2.10. Нормативное регулирование физического уровня

Различные аспекты физического уровня требуют нормативных и управленческих решений, принципиально влияющих на создание и использование технологий. Мы вкратце обсудим текущую деятельность по разработке стратегий как в наземных (то есть телефонных и кабельных), так и в беспроводных сетях.


2.10.1. Распределение частот

Основная проблема, связанная со спектром электромагнитных волн, заключается в эффективном и справедливом распределении частот (spectrum allocation). Если разрешить множеству пользователей в пределах региона передавать данные в одном диапазоне, это, скорее всего, приведет к возникновению взаимных помех. Чтобы предотвратить полный хаос, существуют общенациональные и международные соглашения по использованию частот. Всем нужна высокая скорость передачи данных, а значит, и более широкий диапазон частот. Правительства выделяют части спектра для AM- и FM-радио, телевидения и мобильных телефонов, а также для телефонных компаний, полиции, судоходства, навигации, вооруженных сил, государственных служб и многих других конкурирующих пользователей. Одно из агентств МСЭ-R (WRC) пытается координировать выделение частот таким образом, чтобы можно было производить устройства, работающие во многих странах. Впрочем, рекомендации МСЭ-R необязательны для государств и иногда отвергаются Федеральной комиссией по связи, распределяющей частоты в США (обычно потому, что какая-нибудь могущественная политическая структура не хочет отдавать требуемую часть спектра).

Даже когда часть спектра выделяется под конкретные цели, например, для мобильной связи, остается вопрос распределения частот между компаниями. В прошлом широко применялись три алгоритма. Наиболее старый из них, «конкурс красоты» (beauty contest), требует от каждого оператора связи пояснить, почему его предложение лучше всего отвечает общественным интересам. Затем государственные служащие решают, какое из этих предложений нравится им больше всего. Распределение чиновниками объектов стоимостью в миллиарды долларов приводит к взяточничеству, коррупции и непотизму. Более того, даже кристально честному госслужащему, который сочтет, что иностранная компания лучше справится с задачей, чем любая из местных, придется давать много неприятных пояснений.

Это наблюдение привело к появлению второго алгоритма: лотереи (lottery) среди заинтересованных компаний. Но проблема с лотереями состоит в том, что участвовать в них могут даже компании, которые не собираются использовать выделенный им диапазон. Если конкурс выиграет, скажем, ресторан или обувной магазин, то он может просто перепродать спектр оператору связи с большой прибылью и безо всякого риска.

Ситуация, в которой случайные, но проворные компании получали колоссальные прибыли, никого не устраивала. В результате был придуман третий подход: распределение спектра путем торгов (auction), в которых выигрывает тот, кто предложит большую цену. Британское правительство, распродавая частоты для мобильных 3G-систем, ожидало выручить примерно $4 млрд, а получило около $40 млрд — все из-за ажиотажа среди операторов связи, до смерти боявшихся упустить лакомый кусочек. Это пробудило алчность в представителях других правительств, и они запустили свои собственные аукционы. Схема сработала, но некоторые операторы связи залезли в долги настолько, что оказались на грани банкротства. Даже в лучшем случае им понадобятся многие годы, чтобы окупить расходы на лицензию.

Существует и совершенно иной подход к выделению частот: вообще их не распределять, а вместо этого всем разрешить передачу на любой частоте, при этом регулируя мощность станций малой дальности, чтобы они не мешали друг другу. Именно поэтому правительства некоторых стран зарезервировали определенные полосы частот — так называемые ISM («Industrial, Scientific, Medical» — «промышленные, научные, медицинские») — для свободного использования. Дистанционное управление гаражными дверями, радиотелефоны, радиоуправляемые игрушки, беспроводные компьютерные мыши и многие другие беспроводные домашние устройства используют полосы ISM. Для минимизации взаимных помех между этими не согласованными между собой устройствами FCC требует ограничения мощности их передатчиков (например, до 1 Вт) и применения методик распределения сигналов по диапазону частот. Кроме того, эти устройства не должны мешать работе радиолокационных станций.

В разных странах расположение полос ISM в спектре отличается. Например, полосы частот, на которых сетевые устройства могут работать без лицензии в США, показаны на илл. 2.53. Полоса частот 900 МГц использовалась в первых версиях 802.11, но уже переполнена. Полоса частот 2,4 ГГц в большинстве стран доступна и широко используется для 802.11b/g и Bluetooth, хотя и подвержена помехам от микроволновых печей и радиолокационных станций. Часть спектра на частоте 5 ГГц включает диапазон U-NII (Unlicensed National Information Infrastructure — «нелицензируемая национальная информационная инфраструктура»). Полосы 5 ГГц относительно малоразвиты, но благодаря наибольшей полосе пропускания и использованию их в таких спецификациях Wi-Fi, как 802.11ac, обрели немалую популярность и тоже перегружены.

Илл. 2.53. Полосы ISM и U-NII, используемые в США беспроводными устройствами

Не требующие лицензии полосы частот в последние десятилетия имели оглушительный успех. Возможность бесплатного использования части спектра привела к внедрению массы новшеств в беспроводных LAN и PAN. Об этом свидетельствует повсеместное внедрение таких технологий, как 802.11 и Bluetooth. Сегодня некоторые провайдеры даже предлагают технологию LTE-U, которая состоит в развертывании сотовой сети LTE в нелицензируемом диапазоне. Эта технология позволит мобильным устройствам работать на свободных частотах наряду со спектром, специально выделенным для сотовых сетей. Благодаря LTE-U проводные операторы, размещающие точки доступа Wi-Fi в миллионах домов, смогут превратить сеть точек доступа в сеть сотовых базовых станций. Конечно, при использовании сотовыми телефонами нелицензируемой части спектра могут возникнуть сложности. Например, устройства на этих частотах не должны мешать друг другу и по возможности уже существующим устройствам (incumbent devices) крупных операторов. Также возможны проблемы, связанные с надежностью и производительностью, ведь при использовании LTE-U устройствам приходится идти на компромиссы с другими устройствами в нелицензируемом спектре, от устройств Wi-Fi до радионянь.

Различные изменения в сфере регулирования за последние 10 лет открывают дорогу новым инновациям в сфере беспроводных технологий. Одно из таких изменений в США — тенденция к выделению дополнительных нелицензируемых частей спектра. В 2009 году FCC разрешила свободное использование «окон» (white spaces) в районе 700 МГц — выделенных, но не используемых на местном уровне полос частот. К освобождению этих «окон» привел полный переход с аналогового на цифровое телевидение в США в 2010 году. Сложность была в том, что нелицензируемые устройства должны были «видеть» все расположенные поблизости лицензируемые передатчики (включая беспроводные микрофоны), обладающие приоритетом на использование данных частот. Помимо этого, в 2001 году FCC открыла для работы без лицензии диапазон 57–64 ГГц. Это колоссальный кусок спектра, больше, чем все остальные ISM-полосы, вместе взятые. Он вполне способен поддерживать высокоскоростные сети, пригодные для беспроводного потокового телевещания в высоком качестве в пределах гостиной. В районе 60 ГГц радиоволны поглощаются кислородом. Это значит, что сигналы не способны распространяться на большое расстояние, но для сетей малой дальности этот диапазон вполне подходит. Высокие частоты (частота 60 ГГц относится к КВЧ — «миллиметровой» полосе частот, чуть ниже инфракрасного излучения) заставили изготовителей оборудования немало потрудиться, но сегодня соответствующие устройства уже есть на рынке.

В США были перепрофилированы и проданы на торгах и другие полосы спектра, включая 2,5 ГГц и 2,9 ГГц, 3,7–4,2 ГГц (С-диапазон, ранее используемый для спутниковой связи), а также 3,5, 6, 24, 28, 37 и 49 ГГц. FCC рассматривает возможность использования некоторых очень высоких частот для ближней связи, например диапазон 95 ГГц. В конце 2018 года FCC запустила первые торги по 5G и запланировала их продолжение на ближайшие годы. Это откроет для мобильной широкополосной связи значительную часть спектра и позволит получить более высокую пропускную способность, необходимую для приложений потоковой видеопередачи и IoT. На частотах 24 и 28 ГГц выставляется на продажу примерно по 3000 лицензий. При этом FCC предоставляет скидки малому бизнесу и операторам, работающим в сельской местности. Также запланированы торги на частоты 37, 39 и 49 ГГц. В других странах некоторые из этих диапазонов не подлежат лицензированию. Например, автомобильная промышленность в Германии успешно пролоббировала выделение полосы 3,5 ГГц для частных компаний; остальные европейские страны, вероятно, вскоре последуют ее примеру.


2.10.2. Сотовые сети

Любопытно, что политические и незначительные маркетинговые решения оказывают колоссальное влияние на развертывание сотовых сетей в США и Европе. Первую мобильную систему, разработанную в США компанией AT&T, FCC позднее сделало обязательной для всей страны. В результате на всей территории США существовала единая аналоговая система, и приобретенный в Калифорнии телефон успешно работал в Нью-Йорке. И напротив, когда мобильные телефоны появились в Европе, каждая страна разработала свою собственную систему, что привело к полному провалу.

Европа учла допущенную ошибку, и с появлением цифровых систем государственные управления почтово-телеграфной и телефонной связи согласовали и стандартизировали единую систему (GSM), так что любой европейский телефон работает на всей территории Европы. К тому времени в США пришли к выводу, что правительство не должно участвовать в стандартизации, и цифровые системы были отданы на откуп рынку. В результате этого решения изготовители оборудования стали производить разные виды мобильных телефонов, и в США появились две основные — и совершенно несовместимые — мобильные телефонные системы, а также несколько небольших систем.

Несмотря на изначальное преимущество США, процент владения и использования мобильных телефонов в Европе сейчас намного выше. В частности, благодаря единой системе, работающей по всей Европе вне зависимости от оператора, но есть и другие причины.

Вторая область, в которой США и Европа различаются, — малозаметный вопрос емкости пула телефонных номеров. В США номера мобильных и стационарных телефонов не различаются. Следовательно, звонящий никак не может узнать, (212) 234-5678 — это обычный телефон (звонок дешевый или даже бесплатный) или мобильный (звонок стоит достаточно дорого). Чтобы абоненты не боялись звонить, телефонные компании решили, что владельцы мобильных телефонов должны платить за входящие вызовы. В результате многие не хотели покупать мобильные телефоны, опасаясь получить внушительный счет просто за прием звонков. В Европе у мобильных телефонов отдельный код (подобно номерам 800- и 900-), благодаря чему их можно сразу определить. Поэтому для мобильной связи в Европе действует стандартное правило — «платит звонящий» (за исключением международных звонков, где оплата делится между звонящим и вызываемым абонентами).

Третий нюанс, серьезно повлиявший на ситуацию, — широкое распространение в Европе телефонов с предоплаченными разговорами (до 75 % в некоторых регионах). Их можно купить во многих магазинах и даже через интернет. На баланс карты заранее внесена сумма, скажем, в 20 или 50 евро, и его можно пополнять (с помощью секретного PIN-кода) по мере исчерпания. В результате в Европе практически у любого подростка и даже у маленьких детей есть мобильный телефон (как правило, предоплаченный), так что родители знают, где находится их ребенок, но при этом не боятся, что он наговорит на большую сумму. Редко используемые телефоны обходятся практически бесплатно, поскольку отсутствует ежемесячная абонентская плата и платеж за входящие звонки.

Распродажа на торгах заветных частот для 5G в сочетании с большим количеством технологических новшеств, обсуждавшихся в этой главе, способна полностью перевернуть рынок сотовых сетей в ближайшие несколько лет. Уже сейчас можно наблюдать рост числа виртуальных операторов мобильных сетей (Mobile Virtual Network Operators, MVNOs). Это беспроводные операторы связи, у которых нет своей сетевой инфраструктуры для предоставления услуг пользователям. Постепенно соты уменьшаются, частоты повышаются и наращивается серийный выпуск оборудования для маленьких сот. Пользуясь этим, MVNO платит другим операторам за подключение к их системе. MVNO могут задействовать либо свои собственные компоненты архитектуры LTE, либо инфраструктуру базового оператора связи. Виртуальные операторы, использующие свою собственную опорную сеть, называются полноценными MVNO. Qualcomm, Intel и другие компании разрабатывают типовую архитектуру аппаратного обеспечения маленьких сот. Это может привести к полному разделению сетевой периферии, особенно в сочетании с использованием нелицензируемого спектра. Также наблюдается тенденция к переходу на инфраструктуру «прозрачных» eNodeB: они подключаются к центральной станции, которая предоставляет виртуальные сервисы EPC. Подобная архитектура реализована в проекте M-CORD организации Open Networking Foundation.


2.10.3. Телефонная сеть

До 1984 года как локальную, так и междугороднюю связь в большей части США десятилетиями обеспечивала компания Bell System. В 1970-х годах правительство США решило, что такая монополия незаконна, и попыталось в судебном порядке раздробить компанию. Попытка удалась, и 1 января 1984 года компания AT&T разделилась на AT&T Long Lines, 23 местные компании Bell (Bell Operating Companies, BOC) и еще несколько фирм. Чтобы обеспечить рентабельность, 23 BOC были сгруппированы в 7 региональных BOC (RBOC). Вся структура связи в США поменялась за одну ночь по решению суда (а вовсе не из-за принятого Конгрессом США закона).

Подробные условия этой дивестиции26 описаны в Поправках к окончательному судебному решению (Modification of Final Judgment, MFJ); название — образцовый оксюморон. Это событие привело к усилению конкурентной борьбы, улучшению обслуживания потребителей и снижению расценок на междугородние и международные звонки для частных и бизнес-пользователей. Впрочем, по мере отказа от перекрестного субсидирования за счет междугородних звонков тарифы на местную связь росли, и ей пришлось перейти на самоокупаемость. Конкуренция по аналогичному сценарию внедряется сейчас и во многих других странах.

Совершенно новая конкурентная среда привела к появлению важнейшего элемента в архитектуре телефонной сети. Для четкого распределения обязанностей территория США была разделена на 164 зоны местного доступа и передачи (Local Access and Transport Area, LATA). Размер зоны LATA приблизительно соответствует одному коду телефонной зоны. В каждой LATA был один оператор местной связи (Local Exchange Carrier, LEC), обладающий монополией на традиционные телефонные сервисы в данной зоне. Важнейшими операторами являлись BOC, хотя в некоторых зонах их функции выполняла одна или несколько независимых телефонных компаний (всего их насчитывается 1500).

Новым элементом архитектуры сети стала компания нового типа, обрабатывающая весь трафик между LATA, — оператор линий межстанционного обмена (IntereXchange Carrier, IXC). Первоначально единственным крупным IXC была компания AT&T Long Lines, но сегодня в этой сфере конкурирует несколько серьезных компаний, например Verizon и Sprint. При разделении AT&T особое внимание уделялось равенству всех IXC по качеству линий связи, тарифам и количеству цифр телефонных кодов. На илл. 2.54 показано, как это было реализовано. Мы видим три примера LATA, каждая — с несколькими оконечными телефонными станциями. В LATA 2 и 3 также есть небольшая иерархия узловых телефонных станций (междугородних телефонных станций внутри LATA).

Илл. 2.54. Взаимосвязи LATA, LEC и IXC. Все круги представляют собой коммутаторы LEC, а шестиугольники относятся к IXC с соответствующим номером

Любой IXC, желающий обрабатывать инициированные в LATA звонки, может создать в ней коммутатор — точку присутствия (Point of Presence, POP). Местный оператор должен соединить все IXC со всеми оконечными станциями — напрямую, как в LATA 1 и 3, или косвенно, как в LATA 2. Технические и финансовые условия соединения должны быть одинаковы для всех IXC. Соблюдение этого требования позволяет абоненту в LATA 1 свободно выбирать, через какой IXC звонить абонентам в LATA 3.

Согласно поправкам к окончательному судебному решению, IXC было запрещено предлагать сервис местных звонков, а LEC — предлагать услуги связи между LATA (хотя и тем и другим разрешалось заниматься любым другим бизнесом, например ресторанным). В 1984 году это предписание выглядело довольно логичным. К сожалению, по мере развития технологий законы устаревают. Поправки не учитывали ни кабельное телевидение, ни мобильные телефоны. А когда к услугам кабельного телевидения добавился доступ в интернет, а популярность мобильных телефонов резко выросла, LEC и IXC начали скупать кабельных и мобильных операторов или сливаться с ними.

К 1995 году Конгресс США пришел к выводу, что сохранять разделение между разнообразными видами компаний нет смысла. Был подготовлен законопроект, сохранявший конкуренцию, но позволивший операторам кабельного телевидения, местной, дальней и мобильной телефонной связи заниматься ранее недоступным бизнесом. Идея была в том, что любая компания могла предлагать абонентам единый комплексный пакет услуг, включающий кабельное телевидение, телефонию и информационные сервисы, а конкуренция базировалась на качестве и стоимости услуг. Этот законопроект был утвержден в феврале 1996 года и перевернул всю практику регулирования телекоммуникаций. В результатe некоторые BOC превратились в IXC, а другие компании, например операторы кабельного телевидения, стали предлагать услуги местной телефонии, конкурируя с LEC.

Интересная особенность закона 1996 года — то, что он требует от LEC переносимости местных номеров (local number portability). Это значит, что пользователь может сохранить телефонный номер при смене компании местной связи. В 2003 году появилась переносимость мобильных номеров (а также переносимость между стационарными и мобильными номерами). Такая возможность устранила важную для многих людей проблему, и они стали чаще менять LEC. В результате конкуренция на рынке телекоммуникаций в США существенно выросла; другие страны последовали их примеру. Некоторые государства нередко наблюдают за подобными экспериментами в США: если все благополучно, они поступают так же, если нет — пробуют что-то иное.

В последние годы в сфере регулирования работы телефонных компаний было относительно спокойно. Основная деятельность развернулась вокруг интернет-провайдеров. Недавно было внесено два регуляторных постановления относительно пробелов в безопасности протокола передачи сигналов SS7 (Signaling System 7). С его помощью сотовые сети обмениваются друг с другом информацией. Этот протокол оказался плохо защищенным, и Конгресс США потребовал от FCC принять соответствующие меры. Еще одно любопытное постановление, связанное с Актом о телекоммуникациях 1996 года, касается классификации текстовых сообщений. В отличие от голосового трафика в телефонных сетях, который относится к услугам связи (как звонки по телефону), сообщения SMS («текстовые сообщения») классифицируются как услуга обмена информацией (подобно мгновенным сообщениям и прочим интернет-сервисам). В результате SMS регулируются совершенно другим набором законодательных актов, а они определяют все — от тарификации до правил защиты персональной информации.



26 Изъятие капиталовложений, продажа части активов или всей компании. — Примеч. ред.

Загрузка...