию, когда её частицы разнесены на бесконечно большое расстояние.

Взаимодействие электрона и протона усиливается по мере того, как они сближаются. Энергия системы убывает, становясь всё более отрицательной. На орбитали 2s электрон в среднем находится дальше от протона, чем на орбитали 1s, на орбитали 3s электрон в среднем ещё дальше от протона. Это видно на рис. 10.2. С увеличением квантового числа энергия выражается всё меньшими отрицательными числами. При больших значениях n требуется меньше энергии, чтобы разделить электрон и протон, то есть ионизировать атом. Ионизация — это процесс отрыва электрона от атома, так что они более не связаны друг с другом. При n=1 для ионизации атома требуется энергия RH. Её нужно передать атому, чтобы превзойти энергию связи, равную — RH. При n=2 энергия, требуемая для ионизации атома водорода, составляет всего RH/4, а при n=3 необходимая энергия ещё меньше и составляет RH/9.

Пространственное распределение s-орбиталей

Чтобы лучше представить себе пространственное распределение вероятности обнаружить электрон в определённом положении, полезно построить для волновых функций два типа графиков. Один из них — это просто график волновой функции в зависимости от расстояния до ядра. Это полезный график, но кое в чём он вводит в заблуждение. Второй тип графика называют радиальным распределением функции, и мы вкратце его опишем.

На рис. 10.3 представлен график волновой функции Ψ(r) в зависимости от расстояния до протона, который находится в центре атома. График этого типа показывает амплитуду вероятности обнаружить электрон вдоль одной прямой линии, уходящей радиально от центра. Значение r отсчитывается от тёмного центра распределения электрона на рис. 10.2 вправо в горизонтальном направлении. На рис. 10.3 видно, что вероятность обнаружить электрон быстро убывает вдоль отдельно взятой прямой и приближается к нулю, когда расстояние от ядра достигает 3 Å.

Рис. 10.3. График волновой функции Ψ(r) для орбиталей 1s в зависимости от расстояния r до протона. Значение Ψ(r) пропорционально вероятности обнаружить электрон вдоль линии, радиально уходящей от центра атома. Расстояние r выражено в ангстремах (1 Å = 10−10 м)


Проблема с графиком того типа, который представлен на рис. 10.3, состоит в том, что он не учитывает трёхмерную природу атома. Рассматривая 1s-орбиталь на рис. 10.2, мы понимаем, что можно обнаружить электрон на некотором расстоянии от центра, двигаясь не только вдоль линии, направленной вправо, но и вдоль линии, направленной влево, вверх или вниз. Можно также сдвинуться в любом диагональном направлении на расстояние r и получить ту же самую вероятность обнаружить электрон. Поскольку атом трёхмерен, можно также выйти из плоскости страницы и тоже обнаружить электрон. Если нужно знать вероятность обнаружения электрона на определённом расстоянии r от протона, то следует произвести суммирование по всем таким радиальным направлениям.

В действительности вопрос состоит в том, какова вероятность обнаружить электрон на некотором расстоянии от ядра, если сложить все возможные направления. Можно сформулировать этот вопрос иначе: какова вероятность обнаружить электрон в тонком сферическом слое радиусом r? Поскольку с увеличением r объём этого тонкого сферического слоя возрастает, то на некоторых расстояниях это нивелирует тот факт, что волновая функция убывает. Чтобы понять роль этого тонкого сферического слоя, рассмотрим ряд пустых резиновых мячей с одинаковой толщиной оболочки. Мяч маленького радиуса (r) будет содержать меньше резины, чем мяч большого радиуса. Если же вы просто пойдёте по одной прямой линии от центра мяча и, добравшись до его оболочки, поинтересуетесь толщиной резины, то она не будет зависеть от радиуса мяча. Ясно, однако, что в оболочке большого мяча содержится больше резины, чем в оболочке маленького.

Площадь поверхности сферы составляет 4πr2, где r — радиус сферы. Умножив эту величину на толщину оболочки, вы получите объём резины в мяче. Теперь ясно, что большой мяч содержит намного больше резины в своей оболочке, чем маленький. Если удвоить радиус, количество резины увеличится в 4 раза. Другой важный факт: когда r стремится к нулю, количество резины в мяче тоже стремится к нулю, поскольку к нулю стремится площадь поверхности 4πr2. Спрашивать, находится ли электрон на расстояние r от ядра, — это всё равно что спрашивать, сколько резины содержится в оболочке мяча радиусом r. Тут необходимо учитывать увеличение площади поверхности при увеличении радиуса.

Функция радиального распределения

Функция радиального распределения — это как раз то, что нужно для учёта трёхмерной природы атома. Чтобы по мере увеличения r учесть все направления поиска электрона, необходимо добавить множитель 4πr2. Функция радиального распределения задаёт вероятность обнаружить электрон на расстоянии r от ядра для всех направлений. В главе 5 говорилось, что, согласно интерпретации волновой функции Бора, вероятность обнаружить частицу в некоторой области пространства пропорциональна квадрату абсолютного значения волновой функции. Сейчас мы хотим найти вероятность обнаружения электрона в тонком сферическом слое радиусом r. Это и будет функция радиального распределения, задаваемая формулой 4π∙r2∙|Ψ|2. Вертикальные линии, как и прежде, обозначают абсолютную величину. Для функций, с которыми мы имеем дело, потребуется лишь возвести в квадрат волновую функцию.

Рис. 10.4. График функции радиального распределения для 1s-орбитали в зависимости от расстояния r до протона. Функция радиального распределения — это вероятность обнаружить электрон в тонком сферическом слое на расстоянии r от протона. Функция радиального распределения учитывает тот факт, что электрон может быть найден в любом направлении от протона. Расстояние r измеряется в ангстремах (1 Å = 10−10 м)


На рис. 10.4 показана функция радиального распределения для 1s-состояния атома водорода.

Расстояние, на котором достигается максимальная вероятность, — это не центр атома, поскольку объём сферического слоя стремится к нулю, когда r обращается в нуль. Вертикальная линия показывает положение максимума распределения вероятности, который находится на отметке r = 0,529 Å. Это значение представляет особый интерес. В старой боровской квантовой теории атома водорода электрон в 1s-состоянии движется по круговой орбите радиусом 0,529 Å. Это расстояние называется радиусом Бора и обозначается a0. Корректное квантовомеханическое описание атома водорода гласит, что электрон — это волна амплитуды вероятности с расстоянием максимальной вероятности, равным радиусу Бора a0. Это не случайное совпадение. Радиус Бора в действительности является фундаментальной постоянной. Он определяется формулой

a0=ε0h2/π∙μe2,

где все параметры те же, что и в выражении для постоянной Ридберга через фундаментальные постоянные. На самом деле энергетические уровни атома водорода можно выразить через радиус Бора следующим образом:

En=−e2/8π∙ε0a0n2.

На рис. 10.5 и 10.6 представлены графики волновых функций (вверху) и функций радиального распределения (внизу) для орбиталей 2s и 3s. Волновая функция для 2s-орбитали имеет узел, то есть место, где она обращается в нуль. Об узлах мы говорили в связи с волновой функцией частицы в ящике (см. рис. 8.4). Вблизи узла вероятность обнаружить частицу, в данном случае электрон, равна нулю. Волновая функция состояния 2s начинается с положительного значения, пересекает нулевое значение в узле, расположенном на расстоянии, равном удвоенному радиусу Бора (2а0), а затем становится отрицательной. Далее волновая функция спадает до нуля. На расстоянии 8 Å значение волновой функции уже очень мало́.

Рис. 10.5. Волновая функция (вверху) и функция радиального распределения (внизу) для 2s-орбитали атома водорода в зависимости от расстояния r до протона. Волновая функция начинается с положительного значения, проходит через узел чуть дальше точки 1 Å (2a0) и затем спадает до нуля. Функция радиального распределения демонстрирует максимум вероятности обнаружения электрона на отметке 2,8 Å, причём наиболее вероятно найти его в интервале от 2 до 4 Å (см. рис. 10.2). Расстояние r измеряется в ангстремах (1 Å = 10−10 м)

Рис. 10.6. Волновая функция (вверху) и функция радиального распределения (внизу) для 3s-орбитали атома водорода в зависимости от расстояния r до протона. Волновая функция начинается с положительного значения, проходит через узел, становясь отрицательной, проходит через второй узел, вновь становясь положительной, и затем спадает до нуля. Функция радиального распределения показывает, что вероятность обнаружения электрона достигает максимума на отметке 7 Å, причём наиболее вероятно найти его в интервале от 5 до 11 Å (см. рис. 10.2). Расстояние r измеряется в ангстремах (1 Å = 10−10 м)


Как уже подробно говорилось, волновые функции — это волны амплитуды вероятности. Подобно другим волнам, они могут быть положительными и отрицательными. В нижней части рис. 10.5 показана функция радиального распределения для состояния 2s. Это вероятность обнаружить данный электрон на расстоянии r от ядра. Вероятности всегда имеют положительные значения, поскольку являются квадратами волновой функции, которые всегда положительны.

Волна может быть положительной или отрицательной, но имеющие смысл значения вероятности являются положительными числами или нулём. Функция радиального распределения показывает, что бо́льшая часть вероятности приходится на интервал от 2 до 4 Å; это также видно на рис. 10.2, но без количественного описания. Пик вероятности приходится на отметку приблизительно 2,8 Å.

Из рис. 10.6 видно, что волновая функция 3s-орбитали имеет два узла, то есть дважды пересекает ноль. В этом отношении волновые функции атома водорода подобны волновым функциям частицы в ящике (см. рис. 8.4). При n=1 узлов нет. При n=2 имеется узел. При n=3 имеется два узла. Число узлов для s-орбиталей равно n−1. Волновая функция 3s начинается с положительного значения, затем становится отрицательной, а потом вновь положительной. В конце концов она спадает до нуля, становясь очень малой за отметкой 16 Å. Функция радиального распределения для 3s-орбитали показывает, что область наибольшей вероятности обнаружить электрон находится относительно далеко от ядра. Пик вероятности расположен приблизительно на 7 Å, а на интервал от 5 до 11 Å приходится наибольшая вероятность найти электрон. Три функции радиального распределения, изображённые на рис. 10.4–10.6, дают количественное выражение для информации, схематически представленной на рис. 10.2. По мере увеличения главного квантового числа (n) s-орбитали становятся больше и количество узлов возрастает.

Формы p-орбиталей

Для 2s-орбитали n=2, l=0 и m=0. Однако при n=2 число l также может быть равно 1 и с ним могут быть связаны три значения m:m = 1, 0, −1. Эти три значения m соответствуют трём различным 2p-орбиталям. Они показаны на диаграмме энергетических уровней на рис. 10.1.

Рис. 10.7. Схематическое изображение трёх 2p-орбиталей атома водорода: 2p z , 2p y и 2p x . У каждой из них имеется два лепестка: один положительный и один отрицательный. У каждой есть узловая плоскость, то есть плоскость, где вероятность обнаружить электрон равна нулю. Лепестки 2p z -орбитали располагаются вдоль оси z, а узловой является плоскость xy, выделенная серым тоном. У 2p y -орбитали лепестки расположены вдоль оси y, а основная плоскость — в плоскости xz. Лепестки 2p x -орбитали лежат вдоль оси z, а узловая плоскость — это yz. Лепестки на этой схеме показывают, где находится область с максимальной амплитудой вероятности для электрона. Волны амплитуды вероятности плавно спадают к нулю вдали от ядра (протона), а не обрываются резко, как на этих диаграммах


Три разные 2p-орбитали схематически представлены на рис. 10.7. Как уже говорилось, 2p-орбитали с учётом их формы обычно обозначают 2pz, 2py и 2px. Каждая из этих орбиталей имеет два лепестка — положительный и отрицательный. Какой лепесток считать положительным, а какой — отрицательным, не важно, но знак должен меняться, поскольку имеется узловая плоскость. Лепестки 2pz-орбитали расположены вдоль оси z. Узловая плоскость (на рисунке показана серым тоном) — это плоскость xy (z=0). Вероятность обнаружить электрон на этой плоскости равна нулю. Знак волновой функции меняется при переходе через узел. У 2s-орбитали имеется радиальный узел. Это сферическая поверхность на определённом расстоянии от центра, представляющая собой узел. Каждая из p-орбиталей имеет узловую плоскость, то есть совокупность направлений (плоскость), где располагается узел. У 2p-орбиталей нет радиального узла, но у 3p-орбиталей в дополнение к узловой плоскости есть радиальный узел, а у 4p-орбиталей имеется два радиальных узла и т. д.

Лепестки 2py-орбитали направлены вдоль оси y, а её узловая плоскость — это xy. У 2px-орбитали лепестки направлены вдоль оси x, а узловой является плоскость yz. Приведённые на рис. 10.7 схематические изображения 2p-орбиталей подобны изображениям s-орбиталей на рис. 10.2. Рисунок 10.7 позволяет понять, в каких областях амплитуда вероятности для электрона велика. Однако важно понимать, что эти волны амплитуды вероятности плавно спадают с удалением от ядра. На рисунке лепестки обрываются резко, но волновые функции на больших расстояниях ведут себя подобно тому, как это показано на рис. 10.3 для 1s-орбитали. Тем не менее рис. 10.7 полезен для того, чтобы представить себе формы 2p-орбиталей. Эти формы окажутся очень важными, когда речь пойдёт о молекулярных связях и формах молекул.

Формы d-орбиталей

При n=3 число l может быть равно 0, что даёт 3s-орбиталь. Также l может быть равно 1, что при m = 1, 0, −1 даёт три различные 3p-орбитали. Кроме того, l может быть равно 2, что при m = 2, 1, 0, −1, −2 даёт пять различных 3d-орбиталей. Они показаны на диаграмме энергетических уровней (см. рис 10.1). На рис. 10.8 изображено пять различных 3d-орбиталей. Как и p-орбиталям, d-орбиталям часто дают названия, отражающие их форму, вместо того чтобы обозначать их квантовым числом m. Четыре из этих орбиталей имеют в целом одинаковую форму. У каждой имеется четыре лепестка и две узловые плоскости. Два из этих лепестков положительные, а другие два отрицательные. При пересечении узловой плоскости волновая функция меняет знак. Пятая орбиталь (dx2) имеет другую форму, но у неё по-прежнему две узловые поверхности. Это конические поверхности, изображённые на диаграмме. Как и в случае с p-орбиталями, на рис. 10.8 тоном выделены области с наибольшей амплитудой вероятности обнаружения электрона. Эти волны амплитуды вероятности спадают к нулю с увеличением расстояния от ядра.

Рис. 10.8. Схематическое изображение пяти 3d-орбиталей атома водорода, обозначенных в соответствии с их формой. Каждая орбиталь имеет две узловые поверхности, а также положительные и отрицательные лепестки. На четырёх из них узловые поверхности имеют вид плоскостей, а на пятой — форму конусов. При пересечении узловых поверхностей волновая функция меняет знак. Лепестки на каждой диаграмме показывают, где расположены области наибольшей амплитуды вероятности для электрона. Четыре орбитали содержат по четыре лепестка каждая. Однако d x2 — орбиталь имеет другую форму. У неё по-прежнему две узловые поверхности, но они имеют коническую форму. Все эти волны амплитуды вероятности плавно спадают к нулю с удалением от ядра (протона), а не обрываются резко, как на этих диаграммах


При n=4 в дополнение к s, p, d-орбиталям число l может быть равно 3, что позволяет числу m принимать семь различных значений. Существует семь f-орбиталей. Эти f-орбитали имеют по три узловые поверхности и обладают очень сложными формами. Как объясняется в следующей главе, посвящённой атомам тяжелее водорода, лишь очень тяжёлые элементы обладают электронами на f-орбиталях, и эти электроны обычно не принимают участия в образовании химических связей. Многие молекулы, в особенности те, в которых основным элементом является углерод, так называемые органические молекулы, зависят в основном от 2s- и 2p-орбиталей. Однако молекулы, содержащие тяжёлые элементы, например металлы, могут зависеть также и от d-орбиталей.

В главе 11 мы построим обсуждение так, чтобы, отталкиваясь от свойств атома водорода, понять свойства всех атомов. Поскольку эти более крупные атомы содержат больше одного электрона, в игру вступает четвёртое квантовое число s. Опираясь на ряд простых правил, мы сможем понять многие свойства атомов и разобраться в том, как они образуют молекулы.

Загрузка...