2.8. Спутники связи
В 1950-х и начале 1960-х годов предпринимались попытки построения систем связи путем отражения сигналов от покрытых металлом метеозондов. К сожалению, принимаемый сигнал был слишком слаб. Затем ВМФ США обратили внимание на своеобразный метеозонд, который постоянно находится в небе, — Луну. В итоге была создана действующая система связи «корабль — берег», основанная на отражении сигналов от естественного спутника Земли.
Продвинуться в этой сфере дальше стало возможно только после запуска первого спутника связи. Ключевое отличие между искусственным и естественным спутником в том, что искусственный способен усиливать сигналы перед отправкой назад на землю, в результате чего эта диковинная технология превращается в мощную систему связи.
Спутники связи обладают интересными свойствами, делающими их заманчивыми для многих прикладных задач. Проще всего представить спутник связи как своего рода большой повторитель микроволн, висящий в небе. Он содержит несколько транспондеров (transponder), каждый из которых прослушивает свою долю спектра и усиливает полученные сигналы с последующей их ретрансляцией на другой частоте во избежание взаимных помех со входящим сигналом. Подобный режим работы называется прямой ретрансляцией (bent pipe)24. Чтобы управлять отдельными потоками данных в общем диапазоне и перенаправлять их, можно добавить цифровую обработку. Кроме того, спутник может получать цифровую информацию и ретранслировать ее. Такой способ восстановления сигналов повышает эффективность работы по сравнению с прямой ретрансляцией, ведь при этом спутник не усиливает содержащийся в сигнале шум. Пучки сигналов от спутника могут быть довольно широкими и покрывать значительную долю земной поверхности или узкими, охватывая область лишь в несколько сотен километров в диаметре.
Согласно законам Кеплера, период обращения спутника пропорционален радиусу его орбиты в степени 3/2. Чем выше находится спутник, тем больше период обращения. Близ поверхности Земли он составляет около 90 минут. Следовательно, находящиеся на низкой орбите спутники довольно быстро пропадают из виду (поскольку движутся). Для непрерывного покрытия необходимо множество спутников и наземных антенн для их отслеживания. На высоте примерно 35 800 км период составляет 24 часа, на высоте в 384 000 км — около 1 месяца, в чем может убедиться любой желающий, понаблюдав за Луной.
Период обращения спутника важен, но это не единственный нюанс, который необходимо учитывать, выбирая место его размещения. Еще одна проблема: радиационные пояса Земли (пояса Ван Аллена). Это слои заряженных частиц, удерживаемых магнитным полем Земли и способных довольно быстро разрушить любой спутник, попавший внутрь пояса. С учетом всех факторов остается три области для безопасного размещения спутников. Эти области и некоторые их свойства приведены на илл. 2.48. Ниже мы вкратце опишем спутники, расположенные в каждой из них.
Илл. 2.48. Спутники связи и некоторые их характеристики: высота над земной поверхностью, длительность прохождения сигнала туда и обратно, а также число спутников, необходимое для полного покрытия поверхности Земли
2.8.1. Геостационарные спутники
В 1945 году писатель-фантаст Артур Кларк вычислил, что спутник, находящийся на высоте 35 800 км на круговой экваториальной орбите, будет казаться неподвижным в небе, так что отслеживать его не нужно (Clarke, 1945). Он описал полноценную систему связи, использующую подобные (пилотируемые) геостационарные спутники, включая их орбиты, солнечные батареи, радиочастоты и процедуры запуска. К сожалению, он пришел к выводу, что его идея нереализуема из-за невозможности размещения на орбите хрупких усилителей на вакуумных лампах, требующих большого количества энергии. Поэтому Кларк больше не развивал эту идею, хотя и посвятил ей несколько научно-фантастических рассказов.
Изобретение транзисторов в корне изменило ситуацию, и в июле 1962 года был запущен первый искусственный спутник связи «Телстар». С тех пор спутники связи стали многомиллиардным и единственным высокорентабельным бизнесом, связанным с космическим пространством. Эти спутники, расположенные на большой высоте, часто называют спутниками GEO (Geostationary Earth Orbit — геостационарная околоземная орбита).
При современном уровне технологий не имеет смысла располагать геостационарные спутники чаще чем с интервалом в 2 градуса в 360-градусной экваториальной плоскости. В противном случае возникнут взаимные помехи. Следовательно, в небе могут одновременно находиться только 360/2 = 180 таких спутников. Впрочем, каждый транспондер может использовать несколько частот и схем поляризации для повышения доступной полосы пропускания.
Во избежание хаоса в небе выделением мест для спутников занимается МСЭ. Этот процесс чрезвычайно политизирован. Одни государства, едва вышедшие из каменного века, требуют «своих» мест на орбите (для дальнейшей перепродажи тому, кто заплатит больше). Другие считают, что государственная собственность не распространяется до Луны и ни одна страна не имеет права на участок орбиты над ее территорией. Ситуация осложняется тем, что коммерческая связь — отнюдь не единственный способ применения таких спутников. Телевизионные компании, правительства, военные — все хотят свой «кусок космического пирога».
Современные спутники бывают довольно большими, весят более 5000 кг и потребляют несколько киловатт электроэнергии, производимой солнечными батареями. Притяжение Солнца, Луны и планет стремится сместить их с назначенных мест и ориентации на орбите. Противодействие этому эффекту называется поддержанием стационарной орбиты (station keeping) и осуществляется с помощью установленных на спутнике ракетных двигателей. Когда заканчивается топливо (обычно лет через десять), спутник начинает беспомощно дрейфовать и «кувыркаться», поэтому его приходится отключать. В конце концов он сходит с орбиты, входит в атмосферу и сгорает либо (крайне редко) падает на Землю.
Участки орбиты — далеко не единственное яблоко раздора. Частоты тоже нужно распределять, поскольку передачи по входящим каналам создают помехи для микроволновых устройств. В связи с этим МСЭ выделил определенные полосы частот для спутниковых пользователей (основные приведены на илл. 2.49). Первой из них стала полоса C, доступная для коммерческого спутникового трафика. В ней было выделено два диапазона частот: нижний — для входящего трафика (от спутника) и верхний — для исходящего (на спутник). Для одновременного движения трафика в обоих направлениях необходимы два канала. Эти каналы и так переполнены, поскольку используются в распространенных системах связи для приземных микроволновых соединений. Полосы L и S были добавлены в результате международного соглашения в 2000 году. Впрочем, они довольно узкие и тоже перегружены.
Полоса
Входящий трафик
Исходящий трафик
Ширина полосы пропускания
Проблемы
L
1,5 ГГц
1,6 ГГц
15 МГц
Малая ширина полосы пропускания; переполнена
S
1,9 ГГц
2,2 ГГц
70 МГц
Малая ширина полосы пропускания; переполнена
C
4,0 ГГц
6,0 ГГц
500 МГц
Помехи от приземной связи
Ku
11 ГГц
14 ГГц
500 МГц
Дожди
Ka
20 ГГц
30 ГГц
3500 МГц
Дожди; стоимость оборудования
Илл. 2.49. Основные спутниковые полосы частот
Вторая по высоте частот полоса, доступная для коммерческих операторов связи, — полоса Ku (K under; «K нижняя»). Этот диапазон пока еще не слишком перегружен, и на его верхних частотах спутники можно размещать через 1 градус; скорость передачи может достигать более 500 Мбит/с. Впрочем, есть другая проблема: дожди. Вода хорошо поглощает столь короткие микроволны. К счастью, сильные ливни обычно ограничиваются небольшой территорией, так что обойти эту проблему можно за счет нескольких наземных станций, расположенных далеко друг от друга, вместо одной. Но это решение имеет свою цену в виде стоимости дополнительных антенн, кабелей и электроники для быстрого переключения между станциями. Также для коммерческой спутниковой связи была выделена полоса в диапазоне Ka (K above; «K верхняя»), но для ее использования требуется весьма дорогостоящее оборудование. Помимо коммерческих диапазонов, существует также множество военных и правительственных.
Современный спутник обычно содержит около 40 транспондеров с полосой пропускания, как правило, 36 МГц. Обычно они осуществляют прямую ретрансляцию, но в некоторых последних моделях спутников есть мощности для обработки «на борту», что дает возможность производить более сложные операции. В первых спутниках деление транспондеров по каналам было статическим: полоса пропускания просто разбивалась на фиксированные полосы частот. Теперь пучки сигналов транспондеров делятся по временным слотам и пользователи используют их по очереди. В который раз убеждаемся, что схемы TDM и FDM могут применяться в разнообразных ситуациях.
Пространственный пучок сигнала — его зона покрытия (footprint) — первых геостационарных спутников охватывал примерно 1/3 земной поверхности. В результате колоссального снижения стоимости, размеров и требований к мощности микроэлектроники стала возможной гораздо более совершенная стратегия широкополосной трансляции. Каждый спутник снабжен несколькими антеннами и транспондерами. Любой нисходящий пучок можно сфокусировать на небольшой географической области и осуществлять несколько одновременных входящих и исходящих передач. Обычно у подобных остронаправленных пучков (spot beam) эллиптическая форма, а размер может быть всего несколько сотен километров в диаметре. Американские спутники связи обычно используют один широкий пучок сигнала для непрерывного участка из 48 штатов и еще два остронаправленных пучка для Аляски и Гавайев.
Новым витком развития в мире спутников связи стало создание недорогих микростанций VSAT (Very Small Aperture Terminals); см. работу Абрамсона (Abramson, 2000). Диаметр антенн этих крошечных терминалов составляет всего 1 м или даже меньше (в отличие от 10 м у стандартных антенн GEO), а их выходная мощность — около 1 Вт. Скорость исходящего соединения обычно не более 1 Мбит/с, а входящего — до нескольких мегабит в секунду. Эта технология применяется в спутниковых системах прямого телевещания для односторонней передачи.
Во многих системах VSAT мощность микростанций недостаточна для прямой связи друг с другом (через спутник, разумеется). Для ретрансляции трафика между различными VSAT необходима особая наземная станция, концентратор (hub), на которой установлена большая антенна с высоким коэффициентом усиления (илл. 2.50). В данной конфигурации либо передатчик, либо приемник имеет огромную антенну и мощный усилитель. Недостатком системы является более длительная задержка, но есть и существенный плюс — более дешевые терминалы для конечных пользователей.
Илл. 2.50. VSAT с использованием концентратора
Системы VSAT имеют колоссальные перспективы применения в сельской местности, особенно в развивающихся странах. Во многих уголках мира нет ни проводной связи, ни сотовых вышек. Бюджет большинства развивающихся стран не позволяет прокладывать телефонные линии в тысячи крошечных деревушек. Возводить сотовые вышки проще, но их нужно соединять проводами с общенациональной телефонной сетью. Установка однометровой тарелки VSAT с питанием от солнечных батарей зачастую становится оптимальным решением. VSAT — это технология, которая может положить конец опутыванию всего мира проводами. Кроме того, она способна обеспечить интернет-доступ пользователям смартфонов в регионах без приземной инфраструктуры (то есть в большей части развивающегося мира).
У спутников связи есть несколько особенностей, резко отличающих их от приземных двухточечных соединений. Прежде всего долгий путь сигнала до геостационарного спутника и обратно приводит к существенной задержке (несмотря на то что сигнал движется со скоростью света, почти 300 000 км/с). В зависимости от расстояния между пользователем и наземной станцией, а также от высоты спутника над горизонтом сквозная задержка составляет 250–300 мс. Обычно время прохождения сигнала туда и обратно составляет 270 мс (540 мс для системы VSAT с концентратором).
Для сравнения: задержка распространения сигнала в приземных микроволновых каналах связи составляет примерно 3 мкс/км, а в коаксиальном или оптоволоконном кабеле — примерно 5 мкс/км. Разница объясняется тем, что электромагнитные сигналы быстрее распространяются в воздухе, чем в плотной среде.
Важное свойство спутников состоит в том, что они по своей сути широковещательные. Стоимость отправки сообщения на тысячу устройств в зоне покрытия транспондера такая же, как и на одно устройство. В некоторых случаях это очень удобно. Например, спутник может транслировать популярные веб-страницы в кэш множества компьютеров на огромной территории. И хотя широковещательную трансляцию можно имитировать при помощи двухточечных линий связи, спутниковое вещание обойдется намного дешевле. При этом с точки зрения защиты информации спутники крайне небезопасны: все могут слышать всё. Для обеспечения конфиденциальности необходимо шифрование.
Еще одна особенность спутников — стоимость передачи сообщения не зависит от расстояния, проходимого сигналом. Звонок через океан ничуть не дороже, чем звонок в соседний дом. Спутники также отличаются превосходными показателями частоты ошибок, а необходимая инфраструктура развертывается практически мгновенно, что очень важно в случае чрезвычайных ситуаций и для военных.
2.8.2. Среднеорбитальные спутники
На гораздо более низких высотах, между двумя радиационными поясами, находятся среднеорбитальные спутники MEO (Medium-Earth Orbit — средняя околоземная орбита). С Земли можно наблюдать, как они медленно перемещаются по долготе. Спутники MEO делают оборот вокруг планеты примерно за 6 часов. Соответственно, их движение по небу необходимо отслеживать. А поскольку они располагаются ниже, чем GEO, зона покрытия земной поверхности у них меньше. Зато для связи с ними достаточно куда более слабого передатчика. В настоящее время MEO применяются в навигационных системах чаще, чем в телекоммуникациях, так что мы не будем останавливаться на них подробно. Примером спутников MEO служит группа из 30 спутников системы глобального позиционирования (Global Positioning System, GPS).
2.8.3. Низкоорбитальные спутники
Еще ближе к поверхности земли располагаются низкоорбитальные спутники LEO (Low-Earth Orbit — низкая околоземная орбита). Для создания полноценной системы необходимо большое количество таких спутников, поскольку они быстро перемещаются по орбите. С другой стороны, благодаря низкому расположению LEO наземным станциям не требуется много энергии, а задержка прохождения сигнала туда и обратно составляет всего 40–150 мс. Стоимость запуска также существенно меньше. В этом разделе мы рассмотрим два примера спутниковых группировок, используемых для сервисов голосовой связи: Iridium и Globalstar.
В первые 30 лет спутниковой эры спутники с низкой стационарной орбитой использовались редко, поскольку они слишком быстро появляются и выходят из зоны действия передатчика. В 1990 году Motorola положила начало новой эпохе, запросив у FCC разрешение на запуск 77 низкоорбитальных спутников для проекта Iridium (иридий — 77-й элемент таблицы Менделеева). Позднее план несколько пересмотрели и решили использовать только 66 спутников, так что проект следовало бы переименовать в Dysprosium (диспрозий — 66-й элемент), но, пожалуй, это напоминает название какой-то болезни. Идея заключалась в следующем: как только один спутник исчезает из поля зрения, на смену ему приходит другой. Это предложение вызвало ажиотаж среди остальных телекоммуникационных компаний. Внезапно каждая из них захотела запустить свою цепочку низкоорбитальных спутников.
Спустя семь лет поиска партнеров и финансирования, в ноябре 1998 года, проект был наконец запущен. К сожалению, спрос на крупногабаритные и тяжелые спутниковые телефоны оказался ничтожным, поскольку к этому времени невероятно разрослись мобильные сети. В результате Iridium оказался нерентабельным и обанкротился в августе 1999 года, став одним из самых впечатляющих корпоративных фиаско в истории. Спутники и прочие активы стоимостью $5 млрд позднее были приобретены инвестором за $25 млн на своего рода космической гаражной распродаже. Остальные коммерческие спутниковые проекты ждала та же участь.
Сервис Iridium был вновь запущен в марте 2001 года и с тех пор демонстрирует стабильный рост. Он предоставляет услуги передачи голоса, данных, пейджинговых сообщений, факсов, а также навигационные сервисы повсюду — на земле, в воздухе и на море. Портативные устройства поддерживают прямую связь со спутниками Iridium. Среди клиентов сервиса — судоходные и авиационные компании, предприятия, занимающиеся поиском нефтяных месторождений, а также путешественники по регионам, где нет телекоммуникационной инфраструктуры (пустыни, горы, Южный полюс и некоторые развивающиеся страны).
Спутники Iridium располагаются на круговых полярных орбитах на высоте 670 км. Они вытянуты в цепочки с севера на юг, по одному спутнику на каждые 32 градуса долготы (илл. 2.51). Каждый спутник насчитывает до 48 ячеек (остронаправленных пучков сигналов) и до 3840 потенциальных каналов, часть которых используется для пейджинга и навигации, а остальные — для данных и голоса.
Илл. 2.51. Спутники Iridium располагаются в виде шести цепочек вокруг Земли
Как видно на илл. 2.51, шесть цепочек спутников охватывают всю Землю. Интересная особенность Iridium — связь между удаленными пользователями происходит в космосе. Это показано на илл. 2.52 (а): вызывающий абонент находится на Северном полюсе, спутник расположен непосредственно над его головой. У каждого спутника есть четыре «соседа», с которыми он может обмениваться информацией — два в той же цепочке (показаны на рисунке) и еще два в смежных цепочках (не показаны). Спутники ретранслируют звонок по этой сетке, пока он не попадает к вызываемому абоненту на Южном полюсе.
Илл. 2.52. (а) Ретрансляция в космосе. (б) Ретрансляция на Земле
Существует альтернатива Iridium — проект Globalstar. Он построен на 48 спутниках LEO, но использует другую схему коммутации. Если Iridium ретранслирует звонки между спутниками (для этого они оснащаются сложным коммутационным оборудованием), Globalstar использует принцип прямой трансляции. Как видно на илл. 2.52 (б), звонок с Северного полюса поступает на спутник, затем отправляется на большую наземную станцию где-то во владениях Санта-Клауса. Далее звонок направляется по приземной сети до ближайшей к вызываемому абоненту наземной станции и попадает к нему по каналу прямой трансляции. Преимущество этой схемы в том, что все наиболее сложные ее составные части находятся на Земле. Это значительно упрощает их обслуживание. Кроме того, большие антенны наземных станций позволяют передавать сильные сигналы и принимать слабые. Благодаря этому можно использовать даже маломощные телефоны. В конце концов, мощность телефонного сигнала составляет всего несколько милливатт, поэтому попадающий на наземную станцию сигнал довольно слаб (даже после усиления спутником).
Постепенно запускаются все новые спутники (около 20 штук в год), включая и более крупные, весом более 5000 кг. Для организаций с ограниченным бюджетом были изобретены очень маленькие спутники. Чтобы повысить доступность космических исследований, ученые из Калифорнийского политехнического и Стэнфордского университетов в 1999 году совместно описали стандарт для миниатюрных спутников и пусковой установки. Стандарт был призван значительно снизить стоимость запуска; подробнее см. в работе Ньюджента и др. (Nugent et al., 2008). Миниатюрные спутники — кубсаты (cubesats) — представляют собой кубики со стороной 10 × 10 × 10 см25, каждый из которых весит не более килограмма. Стоимость их запуска не превышает $40 000. Пусковая установка обычно отправляется в качестве дополнительной полезной нагрузки при коммерческих полетах в космос. Она представляет собой трубку с кубсатами (до трех штук), которые выстреливаются на орбиту при помощи пружин. Уже запущено несколько десятков кубсатов, и регулярно запускаются новые. Большинство из них связываются с наземными станциями на полосах частот УВЧ и ОВЧ.
Помимо прочего, спутники LEO применяются в создании опорной сети спутникового интернета. Проект OneWeb изначально предполагает группировку из нескольких сотен спутников. В случае успеха будет обеспечен высокоскоростной интернет-доступ в тех местах, где его ранее не было. OneWeb будет работать в диапазоне Ku с использованием технологии Progressive Pitch, при которой спутники слегка поворачиваются во избежание взаимных помех с геостационарными спутниками, передающими в той же полосе частот.
24 Дословно «изогнутая труба». — Примеч. пер.
25 Стандарт допускает объединение нескольких кубиков в один спутник. — Примеч. пер.