В главах 13 и 14 говорилось о двойных связях, а в главе 16 мы узнали о том, что двойные связи играют фундаментальную роль в определении биологических свойств жиров. Среди обсуждавшихся молекул были полиненасыщенные жиры, имеющие несколько двойных связей, однако эти двойные связи всегда разделяются некоторым числом одиночных связей. Например, на рис. 16.5 изображена шаростержневая модель молекулы ДГК — полиненасыщенной жирной кислоты с шестью двойными связями. Как легко заметить, между любыми двумя её двойными связями находятся две одиночные связи.
В этой главе мы познакомимся с разнообразными проявлениями множественных двойных связей, которые не разделяются несколькими одиночными связями. Квантовая теория показывает, что связи такого рода, обнаруживаемые в молекуле бензола и многочисленных других «ароматических» молекулах, могут объяснить электропроводность металлов, а также различия между металлами, полупроводниками и диэлектриками, которые будут обсуждаться в главе 19. Для понимания ароматических молекул и электропроводности металлов нам надо начать обсуждение с природы молекулярных орбиталей, которые возникают при взаимодействии одинаковых атомных орбиталей множества атомов.
На рис 18.1 изображена молекулярная диаграмма бензола, который состоит из шести атомов углерода и шести атомов водорода. Экспериментально было определено, что молекула бензола имеет правильную шестиугольную форму, а все её атомы (и углерод, и водород) лежат в одной плоскости. Угол между связями одного атома углерода с двумя ближайшими соседями составляет ровно 120°, и угол, образованный связью с водородом и с соседним углеродом, тоже равен 120°. Таким образом, три связи, образованные любым из атомов углерода, имеют треугольную геометрию, а значит, они образованы с помощью трёх sp2-гибридизированных атомных орбиталей каждого атома углерода. Итак, у всех атомов углерода остаётся по одной неиспользованной 2p-орбитали, расположенной перпендикулярно плоскости страницы. Обозначим её 2pz. Мы знаем, что углерод всегда образует четыре связи. Здесь углерод связан лишь с тремя другими атомами с помощью трёх связей. 2pz-орбитали должны служить для образования двойных π-связей, но где они располагаются в молекуле?
Рис. 18.1. Геометрия молекулы бензола C 6 H 6 . Бензол имеет форму правильного плоского шестиугольника
На рис. 18.2 изображены две возможные структуры с двойными связями. В обоих случаях каждый атом углерода образует четыре связи. Углерод образует три σ-связи — одну с водородом и по одной с двумя соседними атомами углерода. Каждый атом углерода участвует в двойной связи с одним из соседних атомов углерода. Диаграммы, изображённые справа и слева, идентичны, за исключением расположения двойных связей.
Рис. 18.2. Две возможные конфигурации двойных связей в бензоле. В обеих все атомы углерода образуют по четыре связи
Два момента, относящиеся к связям в молекуле бензола, отражены на рис. 18.2 неверно. При обсуждении двойных связей в главе 14 была приведена табл. 14.1, из которой видно, что двойные углерод-углеродные связи значительно короче одиночных. Двойная связь в этилене имеет длину 1,35 Å против 1,54 Å для одиночной связи в этане. Так что если в бензоле двойные и одиночные связи чередуются, то в нём должны чередоваться короткие и длинные углерод-углеродные звенья. Однако эксперименты убедительно показывают, что бензол является правильным шестиугольником и все углерод-углеродные связи в нём имеют одинаковую длину.
Если закрыть глаза на то, что диаграмма подразумевает неравную длину связей, то вторая проблема состоит в выяснении, какая из двух диаграмм верна — правая или левая? Нет никаких причин предпочесть одну другой. В первых попытках объяснения предполагалось, что связи постоянно переключаются между конфигурациями на правой и левой диаграммах. В результате такого перескакивания получается своего рода усреднённая структура. Эта идея является шагом в правильном направлении, но подлинный ответ, который впоследствии оказался применимым ко многим типам систем, касается природы образующихся молекулярных орбиталей.
На рис. 18.3 схематически изображены атомные орбитали, участвующие в образовании молекулярных орбиталей бензола. Сверху нарисованы гибридные атомные орбитали, служащие для создания σ-связей. Каждый атом углерода использует три гибридные sp2-орбитали для образования трёх σ-связей — одной с атомом водорода и по одной для двух соседних атомов углерода. Образование этих трёх sp2-гибридизированных атомных орбиталей оставляет каждому атому углерода по одной избыточной p-орбитали. В верхней части рис. 18.3 за плоскость xy принята плоскость, содержащая атомы (плоскость страницы). Тогда у каждого атома углерода остаётся неиспользованная pz-орбиталь, расположенная перпендикулярно плоскости страницы. Эти орбитали изображены в нижней части рисунка. Положительные и отрицательные лепестки орбиталей расположены над и под плоскостью кольца. На этой диаграмме длина связи между атомами углерода преувеличена, а ширина pz-орбиталей приуменьшена, чтобы сделать изображение более понятным. В действительности же pz-обитали перекрываются, что в более реалистичных пропорциях показано на рис. 14.15.
Эти шесть атомных pz-орбиталей объединяются и образуют молекулярные орбитали. Без нарушения принципа Паули эти атомные орбитали могут содержать максимум 12 электронов. Поэтому шесть атомных орбиталей образуют суперпозицию и дают шесть молекулярных орбиталей (МО), которые также могут вмещать максимум 12 электронов. Эти МО не связаны с конкретным атомом или даже конкретной парой атомов. Они растянуты на всю систему из шести атомов углерода.
Рис. 18.3.Вверху: бензол и σ-связи. Каждый атом углерода образует три связи, используя три sp2-орбитали, лежащие в плоскости xy. У каждого атома углерода остаётся pz-орбиталь, перпендикулярная плоскости бензольного кольца. Внизу: pz-орбитали углерода имеют положительные и отрицательные лепестки, которые расположены над и под плоскостью кольца. Длина связей здесь преувеличена, а ширина лепестков, наоборот, приуменьшена для того, чтобы иллюстрация стала понятнее. Лепестки соседних pz-орбиталей перекрываются
Обсуждая молекулу водорода в связи с рис. 12.6, мы выяснили, что две атомные орбитали в ней объединяются и образуют две молекулярные орбитали — связывающую и разрыхляющую. В главе 13 мы разбирались с более крупными двухатомными молекулами, такими как F2, O2 и N2. У этих элементов каждый атом имеет три p-орбитали, а шесть атомных орбиталей при объединении дают шесть π-МО — три связывающие и три разрыхляющие (см. рис. 13.5). Некоторые из этих двухатомных π-МО будут вырожденными, то есть обладающими одинаковой энергией.
В бензоле шесть атомных pz-орбиталей объединяются и образуют три связывающие МО и три разрыхляющие МО, как показано на рис. 18.4. Шесть 2pz-орбиталей углерода, по одной у каждого атома, обладают одинаковой энергией. Это обозначено шестью близко расположенными линиями в левой части рис. 18.4. Они объединяются и образуют шесть МО с энергетическими уровнями, изображёнными в правой части рисунка. Энергия трёх из этих МО ниже, чем у атомных pz-орбиталей, — это связывающие МО. Другие три МО обладают энергией более высокой, чем у атомных орбиталей, — это разрыхляющие МО.
Рис. 18.4.Слева: бензол содержит шесть атомов углерода, каждый с 2pz-орбиталью. Они обладают одинаковой энергией, что обозначено шестью близко расположенными линиями. Справа: шесть pz-орбиталей объединяются и образуют шесть молекулярных π-орбиталей: три связывающие (b) и три разрыхляющие (*)
На рис. 18.5 изображены энергетические уровни связывающих и разрыхляющих орбиталей с размещёнными на них шестью электронами, по одному от каждого атома углерода. Мы помещаем электроны на низший доступный в соответствии с принципом Паули энергетический уровень. Принцип Паули (см. главу 11) утверждает, что на одной орбитали могут находиться не более двух электронов и что они должны иметь противоположные спины (один ориентирован вверх, другой — вниз). Первые два электрона занимают МО с наименьшей энергией. Следующие две МО имеют одинаковую энергию, что изображено двумя близко расположенными линиями. Каждую из этих МО занимают два электрона. Эти три МО, заполненные шестью электронами, являются π-связывающими. π-разрыхляющие МО остаются пустыми.
Рис. 18.5.Энергетические уровни молекулярных π-орбиталей бензола с размещёнными на них шестью электронами, занимающими низшие доступные энергетические уровни при соблюдении принципа Паули
На рис. 18.5 видно, что шесть pz-электронов углерода занимают три π-связывающие МО. Таким образом, имеются три π-связи, разделяемые шестью атомами углерода. Эти три π-связи добавляются к σ-связям, которые соединяют каждые два соседних атома углерода. Всего в результате у каждого атома углерода имеется 1,5 связи с соседними атомами: три π-связи разделяются шестью атомами углерода, внося в их соединения по половине связи. Такие связи между атомами углерода короче и сильнее одиночных углерод-углеродных связей, но они не настолько коротки и сильны, как настоящие двойные связи. π-связи фиксируют плоскую форму молекулы. Изгибы кольца, уводящие его от плоской формы, уменьшают перекрытие pz-орбиталей и повышают энергию. На рис. 18.6 изображена молекулярная диаграмма бензола. Атомам углерода соответствуют вершины. Атомы водорода находятся на свободных концах отрезков, отходящих от углерода. Окружность обозначает систему делокализованных π-электронов.
Углеродные кольца с делокализованными π-связями входят во многие молекулы. Примером может служить нафталин, изображённый на рис. 18.7. Нафталин содержит десять атомов углерода, образующих два кольца по шесть атомов, к которым присоединены восемь атомов водорода. Две окружности изображают делокализованные молекулярные π-орбитали. Как и бензол, нафталин является плоским, а каждый атом углерода в нём имеет полторы связи с соседними атомами углерода.
Рис. 18.6.Молекулярная диаграмма бензола. В каждой вершине находится атом углерода, а атомы водорода располагаются на свободных концах отрезков, отходящих от углерода. В виде окружности изображены делокализованные молекулярные π-орбитали
Рис. 18.7.Молекулярная диаграмма нафталина. Нафталин содержит десять атомов углерода и восемь атомов водорода. Окружности изображают делокализованные молекулярные π-орбитали
Бензол, нафталин и другие подобные молекулы называют ароматическими. Обычно они имеют приятный аромат. Нафталин используется против моли и имеет характерный запах. Духи содержат более сложные ароматические молекулы, в которые входит множество бензолоподобных колец, а также другие химические группы вместо атомов водорода. Небольшие изменения в молекулярной структуре приводят к изменению аромата, и именно поэтому разные духи пахнут по-разному.
В главе 8 мы обсуждали задачу о частице в ящике. На рис. 8.4 и 8.6 изображены волновые функции и энергетические уровни частицы в ящике. Волновая функция, связанная с низшим энергетическим уровнем, не имеет узлов. На следующем энергетическом уровне волновая функция имеет один узел, на следующем — два узла и т. д. Узел — это место, где волновая функция обращается в нуль, то есть вероятность обнаружить электрон равна нулю. Частица в ящике — это одномерная задача. Узел является точкой. В главе 10 мы анализировали волновые функции и энергетические уровни атома водорода. На рис. 10.2 и 10.6 изображены волновые функции атома водорода для состояний 1s, 2s и 3s. Эти волновые функции трёхмерные. Низшее энергетическое состояние (1s) не имеет узлов, следующее по энергии состояние (2s) имеет волновую функцию с одним узлом. Ещё более высокое энергетическое состояние (3s) имеет два узла. Эти узлы представляют собой трёхмерные поверхности, на которых вероятность обнаружения электрона равна нулю.
У бензольных π-МО число узлов также возрастает с увеличением энергии. На рис. 18.8 схематически изображены бензольные π-МО. Серым тоном показаны области высокой электронной плотности (высокой вероятности обнаружения электронов) для π-МО.
Эти трёхмерные электронные облака продолжаются над плоскостью страницы и за ней и не имеют чётких границ. Также показаны энергетические уровни шести pz-электронов, которые заполняют связывающие МО с наименьшей энергией. МО с минимальной энергией не имеет узлов. Имеются два состояния со следующей по величине энергией. Обе такие МО имеют по одному узлу. Три МО без узлов и с одним узлом являются связывающими. Есть также два уровня со следующим по величине значением энергии. Эти МО имеют по два узла. МО с наивысшей энергией имеет три узла. Эти три МО, имеющие по два и три узла, являются разрыхляющими.
Рис. 18.8.Энергетические уровни бензольных молекулярных π-орбиталей и схематическое изображение формы соответствующих МО. С увеличением энергии число узлов тоже возрастает. МО с одинаковым числом узлов имеют одинаковую энергию
Сравнивая схемы МО с наименьшей и наибольшей энергией на рис. 18.8, нетрудно увидеть, почему первая МО является связывающей, а вторая — разрыхляющей. У МО с наименьшей энергией электронная плотность распределена между всеми атомами углерода. У разрыхляющей МО с наибольшей энергией между всеми атомами углерода находятся узлы, так что электроны на этой МО не будут связывать атомы углерода друг с другом. Две другие связывающие МО хотя и имеют более высокий энергетический уровень, чем связывающая МО с наименьшей энергией, в итоге всё же соединяют атомы углерода. Каждая из этих МО имеет по одному узлу. Та из них, что изображена слева, помещает электронную плотность между парами атомов углерода, находящимися слева и справа. МО, изображённая справа, помещает электронную плотность между тремя атомами углерода вверху и между тремя атомами углерода внизу. Несмотря на узлы, эти МО объединяются с МО, имеющей наименьшую энергию, и порождают три π-связи, которые разделяются между всеми шестью атомами углерода. Две вырожденные разрыхляющие МО имеют каждая по два узла. Та из них, что изображена слева, очевидно, не даёт вклада в связывание, поскольку не размещает электронную плотность между какими-либо двумя атомами углерода. МО, изображённая справа, хотя и помещает электронную плотность между двумя парами атомов углерода, но в совокупности с левой орбиталью не даёт связывания.
Для молекул ароматических соединений квантовая теория позволяет рассчитать молекулярные орбитали, а также их формы и размеры. Есть много способов проверить результаты квантовых вычислений путём сравнения с данными экспериментов. Один из наиболее полезных способов состоит в применении оптической спектроскопии для измерения длин волн (цветов) света, поглощаемого молекулами. Рассмотрим в качестве примера нафталин.
На рис. 18.7 представлена молекулярная диаграмма нафталина, содержащего десять атомов углерода. Каждый атом углерода вносит одну pz-орбиталь с одним электроном в образование делокализованной системы π-электронов. Ещё три валентных электрона каждого атома углерода служат для образования σ-связей. Десять атомных pz-орбиталей образуют π-систему, в которой, таким образом, будет десять молекулярных орбиталей: пять связывающих и пять разрыхляющих. В нафталине нет вырожденных МО, каждая имеет свою энергию. На рис. 18.9 схематически изображены энергетические уровни π-МО нафталина. Слева показаны энергетические π-уровни с десятью π-электронами, заполняющими пять связывающих МО. Разрыхляющие МО пустуют.
На рис. 18.9 показан эффект поглощения света. Поскольку энергетические уровни квантуются, молекула может поглощать свет лишь с определёнными значениями энергии. На рисунке ∆E — наименьшая энергия света, который может быть поглощён. Рассмотрим, что случится, если направить свет на образец с молекулами нафталина, начиная со света, который имеет слишком низкую энергию, чтобы быть поглощённым молекулами. Энергия света описывается формулой E=h∙ν, где h — постоянная Планка, а ν — частота. Итак, первоначально ∆E>h∙ν, то есть разница в энергии между верхней занятой молекулярной орбиталью (ВЗМО) и нижней свободной молекулярной орбиталью (НСМО) больше энергии фотонов, проникающих в образец. В результате они пройдут сквозь образец без поглощения. Теперь начнём изменять энергию света, повышая её (от красного к голубому). Когда h∙ν=∆E, свет поглощается, что проявляется в уменьшении количества излучения, проходящего сквозь образец. Электрон возбуждается, переходя с НСМО на ВЗМО. Это возбуждение показано в правой части рис. 18.9, где один электрон находится на ВЗМО и один электрон — на НСМО. В левой части рис. 18.9 на ВЗМО находятся два электрона, а на НСМО — ни одного.
Переход с ВЗМО на НСМО — это энергетически наименее затратный переход. Из рисунка видно, что связывающие МО находятся друг к другу ближе, чем ВЗМО и НСМО. Однако электрон не может возбудиться, перейдя с одной заполненной связывающей МО на другую. Если попытаться забрать электрон с одной связывающей МО и поместить его на другую, то получится МО с тремя электронами. Три электрона на МО нарушают принцип запрета Паули. Поэтому в нашем оптическом эксперименте, в котором цвет излучения меняется от красного к голубому (от низкой энергии к высокой), первым цветом (длиной волны), который подвергается поглощению, будет тот, что соответствует энергии ∆E. Значение ∆E можно вычислить на основе квантовой механики. Оно зависит от строения молекулы и взаимодействия атомных орбиталей, которые образуют молекулярные орбитали. Результаты квантовых вычислений в дальнейшем можно проверить, сравнивая с длинами волн, при которых будет происходить поглощение, по мере увеличения энергии света, смещающегося по спектру всё ближе к голубому. Второй раз поглощение произойдёт, когда свет сможет поднять электрон с ВЗМО на энергетический уровень, находящийся выше НСМО. Следующее поглощение соответствует переходу электрона с ВЗМО на орбиталь, которая на два энергетических уровня выше НСМО, и т. д.
Рис. 18.9.Схема энергетических уровней молекулярных π-орбиталей нафталина. Имеются пять связывающих и пять разрыхляющих МО. Слева изображены десять π-электронов, заполняющих пять связывающих МО. Справа показан результат поглощения света: один из электронов увеличил свою энергию и поднялся на разрыхляющую МО
С помощью современной квантовой теории и компьютеров строение нафталина можно рассчитать с высокой точностью. Теория даёт значения длины связей и угла между ними. Например, длину связей можно вычислить с точностью до 0,001 нм, то есть до тысячной доли нанометра. На основе результатов этих вычислений можно также с высокой точностью рассчитать частоты, на которых поглощается свет. В вычислениях используются значения массы, числа электронов и заряда ядер. Расчёты охватывают как σ-, так и π-связи. Как уже говорилось, π-электроны не локализованы у одного или двух центров атомов углерода, а размазаны по всей углеродной структуре молекулы. Наименьшая энергия поглощения для нафталина, соответствующая переходу с ВЗМО на НСМО, характеризуется длиной волны 320 нм, которая лежит в ультрафиолетовой части оптического спектра.
Можно грубо рассчитать её, рассматривая π-электроны как частицы в ящике. В главе 8 задача о частице в ящике описывалась во всех подробностях. Если рассмотреть переход с ВЗМО на НСМО как переход электрона в ящике с уровня n=1 на уровень n=2 (см. рис. 8.7), то можно воспользоваться формулами, выведенными сразу после рис. 8.7. Для этого перехода получаем
∆E=3∙h2/8∙m∙L2,
где h — постоянная Планка, m — масса электрона, а L — длина ящика. Здесь мы примем значение L равным 0,51 нм, то есть поперечнику углеродной структуры нафталина. Тогда
∆E = 3∙(6,6∙10−34)2/8∙(9,1∙10−31)∙(0,8∙10−9)2 = 6,9∙10−19.
Преобразовав эту энергию в частоту путём деления на h, получаем: ν=1,04∙1015 Гц. Тогда длина волны поглощаемого света составит: λ=2,87∙10−7 м = 287 нм. Эта длина волны лежит дальше в ультрафиолетовой области, чем реальная, но всё же она не очень далека от наблюдаемого значения.
Расчёт для частицы в ящике показывает, что если частица с массой электрона заключена в ящике размером с молекулу нафталина, то первая линия поглощения будет находиться в ультрафиолетовом диапазоне. Удовлетворительная точность, полученная для нафталина при расчёте по модели частицы в ящике, представляет собой до некоторой степени случайную удачу. Даже если моделировать нафталин как частицу в ящике, это должен быть двух- или трёхмерный ящик, а не одномерный. Подобные расчёты обычно приводят к существенным ошибкам. Однако точные квантовомеханические вычисления позволяют определить строение молекулы и значительно более точные частоты поглощения света. Кроме того, если, например, заменить водород фтором, то квантовая теория точно предскажет, насколько изменятся частоты поглощения света фторнафталином по сравнению с обычным нафталином.