19. Металлы, изоляторы и полупроводники

На рис. 19.1 схематически изображена батарея, присоединённая к металлическому стержню. В качестве примера мы будем рассматривать натрий, но стержень может быть сделан из любого металла. Положительный полюс батареи вытягивает электроны из металлического стержня. Чтобы стержень не приобретал при этом положительный заряд, который станет притягивать электроны и остановит поток, он должен быть присоединён к отрицательному полюсу батареи.

Рис. 19.1. Металлический стержень, сделанный, например, из натрия, подключён проводами к батарее. Отрицательно заряженные электроны вытягиваются из металлического стержня положительным полюсом батареи. Электроны поступают в стержень из отрицательного полюса батареи


Электроны перетекают из отрицательного полюса батареи в положительный по стержню, сохраняя его нейтральность, то есть не позволяя ему приобретать электрический заряд. С тем же успехом вместо стержня электроны могут течь по спирали электрической лампочки фонарика. Проходящий по ней поток электронов заставляет спираль разогреваться до высокой температуры, испуская черноте́льное излучение в видимом диапазоне спектра.

Металлы

Делокализация молекулярных орбиталей в металлах

Каким образом электроны могут двигаться сквозь кусок металла? В чём разница между металлом и диэлектриком? Что такое полупроводники? Почему металлы нагреваются при движении электронов? Что такое сверхпроводимость?

Чтобы ответить на первые три вопроса, надо расширить обсуждение делокализованных молекулярных орбиталей, обнаруженных нами в молекулах ароматических соединений, таких как бензол и нафталин (см. главу 18), на МО макроскопических кусков металла и других материалов. Для ответа на два последних вопроса понадобится перейти от обсуждения влияния тепловых колебаний атомов, составляющих кусок металла, к обсуждению движения электронов в металле.

В главе 10 при обсуждении молекулы водорода мы узнали, что две атомные орбитали водорода объединяются и образуют две молекулярные орбитали — связывающую и разрыхляющую. В случае бензола мы увидели, что шесть атомных pz-орбиталей — по одной от каждого атома углерода — образуют три связывающие и три разрыхляющие МО. У нафталина десять атомных pz-орбиталей объединяются и образуют десять МО — пять связывающих и пять разрыхляющих. В каждом случае эти МО охватывают всю молекулу. В главе 11, посвящённой Периодической таблице элементов, мы говорили, что натрий (Na) является металлом, поскольку имеет один электрон (3s) сверх замкнутой неоновой конфигурации оболочки. Na легко отдаёт этот электрон для образования солей, таких как поваренная соль NaCl. В воде NaCl растворяется и превращается в ионы Na+ и Cl. Как уже говорилось, в твёрдом состоянии Na является металлом и проводит электричество, и теперь мы готовы объяснить почему.

Рассмотрим для начала 3s-орбитали двух атомов натрия, которые находятся рядом друг с другом и взаимодействуют. У натрия 3s-электрон является валентным, то есть участвует в образовании связей. В верхней части рис. 19.2 показаны энергетические уровни двух атомных 3s-орбиталей, объединяющихся в молекулярные орбитали. Энергетический уровень одной из этих МО ниже, чем у атомных орбиталей. Это связывающая МО. Другая МО имеет более высокий уровень энергии — это разрыхляющая орбиталь. В средней части рисунка видно, что три атомные орбитали образуют три МО. Внизу представлена ситуация с шестью взаимодействующими атомами натрия. Шесть атомных 3s-орбиталей объединяются в шесть МО — три связывающие и три разрыхляющие.

Рис. 19.2. Вверху: две атомные 3s-орбитали натрия взаимодействуют и порождают две молекулярные орбитали — одну с более низкой энергией (связывающую) и одну с более высокой (разрыхляющую). В середине: три атомные 3s-орбитали взаимодействуют и образуют три МО. Внизу: шесть атомных 3s-орбиталей объединяются в шесть МО


Каждый атом Na обладает одним 3s-электроном, который пойдёт на заполнение МО. В системе с шестью атомами натрия для заполнения МО будет шесть электронов. Каждая МО может принять два электрона с противоположными спинами (один направлен вверх, другой — вниз). Поэтому электронами будут заполнены три МО с наименьшими энергиями, то есть связывающие МО. Три МО с более высокими энергиями останутся пустыми.

Теперь нам надо рассмотреть, что произойдёт в случае очень большого числа взаимодействующих атомов натрия. Возьмём стержень длиной 10 см и диаметром 1 мм, состоящий из натрия (см. рис. 19.1). При таких размерах число атомов Na, которые будет содержать стержень, составит N=2∙1021 (два миллиарда триллионов) атомов Na. Два миллиарда триллионов атомных 3s-орбиталей объединяются в два миллиарда триллионов молекулярных орбиталей. Как и в случае МО бензола и нафталина, МО натриевого стержня следует считать распространяющимися на всю систему, то есть на весь кусок металла.

Кусок металла содержит огромное количество энергетических уровней МО, называемое зоной

На рис. 19.3 показаны энергетические уровни этой системы. Каждый из N атомов натрия обладает электроном на атомной 3s-орбитали. В отсутствие взаимодействия между атомами все эти атомные орбитали имеют одинаковую энергию. На рисунке это изображено группой близко расположенных линий с левой стороны. Чтобы показать наличие большого числа атомных уровней, линии нарисованы по отдельности, но все они обладают одинаковой энергией. Когда атомы взаимодействуют, N атомных орбиталей образуют N МО. Как мы уже видели ранее на примере молекул, МО имеют разные энергии. У некоторых из этих МО энергия ниже, чем у атомных орбиталей, у других — выше. Это изображено в правой части рисунка более широким набором по-прежнему тесно расположенных линий. Система энергетических уровней МО на рис. 19.3 такая же, как на рис. 18.8, 18.9 и 19.2, с той лишь разницей, что имеется намного больше энергетических уровней, интервалы между которыми намного меньше. В этом случае говорят о зоне состояний.

Квантовая теория говорит, что ширина зоны состояний, то есть разность энергии между МО с наибольшей и наименьшей энергией, всего в несколько раз больше, чем разность в энергии двух МО, возникающих при взаимодействии двух атомов натрия (см. рис. 19.2, вверху). Таким образом, в нашем примере с двумя миллиардами триллионов атомов Na в относительно узком диапазоне энергий имеется два миллиарда триллионов энергетических уровней. В результате эти уровни оказываются расположенными так близко, что энергия внутри зоны меняется фактически непрерывно.

Рис. 19.3. В куске металлического натрия имеется N атомов. У каждого атома есть электрон на 3s-орбитали. Все вместе они представлены тесно расположенными линиями в левой части рисунка. Все они обладают одинаковой энергией. N атомных 3s-орбиталей взаимодействуют, образуя N молекулярных орбиталей, энергетические уровни которых показаны справа. Энергетические уровни МО настолько близки друг к другу, что их энергии образуют практически непрерывную зону состояний. Уровень Ферми соответствует самой высокой заполненной орбитали

Расселение электронов

Итак, есть N атомов натрия, каждый с одним 3s-электроном. Нам требуется поместить эти N электронов на соответствующие МО, как мы это делали с небольшими молекулами в главах 12 и 13 и как показано на рис. 18.8 и 18.9. Делокализованные МО металлического натрия подобны любым другим орбиталям, а значит, они подчиняются трём правилам расселения электронов, которые обсуждались в главе 11: сначала заселяются уровни с наименьшей энергией; на одной орбитали может находиться не более двух электронов, причём они должны иметь спаренные спины (принцип запрета Паули); по возможности спины не спариваются (правило Хунда).

На рис. 19.3 показано расселение электронов. Первый электрон занимает самый нижний энергетический уровень. Следующий электрон заселяется на тот же уровень с противоположным спином, то есть на нём будет одна стрелка вверх и одна стрелка вниз. Три электрона не могут располагаться на низшем энергетическом уровне, поскольку это нарушило бы принцип Паули. Поэтому третий электрон заселяется на уровень, который на один выше самого нижнего. Четвёртый электрон размещается на том же уровне со спаренным спином. Так продолжается до тех пор, пока по молекулярным орбиталям не будут размещены все N электронов.

Уровень Ферми

Имеется N энергетических уровней МО и N электронов. Однако на каждом уровне может находиться два электрона, поэтому заполнена будет только нижняя половина зоны энергетических уровней. Это похоже на бензол (см. рис. 18.8) и нафталин (см. рис. 18.9), у которых тоже заполнена только нижняя половина МО. Энергия самой высокой из заполненных орбиталей называется уровнем Ферми — в честь Энрико Ферми (1901–1954). Ферми как физик работал во многих областях науки, включая теорию твёрдого тела, в частности металлов, и теорию ядерных реакций. Он внёс значительный вклад в развитие ядерной энергетики. В 1938 году он получил Нобелевскую премию по физике

«за доказательство существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами».

Как мы увидим, уровень Ферми чрезвычайно важен.

Уровень Ферми — это наивысшая заполненная МО при абсолютном нуле температуры, то есть при температуре 0 K, где K означает кельвины. 1 K равен 1 °C, однако нуль шкалы Кельвина соответствует абсолютному нулю температур, то есть 0 K — это −273 °C. Мы кратко обсуждали, как тепло в системах молекул, таких как вода, вызывает дрожание молекул. В главе 15 отмечалось, что тепловые движения молекул воды ответственны за разрушение водородных связей между ними. По мере понижения температуры тепла (тепловой энергии) становится всё меньше, и движение атомов и молекул замедляется. Абсолютный нуль (0 K) — это температура, при которой вообще нет тепла, заставляющего атомы и молекулы двигаться. Уровень Ферми определяется именно как энергия наивысшей заполненной МО при 0 K.

Как электроны движутся сквозь металл

Как показано на рис. 19.1, электроны входят в металлический стержень с одной стороны и покидают его с другой. Это возможно, поскольку электроны находятся на делокализованных МО, растянутых на весь кусок металла. Однако квантовая теория показывает, что если все электроны занимают только МО ниже уровня Ферми, то они не будут двигаться в каком-либо определённом направлении. В реальности металлы трёхмерны, но в данном обсуждении мы будем рассматривать только одно измерение за раз. В нашем металлическом стержне даже тогда, когда он не присоединён к батарее, электроны, находящиеся на МО, тем не менее постоянно движутся. Хотя электроны описываются в терминах квантовомеханических волновых функций, они обладают кинетической энергией. Поэтому можно подсчитать скорость электрона. Электроны на некоторых МО можно рассматривать как движущиеся вправо. Имеются соответствующие им МО с точно такой же энергией, но с электронами, движущимися влево. Когда все МО заполнены, как показано на рис. 19.3, электрического тока не будет, поскольку одинаковое число электронов движется влево и вправо. В трёхмерном случае для любого выбранного направления у электрона будет равная вероятность двигаться в этом направлении или в диаметрально противоположном.

Однако когда металлический стержень на рис. 19.1 присоединяется к батарее, всё меняется. Один конец стержня соединён с положительным полюсом батареи, а другой — с отрицательным. Подключение к батарее меняет условия существования электронов. Без батареи электроны ощущают положительные заряды атомов натрия и отрицательные заряды других электронов. Любой отдельный электрон в середине стержня не чувствует разницы между правым и левым. Однако при подключении к батарее появляется дополнительный действующий фактор — созданное ею внутри металла электрическое поле. Электроны притягиваются к положительному концу и отталкиваются от отрицательного конца. В результате система меняется, поскольку некоторые электроны оказываются на уровнях выше уровня Ферми, который был без батареи (см. рис. 19.4). Состояние электронов в системе меняется так, что становится больше электронов, движущихся к положительному концу металлического стержня, чем движущихся к отрицательному.

Рис. 19.4. Схематическое изображение уровней 3s-зоны натрия, представленных на рис. 19.3, с поправкой на воздействие подключения к батарее. В результате некоторые электроны оказываются выше уровня Ферми без батареи, переходя с заполненных МО на пустые. Эти электроны изображены здесь стрелками выше уровня Ферми


Согласно квантовой теории, для наличия электронной проводимости требуется наличие электронов, находящихся выше уровня Ферми. Поскольку энергетический зазор между уровнями исчезающе мал, даже очень низкого напряжения, приложенного к стержню и порождающего ничтожное электрическое поле, достаточно, чтобы некоторые электроны оказались выше уровня Ферми. Результатом становится появление электрического тока в металлическом стержне. Электроны покидают положительный конец стержня и заменяются электронами, входящими со стороны отрицательного конца. При более сильном электрическом поле (более высоком напряжении) над уровнем Ферми, соответствующем нулевому полю, оказывается больше электронов, и электрический ток становится сильнее. Детальная квантовая теория электропроводности металлов говорит, что ток будет возникать под действием приложенного электрического поля даже при нулевой абсолютной температуре. Для того чтобы проводить электричество, металлам не требуется тепло. Ниже мы увидим, что в случае полупроводников это не так, а также что тепло, имеющееся при температуре выше 0 K, на самом деле мешает электрической проводимости в металлах.

Диэлектрики

Диэлектрики не проводят ток вследствие заполненности зоны

Металлы хорошо проводят электричество даже при 0 K, поскольку электроны заполняют только часть зоны состояний (см. рис. 19.3 и 19.4). Даже очень слабое электрическое поле (напряжение) будет поднимать электроны над уровнем Ферми. Диэлектрики — это материалы вроде стекла или пластика, которые не проводят электричество ни при какой температуре. Зонная структура диэлектрика схематически изображена на рис. 19.5.

В металлическом натрии 3s-электроны являются валентными. Валентная зона заполнена лишь наполовину. В таком диэлектрике, как кварц (SiO2, диоксид кремния), который очень похож на стекло, совместно используемые электроны доводят электронные оболочки до замкнутости. Взаимодействие атомов в кристалле кварца порождает зону состояний с делокализоваными МО, как и в металле. Однако валентная полоса целиком занята. На каждый МО находится по два электрона, поскольку имеется N МО, но 2N электронов. Таким образом, все МО — от самого низкого до самого высокого энергетического уровня в пределах зоны — содержат по два электрона. Заполненность зоны представлена на рис. 19.5 присутствием стрелок как на нижних, так и на верхних уровнях зоны. Эта заполненная зона должна сопоставляться с наполовину заполненной зоной металлического Na, изображённой на рис. 19.3.

Рис. 19.5. Схематическое изображение зонной структуры диэлектрика. Имеется заполненная зона с двумя электронами на каждой МО. Есть свободная зона с гораздо большими значениями энергии

В диэлектриках широкая запрещённая зона

Существуют свободные атомные орбитали со значительно более высокой энергией, и они тоже образуют МО. Однако нет электронов, которые могли бы занять эти МО. Поэтому следующая по высоте энергетическая зона совершенно пуста. Разность энергии между верхним краем заполненной зоны и нижним краем незаполненной зоны называется запрещённой зоной. Уровень Ферми находится у верхнего края заполненной зоны.

Выше уже обсуждалось на качественном уровне (а в квантовой теории это аккуратно обосновывается), что для электропроводности требуется наличие электронов на МО с энергией выше уровня Ферми. Когда в веществе создаётся электрическое поле (путём подключения к батарее или другому источнику напряжения), природа делокализованных состояний меняется. В металлах, поскольку зона лишь наполовину заполнена, а энергетические уровни разделены ничтожными интервалами, приложенное напряжение приводит к тому, что некоторые электроны оказываются выше уровня Ферми, соответствующего нулевому полю, и электроны начинают течь по металлу. В изоляторе следующий уровень над уровнем Ферми находится в пустой зоне. Запрещённая зона велика, и приложение электрического поля не может изменить систему в достаточной степени, чтобы в пустой зоне появились электроны. Поэтому приложить электрическое поле к изолятору, в отличие от металла, недостаточно для того, чтобы возникла проводимость.

Другая возможность состоит в том, что тепловая энергия возбуждает электроны заполненной зоны, забрасывая их в пустую зону. Изоляторы обладают тем свойством, что энергетическая ширина запрещённой зоны намного больше тепловой энергии. С повышением температуры количество тепловой энергии возрастает. Однако в изоляторах запрещённая зона настолько велика, что материал будет разрушен при температуре, которая всё ещё недостаточно высока, чтобы термически возбудить электроны, подняв их из заполненной зоны в пустую. Таким образом, невозможно ни изменение состояния электронов за счёт приложенного электрического поля, ни тепловое возбуждение электронов, и поэтому диэлектрики не проводят электричество.

Полупроводники

В полупроводниках запрещённая зона небольшая

Полупроводники похожи на диэлектрики, но в отличие от них имеют небольшую запрещённую зону. Зонная структура полупроводника схематически изображена на рис. 19.6. В полупроводнике, таком как кремний (Si), имеется достаточное число электронов, чтобы целиком заполнить валентную зону. При 0 K, когда нет тепловой энергии для возбуждения электронов, все они спарены и находятся в валентной зоне. Уровень Ферми соответствует верхнему краю заполненной валентной зоны. Таким образом, при 0 K кремний является диэлектриком. Однако в кремнии и других полупроводниках ширина запрещённой зоны невелика. При комнатной температуре тепловой энергии уже достаточно, чтобы возбудить некоторые электроны и поднять их в следующую зону над уровнем Ферми. Тепловая энергия заключена в движении атомов полупроводника.

На рис. 19.6 проиллюстрировано возбуждение электронов с переходом в следующую зону, находящуюся выше уровня Ферми. Электроны, которые возбуждаются, переходя с заполненных МО валентной зоны на свободные МО зоны проводимости, изображены на этом рисунке стрелками, находящимися выше уровня Ферми. Благодаря электронам, находящимся выше уровня Ферми, полупроводники, такие как кремний, могут проводить электричество. Электроны, находящиеся в зоне проводимости, называются электронами проводимости.

Полупроводники проводят электричество не так хорошо, как металлы, поскольку в них намного меньше электронов проводимости. В металлах нет запрещённой зоны. Большое число электронов легко поднимается над уровнем Ферми. В полупроводниках запрещённая зона есть, но она достаточно мала, чтобы тепловая энергия могла возбудить некоторые электроны и поднять их в зону проводимости, лежащую выше уровня Ферми. При понижении температуры в полупроводниках становится всё меньше и меньше электронов проводимости, способных переносить электрический ток.

При очень низкой температуре полупроводники становятся диэлектриками. Единственное различие между полупроводниками и диэлектриками заключается в ширине запрещённой зоны. Чипы в вашем компьютере, которые состоят в основном из кремниевых полупроводников, перестанут работать, если их сильно охладить. Компьютеры и электроника на спутниках должны пребывать в тепле, иначе они выйдут из строя.

Рис. 19.6. Схематическое изображение зонной структуры полупроводников. Валентная зона практически целиком заполнена. Энергетический интервал, отделяющий следующую зону, относительно мал. Некоторые электроны термически возбуждаются и поднимаются выше уровня Ферми в зону проводимости

Тепловая энергия влияет на электропроводность металлов

Тепловая энергия требуется полупроводникам для появления электронов проводимости. Она также сильно влияет на электропроводность металлов, хотя для появления в них электронов проводимости тепловая энергия им не нужна. В куске металлического провода, подсоединённого к батарее, электроны движутся в направлении положительного полюса. По мере того как электроны покидают провод, они восполняются электронами, поступающими из отрицательного полюса батареи. Ток (электронов), проходящий по куску провода, вызывает повышение температуры. Нагревательные элементы в электрических печах и обогревателях становятся очень горячими из-за протекающего по ним сильного тока. Они разогреваются настолько, что начинают светиться красным, — это черноте́льное излучение металла.

Как уже говорилось, электроны легко проходят сквозь кусок металла, поскольку они находятся на делокализованных МО, охватывающих металл целиком. Требуется лишь электрическое поле (подключение к батарее или другому источнику напряжения), чтобы заставить их двигаться в определённом направлении. Вопрос же состоит в том, почему поток электронов вызывает нагревание металла.

Электроны в металле следует представлять себе волновыми пакетами, которые более или менее локализованы. Мы обсуждали волновые пакеты в главе 6 в связи с принципом неопределённости Гейзенберга. Электронные волновые пакеты в металле образуются из суперпозиций делокализованных волновых функций электронных МО аналогично фотонным и электронным волновым пакетам в вакууме, которые являются суперпозициями делокализованных импульсных состояний. Электроны заряжены отрицательно, поэтому электронный волновой пакет несёт отрицательный заряд. Электрон ускоряется в направлении положительного полюса. Это ускорение приводит к увеличению кинетической энергии электрона.

Фононы — вибрации твёрдого тела

В главе 17 в связи с парниковыми свойствами углекислого газа мы коротко обсудили квантование колебаний молекул. Кусок металла, состоящий из атомов, тоже испытывает квантованные колебания. Атомы в кристаллической решётке металла могут подрагивать на своих местах. Несмотря на это дрожание, они остаются в среднем на одном месте. Движение каждого атома связано с движениями других атомов таким же образом, как движение каждого атома в молекуле CO2 связано с движениями остальных (см. рис. 17.2). Молекула CO2 может испытывать несколько различных типов колебаний: в симметричной, асимметричной и двух деформационных модах. Эти три разных типа мод обладают колебательными энергиями (частотами), которые очень сильно отличаются друг от друга.

В кристаллической решётке металла каждый атом может двигаться во всех трёх измерениях. Для N атомов существует 3N колебаний решётки, где вновь N — число атомов в куске металла. Для любого конечного куска металла имеется огромное число колебаний, складывающееся в колебательную полосу вместо нескольких дискретных частот. При низкой температуре тепловые колебания охватывают только нижнюю часть значений энергии этой полосы. При высокой температуре возбуждается больше колебаний решётки с более высокими значениями энергии колебаний. Возбуждённые колебания обладают кинетической энергией. Именно эта энергия возбуждённых колебаний воспринимается нами как тепло.

Квантованные колебания решётки называются фононами. Такое название связано с тем, что фононы в некоторых фундаментальных аспектах квантовой теории напоминают фотоны. Каждый фонон является делокализованной волной колебаний, которая распространяется на всю кристаллическую решётку. Волны решётки могут образовывать более или менее локализованные волновые пакеты за счёт суперпозиции большого набора длин волн. Более или менее локализованный фононный волновой пакет совершенно аналогичен фотонному или электронному волновому пакету, которые упоминались чуть выше, а подробно обсуждались в главе 6. Фононы — это движущиеся волновые пакеты механической и тепловой энергии. Фононный волновой пакет можно рассматривать как движущуюся область более или менее локализованного дрожания атомов.

Электронные и фононные волновые пакеты взаимно рассеиваются

Электронный волновой пакет, который ускоряется в положительном направлении, может провзаимодействовать с фононом. Фонон заставляет двигаться положительно заряженные атомные ядра. Отрицательно заряженные электроны испытывают влияние со стороны этих движущихся положительных зарядов. Взаимодействие электронов и протонов называется рассеянием и схематически изображено на рис. 19.7.

Рис. 19.7. Схема электрон-фононного рассеяния. Взаимодействие электрона и фонона вызывает изменение направления движения волновых пакетов


Электронные и фононные волновые пакеты распространяются в определённых направлениях. Электрон, ускоряемый электрическим полем, «сталкивается» с фононом. Происходит рассеяние, после которого в общем случае оба волновых пакета начинают двигаться по новым направлениям. Электрон вновь будет ускоряться электрическим полем в положительном направлении. Через некоторое время он опять встретится с фононом и рассеется. При каждом рассеянии электрон отдаёт фонону часть своей кинетической энергии, полученной при ускорении электрическим полем (за счёт источника напряжения).

Акты рассеяния приводят к двум эффектам. Во-первых, они мешают электронам двигаться прямо к положительному полюсу батареи. Во-вторых, приводят к увеличению кинетической энергии фононов. Электроны теряют энергию, а фононы её приобретают. Электрон-фононное рассеяние приводит к уменьшению электропроводности металлов, поскольку электроны постоянно попадают в столкновения, сбивающие их с направления на положительный конец провода, к которому они стремятся. Это называется электрическим сопротивлением. При очень низкой температуре фононов мало, так что электроны могут пройти большой путь между двумя актами рассеяния. В результате им легче достичь положительного конца. С повышением температуры становится всё больше и больше фононов, поскольку фононы — это тепло. При высокой температуре электроны проходят меньший путь, прежде чем их направление изменится, и это мешает им двигаться к положительному электроду. В результате при повышении температуры электропроводность уменьшается (сопротивление возрастает).

Электрон-фононное рассеяние приводит к нагреванию металла

Поскольку акты рассеяния приводят к увеличению кинетической энергии фононов, они повышают температуру металла. Температура — это мера тепла, содержащегося в веществе. Тепло — это кинетическая энергия движения атомов. Если множество электронов движется сквозь металл, испытывая рассеяние, то провод получает много дополнительного тепла и его температура повышается. Однако с повышением температуры фононов и актов рассеяния становится ещё больше, и температура продолжает повышаться.

Этот процесс можно наблюдать при включении электрической печи: на то, чтобы её элемент разогрелся до красного свечения, требуется некоторое время. Когда вы включаете печь, её нагревательный элемент находится при комнатной температуре. С появлением электрического тока начинают происходить электрон-фононные рассеяния, повышающие температуру. Это означает, что появится ещё больше фононов и будет ещё больше актов рассеяния, а в проводе выделится ещё больше тепла. Провод достигнет постоянной высокой температуры, определяемой силой тока (выбранной регулятором печи) в начальный момент при комнатной температуре, когда печь только включили.

В нормальном металле электроны подвергаются электрон-фононному рассеянию при любой температуре. Поэтому кусок провода имеет электрическое сопротивление при любой температуре, отличной от абсолютного нуля (0 K). При абсолютном нуле тепла нет, а значит, нет и фононов. Однако достичь абсолютного нуля невозможно. Используя крайне специфические экспериментальные методы, можно достичь очень низких температур, например одной миллионной доли градуса над абсолютным нулём, но даже при этой невероятно низкой температуре существует некоторое количество фононов и происходят акты электрон-фононного рассеяния. Кроме того, если начать пропускать сколько-нибудь значительный ток по куску обычного провода, охлаждённого до очень низкой температуры, он нагреется. Как упоминалось в главе 17, линии электропередачи, идущие от электростанций к городам, теряют много электроэнергии. Теперь мы понимаем почему. Это связано с электрическим сопротивлением проводов, то есть с электрон-фононным рассеянием.

Сверхпроводимость

Вещества, которые не имеют электрического сопротивления при отличной от абсолютного нуля температуре, называются сверхпроводниками, а течение электронов по сверхпроводящему куску провода называется сверхпроводимостью. В металлах сверхпроводимость возникает только при очень низких температурах. Голландский физик Хейке Камерлинг-Оннес (1853–1926) открыл сверхпроводимость в 1911 году, когда охладил ртуть до 4 K (−269 °C). Он обнаружил, что её сопротивление упало до нуля. Приведём также примеры некоторых других металлов и максимальные значения температуры, при которых они являются сверхпроводящими: ниобий — 9,26 K, свинец — 7,19 K, ванадий — 5,3 K, алюминий — 1,2 K и цинк — 0,88 K.

Явление сверхпроводимости смогли объяснить лишь десятки лет спустя. В 1972 году три американских физика — Джон Бардин (1908–1999), Леон Купер (р. 1930) и Джон Шриффер (р. 1931) — получили Нобелевскую премию по физике

«за создание теории сверхпроводимости, обычно называемой БКШ-теорией».

БКШ-теория была разработана в 1957 году и является исчерпывающим квантовомеханическим объяснением электрон-фононного взаимодействия при низкой температуре. В 1956 году Леон Купер показал, что электрон-фононные взаимодействия могут приводить к спариванию электронов. Два электрона в некотором смысле объединяются, хотя физически они находятся далеко друг от друга. В БКШ-теории была использована эта идея и показано, что такие куперовские пары не испытывают обсуждавшегося выше электрон-фононного рассеяния, которое служит причиной электрического сопротивления. Когда нет электрон-фононного рассеяния, электроны движутся сквозь металл, не испытывая сопротивления, даже при температуре, отличной от абсолютного нуля. Поскольку сопротивление отсутствует, то нет и потерь электроэнергии, несмотря на прохождение сильного тока.

Сверхпроводники уже сегодня имеют множество применений, и не вызывает сомнения появление в будущем ещё более важных и широко распространённых приложений. Для магнитно-резонансной томографии (МРТ) требуются очень мощные магниты. Большой цилиндр МРТ, внутрь которого помещают пациента, — это сверхпроводящий электромагнит. Магнитное поле появляется, когда электрический ток течёт по свёрнутому в катушку проводу. Чтобы получить сильное магнитное поле, необходим очень сильный ток и большое количество провода, свёрнутого в катушку. До появления сверхпроводящих электромагнитов не удавалось получить достаточно сильных магнитных полей. Провод слишком сильно нагревался, и его охлаждение становилось огромной проблемой. Теперь провод делают из сверхпроводящего металла, такого как ниобий. Когда в катушке запускается течение электронов, два её конца соединяют. Электроны продолжают кружиться по катушке. Поскольку сопротивления нет, то нет и потерь энергии, а значит, не требуется подводить к катушке дополнительное электричество. Без сверхпроводимости у нас не было бы МРТ.

Ещё одна большая надежда — это сверхпроводящие линии электропередачи. Такие линии электропередачи полностью исключили бы потери электроэнергии. Появилась бы возможность передавать электричество на гораздо большее расстояние, чем сегодня. Проблема состоит в том, что металлические сверхпроводники должны быть настолько холодными, что использовать их для линий электропередачи непрактично. Существуют новые типы высокотемпературных сверхпроводящих материалов. Их открыли в 1986 году Карл Мюллер (р. 1927) и Йоханнес Беднорц (р. 1950). Они получили Нобелевскую премию по физике в 1987 году

«за важный прорыв в физике, выразившийся в открытии сверхпроводимости в керамических материалах».

На сегодня сверхпроводимость в таких керамических материалах не получила исчерпывающего теоретического объяснения. Сверхпроводимость в них может наблюдаться при температурах до 138 К. Эта температура достаточно высока для многих практических приложений. Поскольку высокотемпературные сверхпроводники являются керамическими, из них нельзя делать провода, как из металлов{38}. Однако в будущем исследования могут привести к появлению более удобных для использования высокотемпературных сверхпроводников, которые революционизируют передачу электроэнергии и другие области электроники.

Загрузка...