Воздушно-реактивный двигатель

Возду'шно-реакти'вный дви'гатель (ВРД), реактивный двигатель , в котором для сжигания горючего используется кислород, содержащийся в атмосферном воздухе. ВРД приводит в движение летательные аппараты (самолёты, вертолёты, самолёты-снаряды). Сила тяги в ВРД возникает в результате истечения рабочих газов из реактивного сопла. Для получения большой скорости истечения газов из сопла воздух, поступающий в камеру сгорания ВРД, подвергается сжатию. В зависимости от способа сжатия воздуха ВРД делятся на турбокомпрессорные (ТРД), пульсирующие (ПуВРД) и прямоточные (ПВРД).

Турбокомпрессорные ВРД (ТРД) имеют компрессор с приводом от газовой турбины, что позволяет независимо от скорости полёта создавать сжатие воздуха, обеспечивающее большие скорости истечения газов из выходного (реактивного) сопла и большую силу тяги. ТРД широко применяется на самолётах, вертолётах, беспилотных самолётах-снарядах. ТРД можно устанавливать на катерах, гоночных автомобилях, аппаратах на воздушной подушке и др. (см. Турбокомпрессорный двигатель ).

Пульсирующий ВРД (ПуВРД) имеет (рис. 1 ) входной диффузор (для сжатия воздуха под влиянием кинетической энергии набегающего потока), отделённый от камеры сгорания входными клапанами, и длинное цилиндрическое выходное сопло. Горючее и воздух подаются в камеру сгорания периодически. При сгорании смеси давление в камере повышается, так как клапаны на входе автоматически закрываются, а столб газов в длинном сопле обладает инерцией. Газы под давлением с большой скоростью вытекают из сопла, создавая силу тяги. К концу процесса истечения давление в камере сгорания падает ниже атмосферного, клапаны автоматически открываются и в камеру поступает свежий воздух, впрыскивается топливо; цикл работы двигателя повторяется. ПуВРД способен создавать тягу на месте и при небольших скоростях полёта. Когда клапаны закрыты, ПуВРД имеет большое аэродинамическое сопротивление по сравнению с другими типами ВРД, небольшую тягу и используется лишь для аппаратов со скоростью полёта меньше звуковой.

В прямоточном ВРД (ПВРД) во входном диффузоре (рис. 2 ) воздух сжимается за счёт кинетической энергии набегающего потока воздуха. Процесс работы непрерывен, поэтому стартовая тяга у ПВРД отсутствует. При скоростях полёта ниже половины скорости звука (ниже 500 км/ч ) повышение давления воздуха в диффузоре незначительно, поэтому получаемая сила тяги мала. В связи с этим при скоростях полёта, соответствующих М < 0,5 (где М — число Маха, см. М-число ), ПВРД не применяется; при М = 3 (скорость полёта около 3000 км/ч ) давление в камере сгорания повышается примерно в 25 раз. ПВРД могут работать как на химическом (керосин, бензин и др.), так и на атомном горючем. При установке ПВРД на самолётах с меняющейся скоростью полёта, например на истребителях-перехватчиках, входное устройство должно иметь регулируемые размеры и изменяемую форму для наилучшего использования скоростного напора набегающего потока воздуха. Реактивное сопло также должно иметь регулируемые размеры и форму. Взлёт самолёта-перехватчика с ПВРД производится при помощи ракетных двигателей (на жидком или твёрдом топливе) и только после достижения скорости полёта, при которой воздух в диффузоре имеет достаточно высокое давление, начинает работу ПВРД. Основные преимущества ПВРД: способность работать на значительно больших скоростях и высотах полёта, чем ТРД; большая экономичность по сравнению с жидкостными ракетными двигателями (ЖРД), так как в ПВРД используется кислород воздуха, а в ЖРД кислород вводится в виде одного из компонентов топлива, транспортируемого вместе с двигателем; отсутствие движущихся частей и простота конструкции. Главные недостатки ПВРД: отсутствие статической (стартовой) тяги, что требует принудительного старта; малая экономичность при дозвуковых скоростях полёта. Применение ПВРД наиболее эффективно для полёта с большими сверхзвуковыми скоростями. ПВРД со сверхзвуковой скоростью сгорания топлива (в камере сгорания) называется гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). Его применение целесообразно на летательных аппаратах при скоростях полёта, соответствующих М = 5—6. Области применения различных типов двигателей показаны на рис. 3 .

Лит.: Бондарюк М. М., Ильяшенко С. М., Прямоточные воздушно-реактивные двигатели, М., 1958.

Г. С. Скубачевский.

Рис. 2. Схема прямоточного воздушно-реактивного двигателя (ПВРД): 1 — воздух; 2 — диффузор; 3 — впрыск горючего; 4 — стабилизатор пламени; 5 — камера сгорания; 6 — сопло; 7 — истечение газов.

Рис. 1. Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 — воздух; 2 — горючее; 3 — клапанная решётка; 4 — форсунки; 5 — свеча; 6 — камера сгорания; 7 — выходное (реактивное) сопло.

Рис. 3. Области применения двигателей различных типов в зависимости от скорости полёта: H — высота полёта; М — число Маха; 1 — турбореактивные двигатели; 2 — турбореактивные двигатели с форсажной камерой; 3 — прямоточные воздушно-реактивные двигатели.

Загрузка...