2.1. Проводные среды передачи данных

Задача физического уровня состоит в переносе битов с одного устройства на другое. Для передачи данных могут использоваться различные физические среды. Среды передачи с использованием физического кабеля или провода часто называются проводными, или направляемыми (guided transmission media), поскольку в них сигнал направлен по физическому пути. Наиболее распространенные проводные среды передачи — медные кабели (в виде коаксиального кабеля или витой пары) и оптоволокно. Все они имеют свои достоинства и недостатки в том, что касается частот, ширины полосы пропускания, задержки, стоимости и удобства установки, а также технического обслуживания. Ширина полосы пропускания — мера пропускной способности среды передачи. Она измеряется в герцах (Гц) (МГц, ГГц). Эта единица измерения названа в честь немецкого физика Генриха Герца. Мы обсудим ее подробнее далее в этой главе.


2.1.1. Запоминающее устройство

Стандартный способ переноса информации с одного устройства на другое — записать на носитель, магнитный или твердотельный (например, записываемый DVD), физически доставить его к целевому устройству и считать данные. Это не так современно, как использование геостационарного спутника связи, но зачастую более рентабельно, особенно в ситуациях, где ключевым фактором является высокая скорость передачи данных или стоимость в расчете на переданный бит.

Это ясно из простого расчета. Стандартный магнитный картридж в формате Ultrium может содержать до 30 Тбайт данных. В коробке размером 60 × 60 × 60 см помещается около 1000 таких накопителей общей емкостью 30 000 ТБ, то есть 240 000 Тбит (240 Пбит). Federal Express или другая логистическая компания может доставить эту коробку в любую точку США за 24 часа. Фактическая пропускная способность при таком варианте передачи данных составит 240 000 Тбит/86 400 с, то есть более 2700 Гбит/с. А если место назначения всего в часе езды, то пропускная способность превысит 66 Тбит/с. Ни одна сеть не способна даже приблизиться к подобным показателям. Конечно, скорость сетей растет, но растет и плотность записи на магнитную ленту.

Если взглянуть на стоимость, картина будет аналогичной. Оптовая цена картриджа Ultrium — $40. Учитывая, что его можно повторно использовать минимум 10 раз, коробка обойдется в $4000. Добавим к этому $1000 за услуги доставки (скорее всего, намного меньше), и получится примерно $5000 за передачу 30 000 Tбайт данных. Стоимость пересылки одного гигабайта составит чуть более половины цента. Сети не могут с этим соперничать. Мораль истории такова:

Никогда не недооценивайте пропускную способность несущегося по шоссе грузовика, набитого магнитными картриджами.

Зачастую это наилучшее решение при перемещении очень больших объемов данных. Компания Amazon предоставляет сервис Snowmobile. Это большой грузовик, набитый тысячами жестких дисков, подключенных к высокоскоростной сети внутри грузовика. Его общая емкость составляет 100 Пбайт (100 000 Тбайт или 100 млн Гбайт). Если компания нуждается в перемещении огромного объема данных, такой грузовик приезжает на ее территорию, подключается к оптоволоконной сети компании, а затем извлекает нужную информацию. По завершении грузовик едет в место назначения и выгружает данные. Этот сервис может пригодиться компании, желающей использовать облако Amazon вместо собственного огромного дата-центра. Остальные методы передачи и близко не сравнятся с этим сервисом, если речь идет о гигантских объемах данных.


2.1.2. Витая пара

При использовании запоминающих устройств можно получить отличную пропускную способность. Однако с показателями задержки все обстоит иначе: время передачи данных измеряется часами или днями, а не миллисекундами. Для многих приложений, включая веб-приложения, видеоконференции и онлайн-игры, важна низкая задержка при передаче данных. Витая пара (twisted pair) — одна из старейших, но все еще наиболее популярная среда передачи данных. Витая пара состоит из двух изолированных медных проводов, обычно толщиной около 1 мм. Провода скручены в спираль подобно молекуле ДНК. Два параллельных провода образуют отличную антенну, а когда они скручены, волны от различных витков взаимно гасятся, так что провод в целом распространяет излучение гораздо слабее. Сигнал обычно передается в виде разности потенциалов между двумя проводами пары, что обеспечивает (в отличие от абсолютного напряжения) лучшую устойчивость к внешнему шуму. Как правило, шум одинаково влияет на напряжение в обоих проводах, таким образом, разность потенциалов остается практически неизменной.

Чаще всего витая пара используется в телефонных системах. Практически все телефоны соединяются с АТС посредством такого кабеля. По этим линиям связи осуществляются и телефонные звонки, и доступ в интернет по технологии ADSL. Витые пары длиной до нескольких километров могут обходиться без усиления, но на больших расстояниях сигнал ослабляется и необходимы повторители. Чтобы протянуть множество витых пар параллельно на большое расстояние (например, от многоквартирного дома до АТС), их связывают вместе и заключают в защитную оболочку. Если бы не скручивание, пары проводов создавали бы помехи друг на друга. В некоторых регионах телефонные линии прокладываются над землей, на столбах, и связки проводов достигают диаметра в несколько сантиметров.

Витая пара используется для передачи как аналоговых, так и цифровых данных. Пропускная способность зависит от диаметра провода и расстояния. В большинстве случаев при расстоянии в несколько километров она может достигать сотен мегабит в секунду (и даже больше — при использовании различных хитростей). Благодаря достаточному быстродействию, широкой доступности и низкой стоимости витая пара очень популярна, и в ближайшем будущем эта ситуация вряд ли изменится.

Кабели на основе витой пары бывают нескольких видов. Повсеместно используемая сегодня разновидность витой пары называется кабелем категории 5e, или «Cat. 5e». Витая пара категории 5e состоит из двух аккуратно скрученных проводов. Четыре такие пары обычно заключаются в ПВХ-оболочку, которая защищает провода и держит их вместе. Эта компоновка проводов показана на илл. 2.1.

Илл. 2.1. Кабель категории 5e из четырех витых пар. Подобные кабели применяются для локальных сетей

В различных стандартах LAN витая пара используется по-разному. Например, 100-мегабитная сеть Ethernet использует две (из четырех) пар, по одной для каждого направления. Для повышения скорости 1-гигабитная Ethernet использует все четыре пары в обоих направлениях одновременно, поэтому получатель должен факторизовать передаваемый сигнал.

Немного общей терминологии. Каналы связи, позволяющие передавать сигнал в обе стороны одновременно (подобно двухполосной дороге), называются полнодуплексными (full-duplex). Линии, которые можно использовать в конкретный момент времени только в одном направлении (подобно одноколейной железной дороге), называют полудуплексными (half-duplex). Третья категория — симплексные (simplex) каналы связи, по которым трафик всегда движется лишь в одном направлении, как по односторонним улицам.

Вернемся к витой паре. Более раннюю категорию 3 сменила категория 5, с аналогичным кабелем и таким же разъемом, но с увеличенным количеством скручиваний на метр. Большее число скручиваний уменьшает перекрестные помехи и улучшает качество сигнала при передаче на дальние расстояния. Благодаря этому подобные кабели лучше подходят для высокоскоростного обмена данными между устройствами, особенно для 100-мегабитных и 1-гигабитных сетей Ethernet.

Новым стандартом, вероятно, станет категория 6 или даже 7. Еще более строгие спецификации этих категорий обеспечивают передачу сигналов с большей шириной полосы пропускания. Некоторые кабели категории 6 поддерживают 10-гигабитные каналы связи. Сегодня такие каналы широко развертываются во многих сетях, например в новых офисных зданиях. Кабели категории 8 работают на более высоких скоростях, чем витые пары более низких категорий, но только на коротких расстояниях (около 30 м). Поэтому они подходят только для дата-центров. У стандарта категории 8 есть две разновидности: Класс I, совместимый с категорией 6A, и Класс II, совместимый с категорией 7A.

Кабели вплоть до категории 6 носят название неэкранированной витой пары (Unshielded Twisted Pair, UTP), поскольку состоят только из проводов и изоляции. В отличие от них, в кабеле категории 7 экранирована каждая витая пара и весь пучок в целом (под защитной оболочкой). Экранирование снижает чувствительность к внешним и перекрестным помехам с расположенными рядом кабелями, благодаря чему кабель может удовлетворять самым высоким требованиям к производительности. Эти кабели напоминают высококачественные, но громоздкие и дорогие экранированные кабели на основе витых пар, выпущенные IBM в начале 1980-х. Особой популярности, помимо использования в системах самой IBM, они не приобрели. Видимо, пришло время повторить попытку.


2.1.3. Коаксиальный кабель

Еще одна распространенная среда передачи — коаксиальный кабель (coaxial cable). Он лучше экранирован и обладает более широкой полосой пропускания, чем неэкранированные витые пары, так что подходит для передачи на более далекие расстояния и с более высокой скоростью. Широко используются два типа коаксиального кабеля. Один из них, 50-омный, обычно применяется, когда изначально планируется передача данных в цифровом виде. Другой, 75-омный кабель, часто используется для передачи аналоговых данных и кабельного телевидения. Это разделение возникло скорее по историческим, чем по техническим причинам. Например, полное сопротивление первых дипольных антенн16 составляло 300 Ом, так что удобно было использовать уже существующие согласующие трансформаторы полного сопротивления 4 : 1. С середины 1990-х операторы кабельного телевидения начали предоставлять доступ в интернет, после чего возросла значимость 75-омных кабелей.

Коаксиальный кабель состоит из жесткой медной жилы, покрытой изоляцией. Изоляция, в свою очередь, заключена в цилиндрический проводник — обычно в виде тесно переплетенной сетки. Внешний проводник покрыт защитной оболочкой. Коаксиальный кабель в разрезе показан на илл. 2.2.

Илл. 2.2. Коаксиальный кабель

Конструкция и экранирование коаксиального кабеля обеспечивает удачное сочетание высокой пропускной способности и отличной защиты от помех (например, пультов дистанционного управления гаражными дверями, микроволновых печей и т.д.). Коаксиальный кабель имеет чрезвычайно широкую полосу пропускания (она зависит от качества и длины кабеля). У современных кабелей она достигает 6 ГГц, что позволяет передавать по одному кабелю множество сеансов связи параллельно (одна телевизионная программа занимает приблизительно 3,5 МГц). Коаксиальные кабели когда-то широко применялись в междугородних телефонных системах, но сегодня на замену им пришло оптоволокно. Коаксиальный кабель все еще широко используется для кабельного телевидения и городских сетей, а также для высокоскоростного домашнего интернета.


2.1.4. Линии электропередачи

Телефонные сети и сети кабельного телевидения не единственные проводные линии, которые можно дополнительно использовать для обмена данными. Существует еще более распространенный вид проводов — линии электропередачи (ЛЭП). ЛЭП служат для поставки электроэнергии в дома, а электропроводка внутри жилищ — для распределения энергии по электрическим розеткам.

Идея передачи данных по ЛЭП возникла давно. Долгие годы электроэнергетические компании использовали ЛЭП для низкоскоростного обмена данными, чтобы удаленно снимать показания счетчиков. Кроме того, данная технология позволяет управлять различными домашними устройствами (например, по стандарту X10). В последние годы возродился интерес к высокоскоростному обмену данными по таким линиям, как внутри жилых зданий в качестве LAN, так и снаружи — для широкополосного доступа в интернет. Мы рассмотрим наиболее распространенный сценарий — использование электропроводки в жилых домах.

Преимущества использования электропроводки для вычислительных сетей очевидны. Достаточно включить телевизор и тюнер в розетку — это придется сделать в любом случае, поскольку им требуется питание, — и они сразу получают возможность отправлять и принимать фильмы по электропроводке. Такая конфигурация представлена на илл. 2.3. Никаких других подключений или радиоустройств не требуется. Информационный сигнал накладывается на низкочастотный электрический сигнал (по активным, находящимся под напряжением проводам): оба сигнала используют проводку одновременно.

Илл. 2.3. Сеть на основе домашней электропроводки

Проблема использования домашней электропроводки для организации сети состоит в том, что она была предназначена для подачи электроэнергии. Эта задача коренным образом отличается от распространения информационных сигналов, и домашняя электропроводка справляется с ней очень плохо. Электрические сигналы передаются на частоте 50–60 Гц, при этом более высокочастотные сигналы (начиная от 1 МГц), необходимые для высокоскоростного обмена данными, затухают. Электрические свойства проводов различны в разных домах и меняются по мере включения/выключения бытовых электроприборов, что приводит к резким скачкам информационных сигналов в проводах. Возникающие при включении/выключении бытовых электроприборов переходные токи создают электрический шум в широком диапазоне частот. А без аккуратного скручивания как у витой пары электропроводка ведет себя как антенна, подхватывая внешние сигналы и излучая в пространство свои собственные. Следовательно, для удовлетворения нормативных требований информационный сигнал должен избегать лицензируемых частот (например, диапазонов, выделенных для радиолюбителей).

Несмотря на эти сложности, по обычной электропроводке вполне можно передавать данные на короткие расстояния со скоростью до 500 Мбит/с с помощью схем связи, избегающих проблемных частот и устойчивых к всплескам количества ошибок. Для многих продуктов применяются защищенные патентами стандарты по организации сетей на основе ЛЭП; разрабатываются также открытые стандарты.


2.1.5. Оптоволокно

Многие представители компьютерной индустрии невероятно гордятся быстротой развития вычислительных технологий в соответствии с законом Мура, по которому число транзисторов в микросхеме удваивается каждые два года (см. работу Кушика и Хаммудеха; Kuszyk and Hammoudeh, 2018). Первый ПК IBM (1981) работал на тактовой частоте 4,77 МГц. Сорок лет спустя ПК содержат четырехъядерный CPU, работающий на частоте 3 ГГц. Ускорение примерно в 2500 раз. Впечатляет.

В то же время скорость глобальных линий связи выросла от 45 Мбит/с (линия T3 в телефонных системах) до 100 Гбит/с (современная междугородняя линия). Ничуть не менее впечатляющий рост — более чем в 2000 раз; частота ошибок при этом упала с 10-5 практически до нуля. За прошлое десятилетие был достигнут предел возможностей отдельного CPU, вследствие чего начало расти число ядер CPU на чип. А потенциальная пропускная способность оптоволокна превышает 50 000 Гбит/с (50 Тбит/с), и мы еще очень далеки от этих пределов. На сегодняшний день мы достигли «потолка» (около 100 Гбит/с) лишь из-за нашей неспособности быстрее преобразовывать электрические сигналы в оптические и обратно. Для достижения более высокой производительности по одному оптоволоконному кабелю параллельно передаются данные нескольких каналов связи.

В этом разделе мы разберемся, как работает оптоволоконная технология передачи данных. В непрерывном состязании компьютерных систем и средств связи последние вполне могут выиграть за счет оптоволоконных сетей. Если это произойдет, пропускная способность окажется практически неограниченной, а большинство решит, что компьютеры работают безнадежно медленно, так что сетям лучше избегать вычислений любой ценой (независимо от того, какая часть полосы пропускания при этом будет потеряна). Пройдет немало времени, прежде чем подобное мнение станет господствующим в среде специалистов по вычислительной технике, привыкших смотреть на все через призму жестких ограничений, свойственных медным проводам.

Конечно, подобный сценарий не учитывает стоимость. Затраты на прокладку оптоволоконного кабеля до каждого потребителя (во избежание низкой пропускной способности проводов и ограниченного диапазона частот) колоссальны. Кроме того, расход электроэнергии на передачу битов больше, чем на вычисления. Всегда будут появляться «островки неравенства», где либо вычисления, либо передача данных практически бесплатны. Например, при входе в интернет применяются средства вычисления и хранения, чтобы сжать и кэшировать контент, — все для оптимального использования каналов доступа. Внутри интернета же может происходить обратное. Такие компании, как Google, перемещают по Сети колоссальные массивы данных туда, где их хранение или обработка обойдутся дешевле.

Оптоволокно используется для передачи данных на большие расстояния в опорных сетях, высокоскоростных LAN (хотя медные провода нередко успешно с ними в этом соперничают), а также для высокоскоростного доступа в интернет по технологии FTTH («оптоволокно в дом»). Оптические системы передачи данных состоят из трех основных компонентов: источника (генератора) света, среды передачи и приемника. Принято считать, что световой импульс означает 1, а отсутствие света — 0. Среда передачи представляет собой сверхтонкое стекловолокно. При попадании света приемник генерирует электрический импульс. Установив генератор света на одном конце оптоволоконного кабеля, а приемник — на другом, мы получаем однонаправленную (то есть симплексную) систему передачи данных, которая принимает входной электрический сигнал, преобразует его, передает в виде световых импульсов, после чего преобразует выходной сигнал обратно в электрический на принимающей стороне.

Подобная система передачи данных была бы бесполезной на практике из-за утечек света, если бы не один интересный физический принцип. Когда луч света переходит из одной среды в другую, например из кварцевого стекла в воздух, он преломляется на границе стекло/воздух. На илл. 2.4 (а) показано, как луч света падает на границу под углом α1 и отражается под углом β1. Сила преломления зависит от свойств обеих сред (в частности, их коэффициентов преломления). Если углы падения превышают определенное критическое значение, свет отражается обратно в стекло и не попадает в воздух вообще. Следовательно, луч света, падающий под критическим (или превышающим его) углом, оказывается «пойман» внутри оптоволокна, как показано на илл. 2.4 (б). Этот луч может распространяться на многие километры практически без потерь.

Илл. 2.4. (а) Три примера попадания луча света изнутри кварцевого волокна на границу воздух/стекло под разными углами. (б) Свет, удерживаемый внутри вследствие полного внутреннего отражения

На илл. 2.4 показан только один «пойманный» внутри волокна луч. Но поскольку любой луч с углом падения выше критического отразится внутрь, множество лучей будет отражаться внутри волокна под разными углами. В этом случае говорят, что у лучей различные моды, а волокно при этом называется многомодовым (multimode fiber). Если же уменьшить диаметр волокна до нескольких длин волны света (менее 10 мкм (микрометров); при этом диаметр многомодового волокна превышает 50 мкм), волокно становится волноводом. Это значит, что свет может распространяться в нем только по прямой, без отражений. Такое волокно называется одномодовым (single-mode fiber). Несмотря на высокую стоимость, оно широко используется для передачи данных на большие расстояния. Одномодовое волокно способно передавать сигналы на расстояние примерно в 50 раз больше, чем многомодовое. Современные одномодовые оптоволоконные кабели работают со скоростью 100 Гбит/с на расстоянии до 100 км без усиления. В лабораторных условиях были достигнуты еще большие скорости, правда, для коротких дистанций. Выбор одномодового или многомодового волокна зависит от сценария применения. Многомодовые оптоволоконные кабели используются для передачи данных на расстояние до 15 км и позволяют применять более дешевое оптоволоконное оборудование. Однако их пропускная способность уменьшается по мере увеличения расстояния.


Передача света через оптоволокно

Оптическое волокно производится из стекла, которое, в свою очередь, делается из песка — дешевого материала, доступного в неограниченных количествах. Секрет изготовления стекла был известен еще древним египтянам, но стекло должно быть толщиной не более 1 мм, иначе через него не проходит свет. Достаточно прозрачное стекло, пригодное для окон, появилось лишь в эпоху Возрождения. В современных оптоволоконных кабелях используется невероятно прозрачное стекло. Если бы оно заполняло океаны вместо воды, можно было бы рассмотреть морское дно так же четко, как землю из самолета в ясный день.

Затухание света при прохождении через стекло зависит от длины волны света (равно как и от некоторых физических свойств стекла). Оно определяется как отношение мощности входного сигнала к мощности выходного. На илл. 2.5 приведен график затухания света для стекла, применяемого в оптоволоконных кабелях, в децибелах (дБ) на километр длины кабеля. В качестве примера: двукратное ослабление мощности сигнала соответствует затуханию в 10 log10 2 = 3 дБ. Мы обсудим децибелы чуть позже. Если кратко, это логарифмическая мера отношения мощностей, где 3 дБ соответствуют двукратному отношению мощностей. На илл. 2.5 представлена часть спектра, близкая к инфракрасной, применяемая на практике. Длина волны видимого света чуть короче, от 0,4 до 0,7 мкм (1 мкм = 10–6 м). Настоящий борец за чистоту метрической системы описал бы эти длины волн как «от 400 до 700 нанометров», но мы будем придерживаться более традиционного написания.

В настоящее время для оптоволоконной связи наиболее широко используются три диапазона длин волн. Центры их находятся в точках 0,85, 1,30 и 1,55 мкм. Ширина всех трех диапазонов — от 25 000 до 30 000 ГГц. Сначала использовался 0,85-микрометровый диапазон. Он отличался более быстрым затуханием и потому применялся для передачи на меньшие расстояния, но при такой длине волны лазеры и электроника могут быть из одного материала (арсенид галлия). Остальные два диапазона характеризуются хорошими показателями затухания: потери составляют менее 5 % на километр. Сегодня 1,55-микрометровый диапазон широко применяется с усилителями, легированными ионами эрбия. Эти усилители работают непосредственно в оптической зоне.

Световые импульсы растягиваются в длину по мере их движения по оптоволокну. Это явление называется хроматической дисперсией (chromatic dispersion). Ее степень зависит от длины волны. Можно избежать наложения растянутых импульсов, увеличив расстояние между ними, но это снижает частоту передачи. К счастью, было обнаружено, что если придать импульсам специальную форму (соответствующую обратной величине гиперболического косинуса), то дисперсионные эффекты практически сойдут на нет. Поэтому теперь можно посылать сигналы на тысячи километров без заметного искажения их формы. Такие сигналы, именуемые солитонами (soliton), применяются все чаще.

Илл. 2.5. Затухание света при прохождении по оптоволокну в инфракрасном диапазоне


Оптоволоконные кабели

Оптоволоконные кабели аналогичны коаксиальным, за исключением оплетки. На илл. 2.6 (а) показано одиночное волокно сбоку. В центре расположен стеклянный сердечник, через который распространяется свет. В многомодовых оптоволоконных кабелях диаметр сердечника обычно составляет около 50 мкм — это примерная толщина человеческого волоса. В одномодовых оптоволоконных кабелях диаметр сердечника составляет от 8 до 10 мкм.

Илл. 2.6. (а) Вид одиночного волокна сбоку. (б) Трехжильный кабель с торца

Сердечник окружен стеклянным покрытием с более низким, чем у сердечника, коэффициентом преломления. Таким образом, свет не выходит за пределы сердечника. Далее следует тонкая пластиковая оболочка, защищающая стеклянное покрытие. Оптические волокна обычно группируются по несколько штук и защищаются внешней оболочкой. На илл. 2.6 (б) представлен кабель с тремя волокнами.

Наземные линии оптоволоконных кабелей обычно укладываются в земле на глубине до метра, где их иногда повреждают экскаваторы или грызуны. У побережья трансокеанские оптоволоконные кабели укладываются в специальные желоба с помощью своего рода морского плуга. На глубоководье они просто лежат на дне, где иногда получают повреждения от рыболовных траулеров или подвергаются атакам гигантских кальмаров.

Оптоволоконные кабели могут соединяться тремя различными способами. Во-первых, они могут оканчиваться коннекторами и включаться в оптические розетки. На коннекторах теряется от 10 до 20 % света, зато упрощается изменение конфигурации системы. Во-вторых, они могут сращиваться механически: два кабеля с аккуратными срезами укладываются вместе в специальную соединительную втулку и фиксируются на месте. Для лучшего выравнивания через точку сопряжения пропускается свет и производятся небольшие сдвиги для поиска максимально сильного сигнала. Механическое сращивание занимает у квалифицированного специалиста примерно 5 минут, в результате чего потери света составляют около 10 %. В-третьих, можно произвести сварку (сплавление) двух кусков оптоволокна в один. Сваренный кабель почти ничем не хуже целого, однако небольшое затухание происходит даже в этом случае. При всех трех видах соединений в точке стыковки свет может отражаться, а отраженная энергия создает помехи сигналу.

Для генерации световых сигналов обычно используются две разновидности источников света: светодиоды (Light Emitting Diodes, LED) и полупроводниковые лазеры. Их свойства, как показано на илл. 2.7, различны. Длину волны можно варьировать путем вставки между источником света и оптоволокном интерферометра Фабри — Перо (Fabry — Perot) или интерферометра Маха — Цендера (Mach — Zehnder). Интерферометр Фабри — Перо представляет собой простой резонатор, состоящий из двух параллельных зеркал. Свет падает перпендикулярно зеркалам. Длины волн, которые укладываются внутри резонирующей полости целое число раз, исключаются. Интерферометр Маха — Цендера разделяет свет на два луча, которые проходят немного разное расстояние. На выходе они снова объединяются, причем в фазе окажутся только лучи с определенными длинами волн.

Характеристика

LED

Полупроводниковые лазеры

Скорость передачи данных

Низкая

Высокая

Тип оптоволокна

Многомодовое

Многомодовое или одномодовое

Расстояние

Короткое

Длинное

Срок службы

Долгий

Короткий

Чувствительность к температуре

Незначительная

Существенная

Стоимость

Низкая

Высокая

Илл. 2.7. Сравнение полупроводниковых диодов и светодиодов как источников света

Принимающая сторона оптоволоконного кабеля представляет собой фотодиод, генерирующий электрический импульс, когда на него попадает свет. Время реакции фотодиодов, преобразующих оптический сигнал в электрический, ограничивает скорость передачи данных примерно до 100 Гбит/с. Тепловые помехи также являются проблемой, поэтому световой импульс должен быть достаточно мощным, чтобы его можно было уловить. Усиливая мощность излучения световых импульсов, можно радикально снизить количество ошибок передачи данных.


Сравнение оптоволокна и медных проводов

Любопытно сравнить оптоволокно и медные провода. Преимуществ у оптоволокна немало. Для начала, полоса пропускания у него намного шире, чем у медного кабеля. Одного этого достаточно, чтобы оправдать его использование в высокоскоростных сетях. Благодаря слабому затуханию требуется только один повторитель на каждые 50 км междугородних линий, что позволяет сэкономить немалые средства, в то время как для медных проводов повторитель необходим каждые 5 км. На оптоволоконные кабели не влияют скачки напряжения, электромагнитные помехи и перебои в подаче электроэнергии. Также они не боятся коррозионных химических примесей в воздухе, что играет важную роль в суровых условиях на производстве.

Но что удивительно, телефонные компании любят оптоволоконные кабели совсем по другим причинам — они легкие и тонкие. Многие кабель-каналы давно заполнены, и новые провода туда не помещаются. Замена всех медных проводов на оптоволокно позволила бы освободить место, а медные провода можно выгодно сдать на переработку — медь в них отличного качества. Кроме того, оптоволокно намного легче меди. Тысяча витых пар длиной в 1 км весит 8000 кг. Пара оптоволоконных кабелей с большей пропускной способностью весят всего 100 кг, что дает возможность отказаться от дорогостоящих систем механических опор. При построении новых маршрутов оптоволокно с легкостью выигрывает у медных проводов за счет гораздо более низкой стоимости прокладки. И наконец, оптоволокно не дает утечек света, а значит, затрудняет несанкционированные подключения. Это дает хорошую защиту от перехвата информации.

С другой стороны, оптоволокно — менее привычная технология, требующая специальных навыков, которыми обладают не все инженеры. При этом его очень легко повредить, просто слишком сильно изогнув. Кроме того, поскольку оптическая передача данных по своей природе является однонаправленной, то для двустороннего обмена данными необходимы два кабеля или две полосы частот в одном кабеле. Наконец, оптоволоконные блоки сопряжения дороже электрических. Тем не менее будущее всего стационарного обмена данными на длинных расстояниях, безусловно, за оптоволокном. Подробную информацию об оптоволоконных кабелях и сетях на их основе можно найти в работе Пирсона (Pearson, 2015).



16 Они же «антенны Герца». — Примеч. пер.

Загрузка...