Когда отец, держа младенца на руках, показывает на небо и говорит: «Это Луна», младенец, конечно, замечает в небе яркий объект. Он может запомнить, что этот свет в небе называется «Луна», но он не понимает, что такое Луна и где она находится. В возрасте 7–8 лет представление о том, что такое Луна, становится более глубоким. Ребёнок уже знает, что Луна очень сильно отличается от уличного фонаря на углу квартала, что она находится очень далеко и что дотронуться до неё и забраться на неё нельзя, хотя много лет назад люди всё-таки там побывали. Взрослея, человек приобретает адекватное представление о Луне, даже если не научится рассчитывать её орбиту вокруг Земли с помощью ньютоновской классической механики. Взрослый знает, что видимое движение Луны по небу связано с вращением Земли, что Луна находится очень далеко, но гораздо ближе, чем планеты Солнечной системы, и что человек, находящийся на Луне, весит гораздо меньше и прыгнуть может гораздо выше, чем на Земле, поскольку масса Луны меньше и потому сила тяжести там слабее.
Наше понимание Луны углубляется с возрастом не только благодаря образованию, но и за счёт интуитивной логики в описании Луны как объекта, обращающегося вокруг Земли. Это описание во многих отношениях совместимо с нашим повседневным опытом. Если бросить бейсбольный мяч, он опишет дугу, прежде чем упадёт на землю. Если бросить его сильнее и направить выше, он поднимется на бóльшую высоту и улетит дальше, описав до падения дугу большего размера. Легко и естественно расширить это представление и понять, что ракета, разогнав объект до очень высокой скорости и направив его очень высоко, заставит его описать дугу, которая охватит половину Земли, что, по сути, и делается межконтинентальными ракетами. После этого уже нетрудно согласиться, что если с помощью ещё более мощной ракеты разогнать объект ещё сильнее, то описываемая им дуга превратится в орбиту вокруг Земли. Тогда становится ясно, что Луна — это просто очень большой объект, движущийся достаточно быстро, чтобы обращаться по орбите вокруг Земли.
Наша способность перейти от бейсбольного мяча к обращению Луны вокруг Земли основывается на повседневном опыте применения классической механики. Однако для того, чтобы собрать все факты воедино, требуется способность к абстрактным рассуждениям. В древности люди разумно полагали, что Луна обращается вокруг Земли. В конце концов, невооружённым глазом видно, что она движется по небу. Можно проделать простой эксперимент, чтобы понять, почему Луна выглядит обращающейся вокруг Земли. Встаньте посреди комнаты, в которой на стене висит лампа, и начните медленно поворачивается кругом. Вы увидите, что светильник приходит в движение. Повернувшись к нему спиной, вы перестанете его видеть. По мере вращения светильник появится на краю вашего поля зрения, переместится в его центр, а потом исчезнет за другим краем. Он не появится вновь, пока вы не совершите ещё полоборота. Объединяя этот простой опыт с тем, что мы знаем о бейсбольных мячах и межконтинентальных ракетах, нетрудно принять, а на самом деле и понять, что Луна обращается вокруг Земли и что Земля вращается вокруг своей оси, вызывая «восходы» и «заходы» Луны.
Наш опыт и фундаментальная природа систем, подчиняющихся законам классической механики, позволили нам выработать интуицию, описывающую поведение многих повседневно окружающих нас вещей. Даже новичок при игре в бильярд быстро схватывает, что если направить биток так, чтобы он ударил по левой части другого шара, тот отскочит вправо. Столкновение бильярдных шаров — это классический процесс, и шары движутся в соответствии с законами классической механики по чётко определённым траекториям. Однако мир вокруг нас, управляемый законами квантовой механики, по большей части лежит за рамками наших представлений и понимания. Когда дело доходит до явлений, которые определяются свойствами абсолютно малых систем, большинство людей подобны младенцу, глядящему на Луну: они видят явление, но не понимают того, что видят.
Почему это должно нас беспокоить? Можно прожить всю жизнь, видя Луну и не имея никакого представления о том, чем она в действительности является. Человек может просыпаться утром, идти на работу, есть, спать, иметь семью, не зная, что представляет собой Луна, и быть при этом совершенно счастливым. Можно также не иметь никакого понятия о том, благодаря чему вещи вокруг нас обретают свои свойства. Мы живём в море физических явлений, которое качает нас на своих волнах. Мы можем оказаться не способны управлять физическим миром вокруг нас, но разумно ли полностью отказываться понять его? Хотим ли мы уподобляться младенцу или, ещё хуже, взрослому, не имеющему представления о Луне? Действительно ли мы не хотим иметь никакого понятия о том, почему нагревательный элемент в электрической печи становится горячим? Я считаю, что мир становится интереснее, когда мы проявляем некоторое уважение к природе окружающих нас вещей. Физический мир — от биологических молекул до электрической проводимости — управляется квантовыми явлениями. И раз уж мы плывём по океану квантовой физики, некоторое знание квантовой теории только повышает нашу оценку чудес природы.
Пробившись через предыдущие главы, вы в своём квантовом мышлении выросли от младенца до взрослого. Теперь вы понимаете, что такое цвет. Вернёмся к первой фразе этой книги. Почему вишня красная, а черника синяя? Вопрос в том, чтó придаёт цвет предметам и чтó делает вещи разноцветными. Ответ в том, что вещество состоит из атомов и молекул. В отличие от классической механики, где энергия меняется непрерывным образом, атомы и молекулы обладают дискретными уровнями энергии. Свет тоже не непрерывен. Он поступает дискретными пакетами, которые называются фотонами. Фотон имеет определённую энергию, а значит, и определённый цвет. Поскольку энергия должна сохраняться, фотоны могут поглощаться атомами и молекулами, составляющими материю, только когда энергия фотонов совпадает с разницей в энергии между двумя атомными или молекулярными квантовыми энергетическими уровнями. При таком совпадении фотон может поглотиться, и тогда система переходит с низшего энергетического уровня на более высокий. Фотоны, которые не соответствуют разности энергетических уровней, отражаются от предмета. Поэтому если интервалы между энергетическими уровнями молекул таковы, что поглощается красный свет, то синий отражается и объект выглядит синим. Если же интервалы между энергетическими уровнями таковы, что поглощает синий свет, тогда отражается красный свет и объект выглядит красным.
Занявшись вопросом о цвете предметов немного подробнее, мы в главе 8 обсудили одномерную задачу о частице в ящике. Мы узнали, что абсолютно малые «частицы» — это не частицы в повседневном, классическом смысле. В действительности это волны или волновые пакеты, которые более или менее локализованы в пространстве. В задаче о частице в ящике возможны лишь волны определённых форм. В трёхмерной системе, такой как атом водорода, обсуждавшийся в главе 10, формы этих волн намного сложнее, но и тут существуют лишь некоторые формы, называемые орбиталями. Это верно и для более крупных атомов и молекул, где молекулярные электронные волны описываются молекулярными орбиталями. С электронными волнами (волновыми функциями) в атоме или молекуле связаны строго определённые значения энергии, или энергетические уровни. Мы говорим, что энергия квантуется, то есть меняется дискретными шагами. Дискретные квантовые энергетические уровни — это одно из главных отличий квантовой механики от классической. В классической механике энергия меняется непрерывным образом.
Мы решили квантовую задачу о частице в ящике и обнаружили, что энергетические уровни зависят от размера ящика. В большом ящике (в крупной молекуле) энергетические уровни разделены меньшими интервалами, чем в маленьком. Результат, применимый к реальным молекулам, а не только к частице в ящике, состоит в том, что крупные молекулы тяготеют к поглощению света в красной части спектра. Красный свет обладает более низкой энергией, а для крупных молекул характерны относительно небольшие интервалы между энергетическими уровнями. Молекулы поменьше поглощают свет в голубой части спектра, поскольку различие в энергии между молекулярными уровнями у них больше, а голубой свет обладает большей энергией, чем красный. Самые маленькие молекулы, такие как бензол (см. главу 18), поглощают в ультрафиолетовой части спектра. Поэтому они не вызывают поглощения видимого света. Кристаллы из маленьких молекул, таких как нафталин (применяемый против моли), выглядят белыми потому, что они совершенно не поглощают видимый свет. Их энергетические уровни разнесены слишком сильно, и весь видимый свет отражается от таких кристаллов, отчего они выглядят белыми. По той же причине кристаллы соли в солонке белого цвета, и белый цвет кристаллов сахара тоже связан с этим. И соль, и сахар имеют большие интервалы между энергетическими уровнями и поглощают свет в ультрафиолетовом диапазоне, а цвета видимого света отражают.
Мы знаем, что удерживает атомы в молекулах, что придаёт молекулам их форму и почему форма молекул так важна. Мы видели, что электронные волны атомов объединяются и порождают молекулярные орбитали. Совместное использование электронов атомами на молекулярных орбиталях может приводить к образованию химических связей, которые скрепляют атомы в молекулах. В главах 12–14 мы довольно подробно рассматривали молекулярные орбитали. Выяснилось, что они бывают двух типов: связывающие и разрыхляющие. Размещая электроны надлежащим образом на простой диаграмме энергетических уровней молекулярных орбиталей, можно получить большое количество информации.
В молекуле водорода (см. главу 12) два электрона от двух атомов водорода занимают молекулярную орбиталь с наименьшей энергией, которая является связывающей МО. В результате образуется ковалентная связь, в рамках которой атомы совместно используют пару электронов. Но те же соображения позволяют нам понять, почему не существует двухатомной молекулы гелия. Каждый атом гелия вносит в гипотетическую двухатомную молекулу по два электрона. Первые два из них занимают связывающую МО, но в силу принципа запрета Паули другие два электрона должны занять разрыхляющую МО. В совокупности это приводит к отсутствию связи, и молекулы He2 не существует. Ковалентная химическая связь — это сугубо квантовое явление, не имеющее объяснения в классической механике.
Для атомов крупнее водорода объединение различных s и p атомных орбиталей порождает гибридные орбитали разной формы. Объединение разнообразных гибридных атомных орбиталей в молекулярные орбитали ответственно за тип образующихся связей (одиночных, двойных, тройных) и форму молекул. Мы уделили особое внимание органическим молекулам, то есть молекулам, состоящим в основном из углерода, водорода, кислорода и нескольких других элементов. Органические молекулы важны, поскольку они составляют основу жизни, а также ряда материалов, таких как пластмассы. Выяснилось, что в них очень большое значение имеют типы связей. Молекула легко может вращаться вокруг одиночной углерод-углеродной связи, меняя свою форму, но вращаться вокруг двойной углерод-углеродной связи она не может. Неспособность органических молекул вращаться вокруг двойных углерод-углеродных связей играет ключевую роль в биологии.
В главе 16 мы сконцентрировались на жирных кислотах и жирах. Здесь двойные связи определяют важнейшие различия. Жирные кислоты с двойными связями не могут менять свою форму вблизи этих связей. Полиненасыщенные жирные кислоты имеют множество двойных связей. У всех встречающихся в природе жирных кислот, за исключением некоторых, вырабатываемых жвачными животными, двойные связи находятся в цис-конформации. Это означает, что молекулы жирных кислот изогнуты вблизи двойных связей. Однако химическая обработка полиненасыщенных жиров, направленная на получение мононенасыщенных жиров, приводит к образованию двойных связей в транс-конформации. Жиры с такими связями называются транс-жирами. Молекулы транс-жиров имеют вблизи двойных связей прямую, а не изогнутую форму. Это различие в форме, которое вызвано квантовомеханическими свойствами ковалентной двойной связи, имеет большое значение для биологической активности этих молекул. Транс-жиры оказывают многочисленные вредные воздействия на здоровье человека.
Формы биологических молекул, таких как белки, играют центральную роль в биологии. Формы молекул определяются квантовомеханическим взаимодействием между атомами, что приводит к образованию различных типов молекулярных орбиталей и связей. Таким образом, процессы жизнедеятельности управляются квантовой механикой.
Мы выяснили, что вызываемый углекислым газом парниковый эффект, который приводит к глобальному потеплению климата, является по природе своей квантовомеханическим. Углекислый газ — это квинтэссенция квантовых эффектов, которые придают ему опасные парниковые свойства. Горячие предметы испускают излучение, которое называется черноте́льным. Цвета этого излучения нельзя объяснить в рамках классической теории. На самом деле выводы классической теории оказались настолько ошибочными, что их назвали «ультрафиолетовой катастрофой», поскольку теория предсказывала, что любой горячий объект должен испускать бесконечное количество энергии в ультрафиолетовой части спектра. Ясно, что никакие объекты не испускают бесконечного количества энергии, так что это был ошеломительный провал классической теории.
В 1900 году Планк впервые использовал идею квантования энергетических уровней электронов в веществе, чтобы объяснить черноте́льное излучение. Он вывел формулу для распределения цветов излучения, испускаемого горячим объектом, которая практически идеально совпала с экспериментальными данными. Чем горячее объект, тем больше он испускает высокоэнергетических фотонов. Однако квантовая теория Планка показала, что количество энергии не бесконечно, и позволила в точности вычислить, сколько испускается излучения каждого цвета. Звёзды очень горячие, поэтому они испускают свет в видимом и ультрафиолетовом участках спектра. В качестве примера на рис. 9.1 показан черноте́льный спектр нашего Солнца. Это обычная звезда средней температуры, и поэтому она выглядит желтоватой. Очень горячие звёзды — голубые, а звёзды, которые холоднее Солнца, — красные.
Наша Земля тоже испускает черноте́льное излучение, но, поскольку в сравнении со звездой она очень холодная, глазом её излучение не увидеть. Спектр черноте́льного излучения Земли изображён на рис. 17.1. Это инфракрасное излучение, то есть оно лежит в длинноволновой (низкоэнергетической) части спектра. Без атмосферы всё черноте́льное излучение, испускаемое Землёй, уходило бы в космос и наш мир был бы намного холоднее — возможно, возможно он был бы слишком холодным для существования человека. Однако атмосфера поглощает часть черноте́льного излучения, захватывая тепло в ловушку, и это согревает Землю. Большая часть этого тепла улавливается благодаря водяному пару, у молекул которого переходы между квантованными вращательными энергетическими уровнями соответствуют очень далёкой инфракрасной области (длинным волнам и низкой энергии).
Ранее мы не упоминали о квантовании вращения, и здесь в игру должна вступить ваша квантовая интуиция. Мы говорили о квантованных электронных энергетических уровнях и квантованных колебательных энергетических уровнях. Классические объекты могут вращаться, как, например, волчок. В классической механике энергия, связанная с вращением, является непрерывной величиной. Закрутите волчок чуть быстрее, и его энергия немного возрастёт. Не должно удивлять, что молекулы в газовой фазе, например молекулы водяного пара в воздухе, могут вращаться, а поскольку они являются абсолютно малыми, их вращательная энергия квантуется. Она может меняться только дискретными шагами. Молекула воды может вращаться с одной скоростью, а затем совершить переход к другой скорости, но она не может вращаться с промежуточными скоростями. Представьте, что это означало бы в применении к большим классическим системам. Вот, например, вы едете на велосипеде. Вы нажимаете педали с одной скоростью, но поехать чуть быстрее вы не можете. Надо сразу совершить дискретный скачок к следующему квантовому вращательному энергетическому уровню. Конечно, с абсолютно большими объектами, энергия которых изменяется непрерывно, такого не происходит.
Водяной пар не поглощает земное черноте́льное излучение вблизи пика его спектра, где испускается наибольшее количество энергии. Однако это делает углекислый газ. Как говорилось в главе 17, молекулы обладают квантованными колебательными уровнями энергии. Молекула углекислого газа CO2 состоит из трёх атомов, и атом углерода находится в её центре. Это линейная молекула, которая испытывает деформационные колебания. Колебательные движения обладают квантованными энергетическими уровнями, и так случилось, что разница между двумя колебательными энергетическими уровнями CO2 находится вблизи энергии, соответствующей пику земного черноте́льного излучения. По этой причине молекулы CO2 в воздухе поглощают значительную часть испускаемого Землёй черноте́льного излучения, которая в противном случае уходила бы в космос. Чем больше в воздухе CO2, тем меньше испущенной Землёй энергии покидает земную атмосферу. В результате с увеличением содержания CO2 в воздухе всё больше земного тепла остаётся в атмосфере, и планета нагревается. CO2 является парниковым газом благодаря двум квантовым явлениям: черноте́льному излучению и квантованию колебательных уровней энергии.
Что касается черноте́льного излучения, то теперь мы знаем, что всякий раз, видя красное свечение таких объектов, как, например, расплавленная лава, изливающаяся из вулкана, или раскалённый нагревательный элемент в электрической печи, мы наблюдаем черноте́льное излучение. Когда электрическая печь настроена на малую мощность, температура её достаточно низка, чтобы всё черноте́льное излучение испускалось в инфракрасном диапазоне, так что мы не видим его глазом. Если использовать спектрометр или инфракрасный детектор, то можно измерить инфракрасные «цвета» испускаемого излучения. Спектр инфракрасного изучения нагревательного элемента характеризует его температуру. Когда печь переключается на высокую мощность, нагревательный элемент краснеет, поскольку становится значительно горячее. Бо́льшая часть его черноте́льного излучения остаётся в инфракрасном диапазоне, но высокоэнергетическая часть черноте́льного спектра приходится на низкоэнергетическую часть видимого спектра, которой соответствует красный цвет.
Но почему нагревательный элемент печи вообще становится горячим, когда по нему проходит электрический ток? Несмотря на то что сам нагревательный элемент является макроскопическим объектом, мы в главе 19 узнали, что электропроводность и приводящее к нагреву электрическое сопротивление — это проявления фундаментальных квантовых эффектов. Металлические кристаллы, такие как натрий или медь, имеют электроны на взаимодействующих друг с другом атомных орбиталях. Эти атомные орбитали всех атомов кристалла объединяются и образуют молекулярные орбитали, растянутые на весь размер кристалла. Подобно ароматической молекуле бензола, содержащей шесть электронов на шести делокализованных молекулярных орбиталях, образованных взаимодействующими p-орбиталями углерода (см. главу 18), электроны в металле не связаны с конкретным атомом или парой атомов. Вместо этого МО простираются на всю систему, а электроны свободно по ней перемещаются, будь то молекула бензола или металлический кристалл.
Для бензола взаимодействие шести атомных орбиталей приводит к появлению шести молекулярных орбиталей, которые делокализованы в масштабах молекулы. В бензоле только шесть МО, и энергетические интервалы между ними велики. Но даже в очень маленьком металлическом кристалле содержатся миллиарды и миллиарды атомов, что порождает миллиарды и миллиарды МО. За счёт существования такого большого количества МО интервалы между ними очень малы. В металлах все эти МО образуют полосу квантовых энергетических состояний, называемую зоной проводимости. Каждая из этих МО распространяется на весь кристалл. Однако мы знаем, что такие квантовые состояния — собственные энергетические состояния — могут входить в суперпозицию, порождая электронные волновые пакеты, которые более или менее локализованы в соответствии с принципом неопределённости Гейзенберга. И эти электронные волновые пакеты практически свободно движутся по кристаллу.
Электроны заряжены отрицательно. Когда батарея или другой источник тока присоединяется к куску металла, например к отрезку медного провода, электроны стекают на положительный электрод батареи и вытекают из отрицательного электрода. Электроны ускоряются в направлении положительного полюса батареи, что увеличивает их кинетическую энергию. Однако электроны не единственный тип волновых пакетов, движущихся по металлическому кристаллу. Механические колебания атомов в кристаллической решётке имеют квантованные энергетические уровни. Как и в случае с электронной полосой состояний, в макроскопическом куске металла из-за огромного числа атомов имеется колоссальное число квантованных вибрационных уровней, которые образуют полосу механических энергетических уровней. Квантованные делокализованные механические движения связанных в решётку атомов называются фононами. Эти делокализованные фононные волны объединяются и образуют фононные волновые пакеты, которые распространяются по решётке.
Электронные и фононные волновые пакеты сталкиваются. Такие столкновения называются электрон-фононным рассеянием (см. рис. 19.7). Часть избыточной кинетической энергии, которую электрон приобрёл за счёт ускорения в электрическом поле, передаётся фонону. После рассеяния энергия электрона уменьшается, а энергия фонона — увеличивается. Множество таких актов электрон-фононного рассеяния приводит к тому, что совокупная энергия фононов возрастает.
Механическая энергия — это тепло. Температура есть мера количества кинетической энергии в веществе. Электрон-фононное рассеяние замедляет электроны, и этот эффект мы называем электрическим сопротивлением. Увеличение энергии фононов приводит к повышению температуры металла — он становится горячим. Нагрев куска провода при пропускании по нему электрического тока (проходящими по нему электронами) вызван столкновениями электронных и фононных волновых пакетов. Рассеяние этих двух типов волновых пакетов является принципиально квантовомеханическим эффектом. Чем больше протекающий по металлу электрический ток, тем больше случается столкновений и тем горячее становится металл.
Именно это происходит при включении электрической печи. Когда вы увеличиваете ток (число протекающих электронов), то возрастает и число актов электрон-фононного рассеяния. Как следствие увеличивается количество энергии, переходящей в тепло, что вызывает повышение температуры. Когда металлический нагревательный элемент становится достаточно горячим, он начинает испускать красное свечение, поскольку его черноте́льное излучение переходит в видимую часть спектра. В итоге получается, что включение электрической печи или электрообогревателя, сопровождающееся красным свечением нагревательного элемента, включает в себя множество квантовых явлений. Теперь всякий раз, видя раскалённый докрасна нагревательный элемент, вместо того чтобы пребывать в неведении, подобно младенцу, глядящему на луну, подумайте о квантовых электронных состояниях, электронных волновых пакетах, фононных волновых пакетах, порождающем тепло электрон-фононном рассеянии и, наконец, о черноте́льном излучении. Повседневные наблюдения полны квантовых явлений.
Окружающие нас явления квантовой физики проистекают в конечном счёте из того факта, что размер является абсолютным и абсолютно малые частицы ведут себя совсем не так, как классические, то есть абсолютно большие, объекты. Бейсбольный мяч — это классическая частица. Звуковая волна — классическая волна. Бейсбольные мячи и звуковые волны — большие. В классической механике — теории больших вещей — мы встречаемся с волнами и частицами.
Мы говорили, что свет поступает дискретными пакетами, называемыми фотонами. Описание фотонов и электронов как волновых пакетов принципиальным образом отличается от всего, что встречается в классической механике. Абсолютно малые частицы, такие как фотоны и электроны, — это, как мы выяснили в главах 4–7, не волны и не частицы. Это волновые пакеты. Иногда они ведут себя как волны (при дифракции света на решётке или дифракции электронов на кристаллической поверхности), а иногда — как частицы (фотоны в электрическом эффекте и электроны в электронно-лучевой трубке старых телевизоров). Фактически суть природы абсолютно малых частиц состоит в том, что в действительности они не волны и не частицы, а странного типа сущности, которые одновременно обладают свойствами частиц и волн. Этот дуализм материи выражен в принципе неопределённости Гейзенберга. В отличие от классических объектов, таких как бейсбольный мяч, для электрона и других абсолютно малых частиц нельзя одновременно точно знать положение и импульс (произведение массы на скорость).
В каких же случаях частица является малой и принадлежит к новому миру квантовой физики? Дирак учил нас, что существует минимальное возмущение, сопутствующее любому измерению, возмущение, которое связано с самой природой вещей и от которого никогда не удастся избавиться за счёт совершенствования экспериментальной техники. Если это возмущение пренебрежимо мало, то объект является большим в абсолютном смысле и его можно описывать классической физикой. Однако если минимальное возмущение, сопутствующее измерению, не является пренебрежимо малым, то тогда объект абсолютно мал, а его свойства принадлежат царству квантовой механики. Квантовые свойства абсолютно малых частиц не являются странными — они просто нам незнакомы и неподвластны нашей классической интуиции. Они подобны луне для младенца.
В этой книге были изложены фундаментальные концепции квантовой теории, а затем они были применены к ряду важных повседневных явлений. Вы больше не квантовый младенец.