2.6. Сотовые сети
Даже если традиционная телефонная система когда-нибудь полностью перейдет на мультигигабитное оптоволокно, этого будет недостаточно. Современные пользователи хотят звонить, проверять электронную почту и просматривать веб-страницы где угодно: в самолетах, автомобилях, бассейнах и даже во время пробежек в парке. Это порождает невероятный интерес к беспроводной телефонии (а также инвестициям в нее).
Мобильные телефонные системы используются для глобальной голосовой связи и обмена данными. Уже насчитывается пять поколений мобильных телефонов (иногда называемых сотовыми): 1G, 2G, 3G, 4G и 5G. Первые два поколения предоставляли услуги аналоговой (1G) и цифровой (2G) передачи голоса; поколение 3G — цифровой передачи голоса и данных (интернет, электронная почта и т.д.). В технологии 4G добавились новые возможности, включая дополнительные методики передачи данных физического уровня (например, восходящую передачу OFDM), а также фемтосоты на основе IP (домашние сотовые узлы, подключенные к стационарной интернет-инфраструктуре). Поколение 4G не поддерживает телефонию с коммутацией каналов, в отличие от его предшественников; в его основе — исключительно коммутация пакетов. В настоящее время постепенно развертываются сети 5G, но пройдут годы, прежде чем они полностью заменят сети предыдущих поколений. Технология 5G позволяет передавать данные на скорости до 20 Гбит/с и отличается большей плотностью размещения сотовых вышек. Особое внимание направлено на снижение сетевой задержки, чтобы обеспечить работу более широкого круга приложений, например современных интерактивных игр.
2.6.1. Основные понятия: соты, передача обслуживания, пейджинг
Во всех мобильных телефонных системах географические области делятся на соты (cells), именно поэтому переносные телефонные аппараты иногда называют сотовыми телефонами. Смежные соты используют разные наборы частот. Главная идея, благодаря которой пропускная способность сотовых систем намного выше, чем у их предшественников, — использование относительно маленьких сот и повторное использование частот в близко расположенных (но не смежных) сотах. Чем меньше соты, тем выше пропускная способность системы и тем экономнее потребление электроэнергии. В итоге передатчики и переносные телефонные аппараты становятся компактнее и дешевле.
Соты позволяют многократно использовать частоты, как показано на илл. 2.39 (а). Соты имеют форму, близкую к окружности, но удобнее представить их в виде шестиугольников. На илл. 2.39 (а) изображены соты одного размера, сгруппированные по семь штук. Наборы частот обозначены буквами. Обратите внимание, что каждый набор окружен буфером в две соты толщиной, в котором используются другие частоты. Это обеспечивает эффективное разделение частот и низкий уровень помех.
Илл. 2.39. (а) Одинаковые частоты не используются в смежных сотах. (б) Чтобы повысить число пользователей, можно использовать меньшие соты
Слишком большое количество пользователей может вызвать перегрузку системы. Чтобы этого избежать, можно снизить мощность и разбить перегруженные соты на микросоты. Это повышает интенсивность повторного использования частот, как показано на илл. 2.39 (б). Иногда телефонные компании создают временные микросоты с помощью переносных вышек со спутниковыми каналами связи — на спортивных мероприятиях, рок-концертах и в других местах, где множество пользователей собирается на несколько часов.
В центре сот расположены базовые станции, на которые передаются данные со всех телефонов в соте. Базовая станция состоит из компьютера и передатчика/приемника, подключенных к антенне. В маленьких системах все базовые станции подключаются к одному устройству, которое называется центром мобильной коммутации (Mobile Switching Center, MSC), или коммутатором мобильной связи (Mobile Telephone Switching Office, MTSO). В больших системах могут понадобиться несколько MSC, подключенных к одному MSC второго уровня, и т.д. MSC, по сути, являются аналогами оконечных телефонных станций и фактически подключены по меньшей мере к одной такой станции. MSC обмениваются информацией с базовыми станциями, друг с другом и с коммутируемой телефонной сетью общего пользования (Public Switched Telephone Network, PSTN), используя коммутацию пакетов.
В любой момент времени мобильный телефон логически относится к конкретной соте и контролируется ее базовой станцией. Когда телефон покидает эту соту, базовая станция замечает ослабление сигнала и «спрашивает» ближайшие станции, насколько хорошо они его «слышат». Получив ответы, станция передает обслуживание этого телефона той соте, в пределах которой он теперь находится. После этого телефон оповещается о смене соты. Если это происходит во время разговора, он получает предложение о переключении на новый канал (поскольку старый не может использоваться в смежных сотах). Этот процесс, называемый передачей обслуживания (handoff), занимает около 300 мс. Распределением каналов занимается MSC — мозговой центр системы. Базовые станции представляют собой простые радиоретрансляторы.
Основная проблема — найти высокую точку для размещения базовых станций. Она заставила некоторых операторов мобильной связи заключить договор с Римско-католической церковью, которая владеет множеством подходящих для установки антенн возвышенностей по всему миру. Удобно и то, что они находятся под управлением одной организации.
В сотовых сетях обычно встречается четыре типа каналов. Каналы управления (control channels) — от базовой станции к мобильному устройству — используются для управления системой. Пейджинговые каналы (paging channels) — от базовой станции к мобильному устройству — оповещают пользователей мобильных устройств о входных звонках. Каналы доступа (access channels) — двунаправленные — используются для настроек звонков и распределения каналов. Наконец, каналы данных (data channels) — также двунаправленные — служат для передачи голоса, факсов или данных.
2.6.2. Технология 1G: аналоговая передача голоса
Теперь рассмотрим технологии сотовых сетей с самых первых систем. Мобильные радиотелефоны периодически использовались в морской и военной связи еще в начале XX века. В 1946 году в Сент-Луисе появилась первая система для автомобильных телефонов — с одним большим передатчиком на высотном здании и одним каналом для передачи и приема. Для разговора пользователям приходилось нажимать кнопку, включающую передатчик и отключающую приемник. Подобные системы «нажал — говори» (push-to-talk systems) устанавливались повсюду в начале 1950-х. Эта технология часто используется в такси и полицейских автомобилях.
В 1960-х начала внедряться усовершенствованная система мобильной связи (Improved Mobile Telephone System, IMTS). В ней также применялся мощный (200 Вт) передатчик, расположенный на возвышенности, но с двумя частотами — одна для передачи, вторая для приема, так что необходимость в переговорной кнопке отпала. А поскольку входящие и исходящие сигналы передавались по разным каналам, пользователи мобильной связи не могли слышать чужие разговоры (в отличие от систем «нажал — говори» в старых такси).
IMTS поддерживала 23 канала в диапазоне от 150 до 450 МГц. Из-за такого маленького числа каналов пользователям нередко приходилось долго ждать освобождения линии. Кроме того, из-за большой мощности расположенных на возвышенностях передатчиков смежные системы приходилось разносить на несколько сотен километров во избежание помех. Все эти ограничения делали систему непрактичной.
Пропускную способность сотовых сетей значительно увеличила аналоговая продвинутая система телефонной мобильной связи (Advanced Mobile Phone System, AMPS), созданная Bell Labs и впервые развернутая в США в 1983 году. Она также использовалась в Великобритании, где называлась TACS, затем в Японии — под названием MCS-L1. От AMPS официально отказались в 2008 году, но мы рассмотрим ее, чтобы лучше понять следующие за ней системы 2G и 3G. В AMPS размер сот варьируется от 10 до 20 км в поперечнике; в цифровых системах соты обычно меньше. В то время как в IMTS диаметром 100 км на каждой частоте мог выполняться лишь один звонок, в AMPS на ту же площадь приходится сто 10-километровых сот, благодаря чему она может обслуживать от 10 до 15 звонков на каждой частоте в удаленных друг от друга сотах.
Для разделения каналов в AMPS используется FDM. Система включает 832 полнодуплексных канала, каждый из которых состоит из пары симплексных каналов. Такая схема называется дуплексной связью с частотным разделением каналов (Frequency Division Duplex, FDD). Для передачи данных с мобильного устройства на базовую станцию используется 832 симплексных канала в диапазоне 824–849 МГц; обратно данные передаются по 832 симплексным каналам в диапазоне 869–894 МГц. Ширина каждого симплексного канала — 30 кГц.
832 канала AMPS делятся на четыре категории. Поскольку повторно использовать одинаковые частоты в соседних сотах нельзя, а 21 канал в каждой соте резервируется для управления, фактически число доступных голосовых каналов в каждой соте намного меньше, чем 832 (обычно около 45).
Управление вызовами
В программируемой постоянной памяти каждого телефона в AMPS содержится уникальный 32-битный серийный номер и телефонный номер из 10 цифр. Телефонный номер во многих странах содержит 10-битный код области из 3 цифр и 24-битный номер пользователя из 7 цифр. При подключении телефона он сканирует заранее запрограммированный список из 21 канала управления в поисках наиболее мощного сигнала. Затем телефон транслирует свой 32-битный серийный номер и 34-битный телефонный номер. Как и вся управляющая информация в AMPS, этот пакет отправляется в цифровой форме, многократно, с использованием кода коррекции ошибок, несмотря на то что сами голосовые каналы — аналоговые.
Когда базовая станция получает оповещение, она передает информацию об этом MSC, который фиксирует появление нового абонента, а также сообщает домашнему MSC абонента о его текущем местоположении. В штатном режиме работы мобильный телефон регистрируется заново примерно каждые 15 минут.
Чтобы позвонить, пользователь включает телефон, набирает номер и нажимает кнопку вызова. Телефон передает вызываемый номер и его собственный идентификатор по каналу доступа. В случае конфликта попытка повторяется. Получив запрос, базовая станция сообщает о нем MSC. Если звонящий является абонентом компании данного MSC (или одного из ее партнеров), то MSC ищет свободный канал для звонка. Обнаружив канал, он отправляет его номер обратно по каналу управления. После этого мобильный телефон автоматически переключается на выбранный голосовой канал и ждет, пока вызываемый абонент не поднимет трубку.
Входящие звонки происходят иначе. Все телефоны в режиме ожидания непрерывно прослушивают пейджинговый канал на предмет предназначенных для них сообщений. При звонке на мобильный телефон (со стационарного или с другого мобильного телефона) домашний MSC вызываемого абонента получает пакет с запросом о его местонахождении. Затем пакет отправляется на базовую станцию текущей соты, которая транслирует по пейджинговому каналу запрос вида: «Устройство 14, вы здесь?». Телефон вызываемого абонента отвечает по каналу доступа «Да». После этого базовая станция сообщает ему нечто вроде: «Устройство 14, вам поступил вызов по каналу 3». Далее вызываемый телефон переключается на канал 3 и начинает звонить (или проигрывать мелодию, полученную владельцем телефона в качестве подарка на день рождения).
2.6.3. Технология 2G: цифровая передача голоса
Первое поколение мобильных телефонов было аналоговым, второе поколение — цифровое. У перехода на цифровые технологии есть несколько преимуществ. За счет оцифровки и сжатия голосовых сигналов повышается пропускная способность. Благодаря возможности шифрования голосовых и управляющих сигналов повышается безопасность. Это защищает от мошенничества и перехвата разговоров, как в случае преднамеренного сканирования диапазона, так и при случайном перехвате отголосков чужих звонков вследствие распространения радиоволн. Наконец, появляются новые сервисы, такие как обмен текстовыми сообщениями.
Международного стандарта для второго поколения мобильной связи не появилось, так же как и для первого. На основе 2G было разработано несколько систем, три из которых применялись весьма широко. Продвинутая цифровая система телефонной мобильной связи (Digital Advanced Mobile Phone System, D-AMPS) представляет собой цифровой вариант AMPS, способный сосуществовать с ней. Она использует TDM для нескольких одновременных звонков на одном частотном канале. D-AMPS описана в международном стандарте IS-54 и его преемнике IS-136. С тех пор преобладающей системой стала Глобальная система мобильной связи (Global System for Mobile communications, GSM). Несмотря на медленное распространение в США, сейчас она используется практически во всем мире. В основе GSM, как и D-AMPS, лежит сочетание FDM и TDM. Совершенно иной системой, не основанной ни на FDM, ни на TDM, является множественный доступ с кодовым разделением (Code Division Multiple Access, CDMA), описанный в международном стандарте IS-95. И хотя эта технология не стала главной системой 2G, она легла в основу 3G.
В литературе по маркетингу системы 2G (то есть цифровые) иногда называются сервисами персональной связи (Personal Communications Services, PCS). Изначально под этим понимались мобильные телефоны, использующие полосу 1900 МГц, но сегодня это разграничение роли не играет. Доминирующей системой 2G во всем мире сегодня является GSM, подробно описанная далее.
2.6.4. GSM: Глобальная система мобильной связи
GSM появилась в 1980-х как попытка создания единого европейского стандарта 2G. Эту задачу поручили комиссии по электросвязи, носившей французское название Groupe Specialé Mobile. Первые GSM-системы были развернуты в 1991 году и быстро обрели популярность. Скоро стало очевидно, что GSM ожидает успех не только на европейском рынке, но и в отдаленных уголках мира, даже в Австралии. Поэтому GSM переименовали — для большей привлекательности в мировых масштабах.
GSM и другие системы телефонной связи, которые будут представлены далее, унаследовали от систем первого поколения сотовую архитектуру, повторное использование частот и мобильность с передачей обслуживания при перемещении абонента. Различаются лишь нюансы. Мы кратко рассмотрим основные свойства GSM. Но учтите, что в напечатанном виде стандарт GSM занимает более 5000 (!) страниц. Немалая доля этих сведений относится к технической стороне системы, особенно к архитектуре приемников для многолучевого распространения сигнала и синхронизации передатчиков и приемников. Этих вопросов мы касаться не будем.
Архитектуры GSM и AMPS совпадают, как показано на илл. 2.40, хотя названия компонентов отличаются. Сам мобильный телефон теперь состоит из переносного телефонного аппарата и съемного чипа — так называемой SIM-карты (SIM card; Subscriber Identity Module — модуль идентификации абонента), содержащей информацию о пользователе и состоянии его счета. Именно SIM-карта активирует переносной телефонный аппарат и содержит всю секретную
Илл. 2.40. Архитектура мобильной сети GSM
информацию, с помощью которой телефон и сеть идентифицируют друг друга и шифруют разговоры. SIM-карту можно вытащить из одного аппарата и вставить в другой: он и станет вашим телефоном с точки зрения сети.
Мобильный телефон взаимодействует с сотовыми базовыми станциями через радиоинтерфейс (air interface), который мы опишем чуть позднее. Все сотовые базовые станции подключены к контроллерам базовых станций (Base Station Controller, BSC). Они управляют радиоресурсами сот и отвечают за передачу обслуживания. BSC подключаются к MSC (аналогично AMPS), который маршрутизирует звонки и соединяется с PSTN.
Для маршрутизации звонков MSC требуется информация о местоположении абонентов. Он поддерживает базу данных находящихся поблизости телефонов, подключенных к управляемой им соте, — регистр роуминговых абонентов (Visitor Location Register, VLR). В мобильной сети также есть база данных о последнем известном местонахождении всех телефонов — домашний регистр местоположения (Home Location Register, HLR). Эта база используется для маршрутизации входящих звонков в нужную точку. Важно поддерживать актуальность обеих баз данных, поскольку мобильные телефоны постоянно перемещаются из соты в соту.
Теперь подробнее обсудим радиоинтерфейс. Во всем мире GSM работает на нескольких радиочастотах, включая 900, 1800 и 1900 МГц. Диапазон GSM шире, чем у AMPS, что позволяет обслуживать куда большее число пользователей. GSM — полнодуплексная система сотовой связи с частотным разделением каналов, как и AMPS. То есть все телефоны передают данные на одной частоте, а принимают — на другой, более высокой (на 55 МГц для GSM и на 80 МГц для AMPS). Однако, в отличие от AMPS, отдельные пары частот в GSM делятся с помощью TDM на временные слоты. Таким образом, ее могут использовать несколько мобильных телефонов.
Для обеспечения звонков нескольких мобильных телефонов каналы GSM намного шире, чем каналы AMPS (200 кГц вместо 30 кГц). На илл. 2.41 показан отдельный 200-килогерцный канал. Работающая в диапазоне 900 МГц GSM насчитывает 124 пары симплексных каналов (каждый шириной 200 кГц) и поддерживает восемь отдельных соединений, используя TDM. Каждому активному в текущий момент устройству выделяется свой временной слот на одной паре каналов. Теоретически каждая сота может поддерживать 992 канала, но многие из них недоступны во избежание конфликтов частот с соседними сотами. На илл. 2.41 все восемь заштрихованных временных слотов выделены для одного соединения, по четыре в каждом направлении. Передача и прием сигналов разнесены по разным временным слотам, поскольку GSM-радиостанции не способны передавать и принимать одновременно, а переключение с одного режима на другой занимает определенное время. Если мобильное устройство привязано к диапазону 890,4/935,4 МГц и требует временного слота 2 для передачи сигнала на базовую станцию, то оно воспользуется четырьмя нижними заштрихованными слотами (и следующими за ними по времени), передавая в каждый слот какие-либо данные, пока не будет отправлена вся информация.
Илл. 2.41. 124 частотных канала GSM, каждый из которых использует восьмислотовую TDM-систему
Слоты TDM на илл. 2.41 — часть сложной иерархии фреймов. Каждый слот TDM имеет особую структуру, так же как и группы слотов, образующие суперфреймы. Упрощенная версия этой иерархии приведена на илл. 2.42. Каждый слот TDM состоит из 148-битного фрейма данных, занимающего канал на 577 мкс (включая защитный интервал времени в 30 мкс после каждого слота). Каждый фрейм начинается и завершается тремя битами 0 в целях разграничения фреймов. Он также содержит два 57-битных поля Информация; в каждом — контрольный бит, указывающий, для чего предназначено это поле (для голоса или данных). Между полями Информация располагается 26-битное поле Синхронизация, с помощью которого приемник производит синхронизацию по границам фреймов отправителя.
Фрейм данных передается за 547 мкс, но передатчик может отправлять лишь по одному фрейму каждые 4,615 мс, поскольку делит канал еще с семью другими устройствами. Общая скорость каждого канала, составляющая 270 833 бит/с, делится между восемью пользователями. Впрочем, как и в AMPS, служебные данные «съедают» значительную часть полосы пропускания, оставляя в конечном итоге 24,7 Кбит/с для полезных данных в расчете на каждого пользователя (до коррекции ошибок). После коррекции на голосовые данные остается 13 Кбит/с. И хотя это существенно меньше, чем 64 Кбит/с при PCM для несжатых голосовых сигналов в стационарных телефонных сетях, благодаря сжатию на стороне мобильного устройства можно достичь этого уровня без особой потери качества.
Как видно из илл. 2.42, один фрейм TDM состоит из восьми фреймов данных, а один 120-мс суперфрейм состоит из 26 фреймов TDM. Из них слот 12 используется для управления, а слот 25 зарезервирован для использования в будущем, так что для пользовательского трафика доступно только 24 фрейма.
Впрочем, помимо показанного на илл. 2.42 суперфрейма на 26 слота, используется также (не представленный) суперфрейм на 51 слот: часть из них используется для каналов управления системой. Широковещательный канал управления (broadcast control channel) представляет собой непрерывный поток
Илл. 2.42. Фрагмент структуры фреймов GSM
выходных сигналов базовой станции, содержащих ее идентификатор и данные о состоянии канала. Все мобильные устройства непрерывно отслеживают мощность сигнала, чтобы узнать о переходе в новую соту.
Выделенный канал управления (dedicated control channel) используется для обновления данных о местоположении, регистрации и подготовке звонков. В частности, у каждого BSC есть база данных мобильных устройств, относящихся к нему в данный момент (VLR). Необходимая для обновления VLR информация передается по выделенному каналу управления.
В системе также есть общий канал управления (common control channel), разбитый на три логических подканала. Первый из них — пейджинговый канал (paging channel), используемый базовыми станциями для оповещения о входящих звонках. Все мобильные устройства непосредственно следят за ним в ожидании звонков, на которые необходимо ответить. Второй — канал произвольного доступа (random access channel), через который пользователь может запросить слот в выделенном канале управления. В случае конфликта двух таких запросов они искажаются и их приходится повторить позднее. С помощью выделенного канала управления станция может установить соединение. Оповещение относительно выделенного слота происходит по третьему подканалу — каналу предоставления доступа (access grant channel).
Наконец, GSM отличается от AMPS способом передачи обслуживания. В AMPS MSC производит его без какой-либо помощи со стороны мобильных устройств. При использовании временных слотов GSM телефон большую часть времени ничего не посылает и не принимает. Неиспользуемые слоты дают мобильному устройству возможность измерять качество сигнала от расположенных поблизости базовых станций и отправлять полученную информацию BSC. На основе этой информации BSC определяет, когда мобильный телефон покидает одну соту и переходит в другую, для своевременной передачи обслуживания. Эта архитектура называется передачей обслуживания при содействии мобильных устройств (Mobile Assisted HandOff, MAHO).
2.6.5. Технология 3G: цифровая передача голоса и данных
Первое поколение мобильных телефонов предназначалось для аналоговой передачи голоса, а второе — для цифровой. Третье поколение, 3G, служит для цифровой передачи голоса и данных. К широкому распространению этой технологии привело несколько факторов. Во-первых, когда появился 3G, объем передаваемых данных в стационарных сетях начал превышать объем голосового трафика; аналогичная тенденция наблюдалась и для мобильных устройств. Во-вторых, наметилась тенденция объединения телефонных, интернет- и видеосервисов. Появление смартфонов, начиная с выпущенного в 2007 году iPhone компании Apple, ускорило переход к мобильному интернету. С ростом популярности iPhone неуклонно росли и объемы данных. Изначально iPhone использовал сеть 2.5G (по сути, немного усовершенствованную сеть 2G), пропускная способность которой была явно недостаточной, чтобы удовлетворить растущие потребности пользователей. Это обусловило переход на технологию 3G, поддерживающую более высокие скорости передачи. Годом позднее компания Apple выпустила обновленную версию iPhone с поддержкой сетей 3G.
Операторы с самого начала пытались продвигаться в направлении 3G путем перехода на технологии, иногда называемые 2.5G. Одна из таких систем — EDGE (Enhanced Data rates for GSM Evolution — «усовершенствованный GSM с улучшенной скоростью передачи данных»). По сути, это GSM с большим количеством битов на символ, что автоматически ведет к увеличению числа ошибок на символ. Поэтому в EDGE насчитывается девять схем модуляции и коррекции ошибок, возникающих из-за более высокой скорости. Эти схемы различаются задействованной долей полосы пропускания. EDGE — лишь один шаг на пути эволюции от GSM к технологиям 3G, представленным далее.
Начиная с 1992 года МСЭ пытался конкретизировать концепцию 3G, для чего выпустил рабочий проект IMT-2000 (где IMT означает International Mobile Telecommunications — Международный стандарт мобильной связи). Сеть IMT-2000 должна была предоставлять своим пользователям следующие базовые сервисы:
1. Передача голосовых данных в высоком качестве.
2. Обмен сообщениями (вместо электронной почты, факсов, SMS, чатов и т.д.).
3. Мультимедийные сервисы (проигрывание музыки, просмотр видео, фильмов, телепрограмм и т.д.).
4. Доступ в интернет (веб-серфинг, включая страницы с аудио и видео).
В числе дополнительных сервисов: видеоконференции, телеприсутствие, многопользовательские игры и мобильная коммерция (оплата товаров в магазине взмахом мобильного телефона на кассовом терминале). Более того, все эти сервисы должны были предоставляться повсеместно (с автоматическим соединением через спутник в отсутствие приземной сети), мгновенно (с постоянным подключением) и с гарантированным QoS. Другими словами, журавль в небе.
МСЭ рассчитывал на единую технологию IMT-2000 в масштабах всего земного шара, чтобы производители могли разработать для нее универсальное устройство, продаваемое и используемое повсюду. Единая технология сильно упростила бы положение дел для сетевых операторов и привлекла бы больше пользователей.
Но оказалось, что эти планы были излишне оптимистическими. Число 2000 в названии проекта означало три вещи: (1) год предполагаемого внедрения; (2) частоту в мегагерцах, на которой технология должна была работать; (3) предполагаемую пропускную способность сервиса (в килобитах в секунду). К 2000 году ничего из этого не было реализовано. МСЭ рекомендовал правительствам всех государств зарезервировать диапазон частот 2 ГГц для беспроблемного перемещения устройств из одной страны в другую. Выполнил это требование только Китай. Наконец, стало понятно, что скорость 2 Мбит/с выглядит не слишком реалистичной для очень мобильных пользователей (из-за невозможности достаточно быстрой передачи обслуживания). Эта скорость больше подходила для стационарных пользователей в помещении. Для пешеходов достижимой была скорость 384 Кбит/с, для подключений в автомобилях — 144 Кбит/с.
Несмотря на первоначальные неудачи, с тех пор удалось добиться многого. Было предложено несколько вариантов IMT-2000, из которых после отбора осталось два основных. Первый — WCDMA (Wideband CDMA — широкополосный CDMA) от компании Ericsson. Его продвигал Европейский союз, где он называется UMTS. Второй — CDMA2000, предложенный компанией Qualcomm в США.
У этих систем больше сходств, чем различий: обе основаны на широкополосном варианте CDMA. WCDMA использует каналы в 5 МГц, а CDMA2000 — в 1,25 МГц. Если посадить инженеров Ericsson и Qualcomm в одну комнату и попросить разработать единую архитектуру, вероятно, они управятся за час. Но основная проблема, не на инженерном уровне, а на политическом (как всегда). Европе нужна была система, совместимая с GSM, а США — с распространенной там системой IS-95. Каждая из сторон, естественно, поддерживала местную компанию (штаб-квартира Ericsson располагается в Швеции, Qualcomm — в Калифорнии). В результате Ericsson и Qualcomm постоянно сражались в судах по поводу патентов на технологии CDMA. Ситуация осложнилась тем, что UMTS стала единым стандартом 3G со множеством несовместимых между собой вариантов, включая CDMA2000. Эта попытка примирить враждующие лагеря и закрыть глаза на технические противоречия лишь отвлекла внимание от истинной цели всех усилий.
Преимущество WCDMA по сравнению с описанной выше упрощенной схемой CDMA — возможность отправлять данные с различной скоростью независимо друг от друга. В CDMA это достигается естественным образом, путем фиксации скоростей передачи элементарных сигналов и назначения для разных пользователей последовательностей элементарных сигналов разной длины. Например, в WCDMA количество элементов сигнала в секунду равно 3,84, а размер кодовых последовательностей варьируется от 4 до 256 элементов сигнала. Если код состоит из 256 элементов сигнала, после коррекции ошибок остается около 12 Кбит/с полосы пропускания, и этой пропускной способности вполне достаточно для голосового звонка. Если же код включает 4 элемена сигнала, скорость передачи пользовательских данных достигает 1 Мбит/с. Коды промежуточной длины дают промежуточные скорости. Для достижения скорости в несколько мегабит в секунду мобильное устройство должно использовать более одного канала в 5 МГц одновременно.
Мы сосредоточимся на применении CDMA в сотовых сетях, поскольку это отличительная черта обеих систем. CDMA не использует ни FDM, ни TDM в чистом виде, скорее их смесь, при которой все пользователи осуществляют передачу одновременно в одном диапазоне. Когда концепция CDMA впервые была озвучена, она вызвала в коммерческих кругах примерно ту же реакцию, что у королевы Изабеллы — предложение Колумба достичь Индии, направившись в противоположную сторону. Впрочем, благодаря настойчивости компании Qualcomm CDMA достиг успеха в качестве системы 2G (IS-95) и был проработан настолько, что стал техническим фундаментом 3G.
Для мобильной телефонии недостаточно базового метода CDMA, представленного в разделе 2.4. Мы описали так называемый синхронный CDMA (synchronous CDMA), при котором последовательности элементов сигналов строго ортогональны. Такая архитектура работает, только если все пользователи синхронизированы по начальному времени передачи последовательностей элементов сигналов, как в случае отправки данных от базовой станции мобильному устройству. Базовая станция может передавать последовательности сигналов, начинающиеся строго в одно время, так что сигналы окажутся ортогональными, а значит, их легко будет разделить. Но синхронизировать передачи независимых мобильных телефонов намного сложнее. Если не приложить особые усилия, данные от них поступят на базовую станцию в разное время без каких-либо гарантий ортогональности. Чтобы телефоны отправляли данные на базовую станцию без синхронизации, нужны кодовые последовательности, ортогональные друг другу при всех возможных смещениях, а не только когда они выровнены по времени начала передачи.
И хотя для данного общего случая найти строго ортогональные последовательности невозможно, длинные псевдослучайные последовательности вполне могут подойти. С высокой степенью вероятности им свойственна слабая перекрестная корреляция (cross-correlation) друг с другом при любых смещениях. Это значит, что если перемножить последовательности и найти скалярное произведение, результат будет мал (если бы они были ортогональны, он вообще был бы равен нулю). Интуитивно ясно, что случайные последовательности всегда должны различаться между собой. Их произведение дает случайный сигнал с низким значением. Благодаря этому приемник может отфильтровать нежелательные передачи из полученного сигнала. Автокорреляция (auto-correlation) псевдослучайных последовательностей, вероятнее всего, также будет низкой (за исключением таковой при нулевом смещении). Это значит, что результат умножения последовательности на сдвинутую по времени собственную копию и суммирования будет мал (за исключением случая, когда сдвиг равен нулю). Случайная последовательность с задержкой выглядит как совершенно другая последовательность, так что мы возвращаемся к сказанному относительно перекрестной корреляции. В итоге приемник синхронизируется с началом нужной передачи в полученном сигнале.
Благодаря использованию псевдослучайных последовательностей базовая станция может принимать сообщения CDMA от несинхронизированных мобильных устройств. При обсуждении CDMA мы подразумевали, что уровень мощности сигналов от всех мобильных телефонов на стороне приемника одинаков. Если это не так, низкая перекрестная корреляция с мощным сигналом может подавить высокую автокорреляцию со слабым сигналом. Поэтому необходимо контролировать мощность передатчиков мобильных телефонов для минимизации помех между конкурирующими сигналами. Именно эти взаимные помехи и ограничивают пропускную способность систем CDMA.
Уровень принимаемого базовой станцией сигнала зависит от того, как далеко находится передатчик и какова мощность его передачи. На разном расстоянии от базовой станции может находиться большое количество мобильных устройств. Для выравнивания мощности получаемых сигналов используется удобный эвристический алгоритм: каждое мобильное устройство отправляет на базовую станцию сигнал с мощностью, обратной мощности сигнала, полученного им от базовой станции. Другими словами, устройство, принимающее слабый сигнал от станции, использует большую мощность, чем устройство, получающее сильный сигнал. Для повышения точности базовая станция дает обратную связь с указанием повысить, снизить или не менять мощность передачи. Это происходит достаточно часто (1500 раз в секунду), поскольку должное управление мощностью сигнала важно для минимизации взаимных помех.
Теперь опишем преимущества CDMA. Во-первых, CDMA может увеличивать пропускную способность за счет использования маленьких промежутков времени, в течение которых часть передатчиков ничего не отправляет. Как при вежливом разговоре: один из собеседников говорит, а второй молчит. В среднем линия занята только 40 % времени. Однако паузы могут быть небольшими и их трудно предсказать. При работе с системами TDM или FDM невозможно переназначать временные слоты или частотные каналы настолько быстро, чтобы воспользоваться этими короткими промежутками тишины. А вот в CDMA для снижения взаимных помех пользователю достаточно ничего не передавать. При этом вероятно, что какая-то часть пользователей не будет постоянно осуществлять передачу в загруженной соте. Таким образом, CDMA использует предполагаемые промежутки тишины для увеличения возможного числа одновременных звонков.
Во-вторых, в случае CDMA все соты используют один набор частот. Чтобы разделять передачи различных пользователей, в CDMA не требуется FDM (в отличие от GSM и AMPS). Это устраняет сложные задачи частотного планирования, повышает пропускную способность, а также упрощает использование базовой станцией нескольких направленных антенн — так называемых секторных антенн (sectored antenna) — вместо всенаправленных. Секторные антенны сосредоточивают сигнал в нужном направлении и снижают его уровень (а значит, и помехи) во всех остальных направлениях. Это, в свою очередь, повышает пропускную способность. Наиболее распространенной является трехсекторная архитектура. Базовая станция должна отслеживать перемещение телефонов из сектора в сектор. В случае CDMA это несложно, поскольку все частоты используются во всех секторах.
В-третьих, CDMA упрощает так называемую мягкую передачу обслуживания (soft handoff), при которой телефон переходит в распоряжение новой базовой станции до того, как отключается от старой. Благодаря этому соединение не прерывается. Мягкая передача обслуживания показана на илл. 2.43. При использовании CDMA она не представляет сложностей, поскольку все частоты используются во всех секторах. Альтернативный вариант — жесткая передача обслуживания (hard handoff), при которой старая базовая станция прекращает поддержку звонка до его перехода на новую. А если новая станция не способна принять управление (например, из-за отсутствия доступной частоты), то звонок внезапно обрывается. Разумеется, пользователи недовольны, но в данной архитектуре это неизбежно. Жесткая передача обслуживания традиционно используется при архитектуре FDM, чтобы избежать затрат на передачу/прием мобильным устройством на двух частотах одновременно.
Илл. 2.43. Мягкая передача обслуживания: (а) до; (б) во время; (в) после
2.6.6. Технология 4G: коммутация пакетов
В 2008 году МСЭ описал набор стандартов для систем 4G. Поколение 4G (или IMT Advanced) полностью основано на технологиях сетей с коммутацией пакетов, как и его предшественники, например технология LTE (Long Term Evolution — стандарт «долгосрочного развития»). Еще одного предшественника и родственную 4G технологию, 3GPP LTE, иногда называют «4G LTE». Это название может сбить с толку, поскольку «4G» фактически относится к поколению мобильной связи, а каждое поколение может насчитывать несколько стандартов. Например, МСЭ считает стандартом 4G и IMT Advanced, и LTE. К 4G относятся и другие технологии, такие как уже устаревшая WiMAX (IEEE 802.16). Формально LTE и «настоящее» 4G — различные версии стандарта 3GPP (версии 8 и 10 соответственно).
Главное преимущество 4G по сравнению с предыдущими системами 3G — использование коммутации пакетов вместо коммутации каналов. Это возможно благодаря нововведению — развитому ядру пакетной коммутации (Evolved Packet Core, EPC). Фактически EPC является упрощенной IP-сетью, отделяющей голосовой трафик от сети данных. Она производит передачу как голоса, так и данных в IP-пакетах. Следовательно, EPC является сетью передачи голоса по IP (VoIP, Voice over IP); ее ресурсы выделяются при помощи описанных выше вариантов мультиплексирования со статистическим разделением. EPC должна распределять ресурсы между множеством пользователей так, чтобы качество передачи голоса оставалось высоким. Требования к быстродействию LTE включают, помимо прочего, пиковую пропускную способность в 100 Мбит/с входящего и 50 Мбит/с исходящего направления. Чтобы достичь таких высоких скоростей, сети 4G используют набор дополнительных частот: 700, 850, 800 МГц и др. Еще один важный момент в стандарте 4G — «спектральная эффективность», то есть количество битов, которое можно передать за секунду на заданной частоте. Для технологий 4G пиковая спектральная эффективность должна составлять 15 бит/с/Гц для нисходящего соединения и 6,75 бит/с/Гц для восходящего.
Архитектура LTE включает следующие составляющие развитого ядра пакетной коммутации, как показано в главе 1 на илл. 1.19:
1. Обслуживающий шлюз (Serving Gateway, S-GW). SGW перенаправляет пакеты данных, чтобы в случае переключения с одного узла eNodeB на другой пакеты продолжали передаваться на пользовательское устройство.
2. Узел управления мобильностью (Mobility Management Entity, MME). MME отслеживает пользовательское устройство, отправляет на него пейджинговые уведомления и выбирает для него SGW при первом его подключении к сети, а также во время передач обслуживания. Кроме того, он отвечает за аутентификацию устройства.
3. Сетевой шлюз пакетного обмена данными (Packet Data Network Gateway, P-GW). P-GW служит интерфейсом между пользовательским устройством и сетью пакетного обмена данными (то есть сетью с коммутацией пакетов). Он выполняет функции выделения адресов в сети (например, с помощью DHCP), ограничения скорости, фильтрации, углубленного анализа пакетов и правомерного перехвата сообщений. Пользовательские устройства формируют службу, ориентированную на установление соединения со шлюзом пакетного обмена данными. Для этого используется так называемое виртуальное EPS-соединение (EPS bearer), которое устанавливается при подключении устройства к сети.
4. Сервер абонентов (Home Subscriber Server, HSS). MME запрашивает у HSS информацию о том, соответствует ли пользовательское устройство действующему абоненту.
Сеть 4G также включает развитую сеть радиодоступа (Radio Access Network, RAN). В RAN для LTE появились специальные узлы доступа, eNodeB, осуществляющие операции на физическом уровне (которому и посвящена эта глава). Также в ней существуют подуровни управления доступа к среде (Medium Access Control, MAC), управления каналами радиосвязи (Radio Link Control, RLC) и протокола управления пакетными данными (Packet Data Control Protocol, PDCP), специфичные для архитектуры сотовой сети. Узлы eNodeB осуществляют управление ресурсами и допуском, планирование и другие функции контроля.
В сетях 4G голосовой трафик может передаваться через EPC с помощью передачи голоса по LTE (Voice over LTE, VoLTE). Это позволяет системам связи отправлять голосовой трафик по сетям с коммутацией пакетов и устраняет любую зависимость от устаревших сетей передачи голоса с коммутацией каналов.
2.6.7. Технология 5G
Около 2014 года системы LTE достигли своего пика, и люди начали задумываться: что дальше? Разумеется, за четвертым поколением следует пятое. Вопрос о том, каким именно будет 5G, подробно обсуждался в работе Эндрюса и др. (Andrews et al., 2014). Через несколько лет под термином «5G» подразумевалось множество разных вещей — в зависимости от аудитории и того, кто говорит. По сути, очередное поколение технологий мобильных телефонных сетей свелось к двум основным факторам: более высокая скорость передачи данных и меньшая задержка, чем у сетей 4G. Конечно, это стало возможным благодаря конкретным технологиям, которые мы обсудим ниже.
Быстродействие сотовых сетей обычно оценивается по совокупной скорости передачи данных (aggregate data rate), она же пропускная способность на единицу площади (area capacity). Это общий объем данных в битах, который данная сеть способна передавать на единицу площади. Одна из целей, поставленных перед 5G, — увеличение пропускной способности на единицу площади на три порядка (то есть в 1000 раз больше, чем у 4G) с помощью сочетания следующих технологий:
1. Сверхуплотнение и разгрузка. Один из простейших способов повышения пропускной способности сети — увеличить количество сот на единицу площади. В то время как в сетях 1G соты были размером в сотни квадратных километров, сети 5G ориентированы на меньшие соты, включая пикосоты (диаметром менее 100 м) и даже фемтосоты (радиусом действия как у Wi-Fi, в несколько десятков метров). Одно из важнейших преимуществ уменьшения размера сот — возможность повторного использования спектра частот в заданной географической области. Это снижает число абонентов, конкурирующих за ресурсы конкретной базовой станции. Конечно, уменьшение размеров сот имеет и недостатки, в том числе усложнение управления мобильностью пользователей и передачи обслуживания.
2. Повышение полосы пропускания за счет использования волн миллиметрового диапазона. Основная часть спектра в предыдущих технологиях относилась к диапазону от нескольких сотен мегагерц до нескольких гигагерц (что соответствует волнам длиной от нескольких сантиметров до метра). Этот спектр все больше переполняется, особенно в местах скопления людей в час пик. В миллиметровом же диапазоне (20–300 ГГц, с длинами волн менее 10 мм) существуют значительные полосы неиспользуемого спектра. До недавних пор этот спектр считался неподходящим для беспроводной связи, поскольку более короткие волны хуже распространяются. Один из способов решения этой проблемы — использование больших массивов направленных антенн. Это существенный сдвиг в архитектуре по сравнению с предыдущими поколениями сотовых сетей: меняется все, начиная от свойств помех до процесса привязки пользователей к базовым станциям.
3. Повышение спектральной эффективности посредством усовершенствований технологии MIMO («multiple input, multiple output» — «несколько входов, несколько выходов»). MIMO увеличивает пропускную способность радиоканала за счет использования нескольких передающих и принимающих антенн. Это позволяет использовать многолучевое распространение, при котором радиосигнал может достичь приемника двумя или более путями. MIMO впервые стала применяться для Wi-Fi и сотовых технологий 3G примерно в 2006 году. Существует довольно много вариантов MIMO; в первых сотовых стандартах применялась MU-MIMO (Multi-User MIMO). Обычно эти технологии используют разнесенность пользователей в пространстве для нейтрализации взаимных помех, возможных на любом конце беспроводной передачи. Massive MIMO — одна из разновидностей MU-MIMO, при которой число антенн базовых станций увеличивается настолько, что их становится намного больше, чем конечных точек. Можно даже использовать трехмерный массив антенн — так называемую технологию FD-MIMO (Full-Dimension MIMO).
Еще одна возможность, которую дает 5G, — сегментация сети (network slicing). Операторы сотовой связи могут создавать многочисленные виртуальные сети поверх одной и той же физической инфраструктуры, выделяя части сети под конкретных потребителей. Части сети (и их ресурсы) распределяются между поставщиками приложений с разными запросами. Например, для приложения, требующего высокой пропускной способности, и для приложения с низкими требованиями можно выделить разные сегменты сети. Растет также популярность таких вспомогательных технологий сегментации сетей, как программно-определяемые сети (Software-Defined Networking, SDN) и виртуализация сетевых функций (Network Functions Virtualization, NFV). Мы обсудим эти технологии в следующих главах.