2.5. Коммутируемая телефонная сеть общего пользования

Для соединения двух расположенных рядом компьютеров проще всего использовать кабель. Именно так организованы локальные сети (Local Area Networks, LAN). Однако при значительных расстояниях, большом количестве подключаемых устройств или если кабель должен пересечь шоссе либо другой общественный участок затраты на прокладку собственных сетей совершенно неподъемны. Более того, в абсолютном большинстве стран мира закон запрещает прокладывать частные линии передачи по территории государственной собственности (или под ней). Следовательно, разработчикам сетей приходится использовать уже существующее оборудование связи, например телефонные или сотовые сети, а также сети кабельного телевидения.

Долгое время основным фактором, ограничивающим сети обмена данными, был последний участок («последняя миля») перед потребителем. В его основе может лежать любая вышеупомянутая физическая технология, в противовес архитектуре так называемой опорной сети («backbone») в остальной сети доступа. За последнее десятилетие ситуация изменилась коренным образом, и скорость домашнего интернета 1 Гбит/с перестала быть чем-то необычным. Значительный вклад в это изменение внесли оптоволоконные кабели, все чаще развертываемые на границах сети. Но, вероятно, в некоторых странах еще более важную роль сыграли современные инженерные методы, применяемые в уже существующих телефонных и кабельных сетях для получения максимально широкой полосы пропускания в существующей инфраструктуре. Оказалось, что это намного дешевле, чем прокладка новых (оптоволоконных) кабелей к домам пользователей. Мы изучим различные архитектуры и характеристики всех этих физических инфраструктур связи.

Большинство существующих систем связи, особенно коммутируемых телефонных сетей общего пользования (Public Switched Telephone Network, PSTN), было спроектировано много лет назад для совершенно иной цели: передачи человеческого голоса в более-менее узнаваемом виде. По кабелю, соединяющему два компьютера, можно передавать данные со скоростью в 10 Гбит/с и более; таким образом, перед телефонной сетью ставится задача передачи битов на высоких скоростях. Первые технологии цифровых абонентских линий (DSL) позволяли передавать данные со скоростью не более нескольких мегабит в секунду; сегодня более современные DSL достигают 1 Гбит/с. В следующих разделах описывается устройство и функционирование телефонной системы. Дополнительную информацию можно найти в работе Лайно (Laino, 2017).


2.5.1. Структура телефонной системы

После получения Александром Грэхемом Беллом патента на телефон в 1876 году (всего на несколько часов раньше его конкурента Илайши Грея (Elisha Gray)) возник колоссальный спрос на его изобретение. Изначально на рынке продавались только телефоны, причем попарно. Протягивать провод между ними должен был сам абонент. А если владелец телефона хотел поговорить с n владельцами других телефонов, приходилось тянуть отдельные провода во все n домов. Всего через год города были покрыты проводами, беспорядочно опутывающими дома и деревья. Стало очевидно, что модель соединения всех телефонов попарно, приведенная на илл. 2.24 (а), не подходит.

Илл. 2.24. (а) Полносвязная сеть. (б) Централизованная коммутация. (в) Двухуровневая иерархия

Надо отдать Беллу должное: он быстро осознал проблему и создал компанию Bell Telephone. Первая коммутационная станция открылась в Нью-Хэйвене, штат Коннектикут, в 1878 году. От коммутатора тянулись провода в дома и офисы всех абонентов. Чтобы позвонить кому-то, абонент вращал рукоятку телефона, на коммутаторе раздавался звонок, и оператор вручную соединял звонившего с вызываемым абонентом с помощью короткого гибкого кабеля. Модель отдельного коммутатора показана на илл. 2.24 (б).

Вскоре коммутаторы Bell Telephone стали появляться повсюду как грибы после дождя. Люди захотели звонить из одного города в другой, так что Bell Telephone начали соединять коммутаторы между собой. И скоро столкнулись с той же проблемой: при соединении проводами всех коммутаторов попарно сеть быстро становилась очень запутанной. Поэтому были изобретены коммутаторы второго уровня. Через какое-то время потребовалось уже несколько коммутаторов второго уровня, как показано на илл. 2.24 (в). В конце концов иерархия разрослась до пяти уровней.

К 1890 году телефонная система состояла из трех основных составляющих: коммутаторов; проводов, соединяющих абонентов с коммутаторами (теперь уже симметричных изолированных витых пар, а не голых проводов с землей в качестве обратного провода); и наконец, междугородних соединений коммутаторов. Техническая сторона истории телефонной системы кратко описана в работе Хоули (Hawley, 1991).

И хотя с тех пор все три составляющие претерпели значительные изменения, основная модель Bell Telephone через 100 лет осталась по существу такой же. Следующее описание, возможно, несколько упрощено, но позволяет понять, что к чему. Из каждого телефона выходит два провода, непосредственно ведущих в оконечную телефонную станцию (end office), называемую также местной центральной АТС (local central office). Расстояние между станциями обычно составляет от 1 до 10 км, причем в городах меньше, чем в сельской местности. Только в США насчитывается около 22 000 оконечных станций. Линия из двух проводов между телефоном абонента и оконечной станцией называется абонентским шлейфом (local loop)22. Если вытянуть в одну линию все локальные шлейфы в мире, они покрыли бы расстояние до Луны и обратно 1000 раз.

В какой-то момент 80 % капитала AT&T составляла медь в абонентских шлейфах. На тот момент AT&T была фактически крупнейшим добывающим медь предприятием в мире. К счастью, это было не слишком широко известно, иначе какой-нибудь агрессивный инвестор мог бы купить AT&T, закрыть весь телефонный бизнес в США, выкопать все провода и продать их скупщикам цветных металлов ради быстрой наживы.

Когда абонент, подключенный к местной АТС, звонит другому абоненту, подключенному к той же станции, механизм коммутации создает прямое элект­рическое соединение двух абонентских шлейфов, поддерживаемое на протяжении всего звонка.

Если же вызываемый телефон подключен к другой станции, необходима иная процедура. У каждой АТС есть несколько исходящих каналов связи, ведущих к одному или нескольким соседним коммутаторам, называемым междугородними телефонными станциями (toll office) либо транзитными (узловыми) телефонными станциями (tandem office), если они расположены в одном районе. Эти каналы называются соединительными линиями (toll connecting trunk). Число различных видов коммутаторов и их топология в разных странах различаются и зависят от плотности телефонной сети.

Если линии АТС как вызывающего, так и вызываемого абонента ведут к одной междугородней станции (что весьма вероятно, если они расположены по соседству), то соединение можно произвести внутри этой станции. Телефонная сеть, состоящая лишь из телефонов (маленькие точки), оконечных телефонных станций (большие точки) и междугородних телефонных станций (квадраты), показана на илл. 2.24 (в).

Если соединительные линии АТС абонентов не ведут к одной междугородней телефонной станции, необходимо построить путь между двумя междугородними станциями. Они взаимодействуют друг с другом посредством высокоскоростных междугородних соединительных линий (intertoll trunks, interoffice trunks). До распада AT&T в 1984 году в телефонной системе США для поиска такого пути применялась иерархическая маршрутизация с переходом на все более высокие уровни до тех пор, пока не будет найден общий коммутатор. Затем этот механизм сменила более гибкая неиерархическая маршрутизация. На илл. 2.25 показан механизм маршрутизации междугородних соединений.

Илл. 2.25. Типовой маршрут связи для междугородних звонков

Для связи используется множество различных сред передачи. В отличие от современных офисных зданий, куда обычно прокладываются кабели категории 5 или 6, абонентские шлейфы к жилым домам состоят в основном из витых пар категории 3 (хотя встречается и оптоволокно). А для соединения коммутаторов широко используются коаксиальные кабели, микроволны, а главным образом оптоволоконные кабели.

Раньше передача информации через телефонные системы была аналоговой, а сам голосовой сигнал передавался в виде электрического напряжения от источника в пункт назначения. С приходом оптоволоконных технологий, цифровой электроники и компьютеров все соединительные линии и коммутаторы стали цифровыми и единственной аналоговой частью системы остались абонентские шлейфы. Цифровая передача удобнее, поскольку не требует точного воспроизведения аналоговой формы волны, прошедшей через множество усилителей при междугороднем вызове. Достаточно безошибочно отличать 0 от 1. Благодаря этому свойству цифровая передача данных надежнее аналоговой. Кроме того, она дешевле и проще в обслуживании.

Итак, телефонная система состоит из трех основных компонентов:


1. Абонентские шлейфы (аналог витых пар между оконечными телефонными станциями и жилыми домами/офисами).

2. Соединительные линии (оптоволоконные цифровые каналы связи с очень высокой пропускной способностью, связывающие коммутаторы между собой).

3. Коммутаторы (в которых вызовы перенаправляются из одной соединительной линии в другую, электрически или оптически).

Абонентские шлейфы обеспечивают пользователям доступ к системе, а потому играют критически важную роль. К сожалению, в то же время это самое слабое звено в сети. Основная задача междугородних соединительных линий — сбор нескольких звонков и отправка их по одному и тому же оптоволоконному кабелю. Для этого применяется мультиплексирование по длинам волн (WDM). Кроме того, существует два принципиально разных способа коммутации: коммутация каналов и коммутация пакетов, которые мы рассмотрим далее.


2.5.2. Абонентские шлейфы: телефонные модемы, ADSL и оптоволокно

В этом разделе мы обсудим абонентские шлейфы как старого, так и нового образца. Мы расскажем о телефонных модемах, ADSL и технологии «оптоволокно в дом». В некоторых регионах абонентские шлейфы были модернизированы с применением технологии «оптоволокно в дом» (ну или «почти в дом»). Они обеспечивают работу компьютерных сетей с очень приличной пропускной способностью для сервисов передачи данных. К сожалению, прокладывать оптоволоконный кабель в жилые дома дорого. Иногда удается проложить кабель во время других коммунальных работ, требующих раскапывания улиц; абонентские шлейфы в некоторых регионах, особенно в густонаселенной городской местности, — оптоволоконные. Оптоволоконные абонентские шлейфы — редкость, хотя будущее, безусловно, за ними.


Телефонные модемы

Большинству знакомы двухпроводные абонентские шлейфы, ведущие из оконечной телефонной станции в дома пользователей. Эти шлейфы часто называют последней милей, хотя фактическая их длина может составлять не одну, а несколько миль. Были приложены значительные усилия, чтобы выжать все возможное из уже существующих медных абонентских шлейфов. Телефонные модемы служат для обмена цифровой информацией между компьютерами по узкому каналу, предназначенному телефонной компанией для голосовых звонков. Когда-то модемы были распространены, но сегодня их почти везде заменили широкополосные технологии. Одна из таких технологий, ADSL, многократно использует абонентские шлейфы для отправки цифровых данных в АТС, откуда они попадают в интернет. При использовании модемов и ADSL приходится мириться с ограничениями старых абонентских шлейфов. Это относительно узкая полоса пропускания, неизбежное затухание и искажение сигналов, а также чувствительность к электрическим помехам, в частности перекрестным.

Для отправки битов через абонентский шлейф или любой другой физический канал необходимо преобразовать их в аналоговый сигнал. Это преобразование производится при помощи методов цифровой модуляции (см. раздел 2.4). А на другом конце линии аналоговый сигнал снова становится цифровым.

За преобразование потока цифровых битов в соответствующий им аналоговый сигнал и обратно отвечает модем (modem) — сокращение от «модулятор/демодулятор». Модемы бывают самыми разными, включая телефонные, кабельные, беспроводные, а также DSL-модемы. Кабельные и DSL-модемы представляют собой отдельное аппаратное устройство, подключаемое между входящим в дом физическим каналом связи и остальной частью домашней сети. Беспроводные устройства обычно содержат встроенные модемы. Модем, что логично, размещается между (цифровым) компьютером и (аналоговой) телефонной системой, как показано на илл. 2.26.

Илл. 2.26. Применение аналоговой и цифровой передачи данных для связи между компьютерами. За преобразование отвечают модемы и кодеки

Телефонные модемы применяются для обмена битами между двумя компьютерами по каналам передачи голоса (вместо обычных разговоров). Основная проблема состоит в том, что эти каналы ограничены полосой пропускания 3100 Гц, вполне достаточной для передачи разговора. Эта полоса пропускания на четыре порядка меньше используемой для Ethernet или 802.11 (Wi-Fi). Неудивительно, что скорость телефонных модемов также на четыре порядка меньше, чем у Ethernet или 802.11.

Произведем вычисления и выясним, почему так происходит. Согласно теореме Найквиста, даже по идеальному каналу в 3000 Гц (которым телефонная линия явно не является) нет смысла отправлять символы со скоростью выше 6000 бод. Представим старый модем, который работает со скоростью 2400 символов/с (2400 бод) и стремится увеличить число битов на символ; при этом он передает данные в обоих направлениях (за счет использования разных частот для каждого направления).

В нашем скромном 2400-бит/с модеме логическому «0» соответствует 0 вольт, а логической «1» — 1 вольт, 1 бит на символ. Слегка усовершенствуем его: используем четыре разных символа, как в четырех фазах QPSK, что даст 2 бита на символ и позволит достичь скорости 4800 бит/с.

По мере развития технологий скорости все повышались и повышались. А большая скорость передачи данных требовала расширения набора символов (илл. 2.27). При большом числе символов даже незначительный шум в амплитуде или фазе полученного сигнала может привести к ошибке. Чтобы снизить вероятность ошибок, в стандартах для более высокоскоростных модемов часть символов отводится на их коррекцию. Эти схемы известны под названием треллис-модуляции (Trellis Coded Modulation, TCM)23. На илл. 2.27 приведены несколько распространенных стандартов модемов.

Стандарт модема

Бод

Бит/символ

Бит/с

V.32

2400

4

9600

V.32 bis

2400

6

14 400

V.34

2400

12

28 800

V.34 bis

2400

14

33 600

Илл. 2.27. Некоторые стандарты модемов и их скорости передачи данных

Почему эта таблица заканчивается на 33 600 бит/с? Дело в том, что предел Шеннона, в соответствии со средней длиной и качеством абонентских шлейфов для телефонной системы, равен примерно 35 Кбит/с. Более высокая скорость либо пойдет вразрез с законами физики (а точнее, термодинамики), либо потребует замены абонентских шлейфов на новые (что постепенно и происходит).

Впрочем, ситуацию можно изменить. В АТС данные преобразуются в цифровую форму для отправки внутри телефонной сети (ядро сети уже давно перешло с аналоговой на цифровую передачу). Ограничение в 35 Кбит/с рассчитано для двух абонентских шлейфов, по одному с каждой стороны. Каждый шлейф добавляет в сигнал помехи. Если же как-нибудь избавиться от одного из них, можно повысить SNR и удвоить максимальную скорость.

Именно на основе такого подхода и работают 56-килобитные модемы. На одну сторону (обычно это ISP) подается цифровой поток высокого качества от ближайшей оконечной станции. Таким образом, благодаря высококачественному, как у большинства современных ISP, сигналу на одной стороне соединения общая скорость передачи данных составляет до 70 Кбит/с. Максимальная скорость передачи между двумя домашними пользователями с использованием модемов и аналоговых линий по-прежнему составляет 33,6 Кбит/с.

Почему же на практике используются 56-Кбит/с модемы, а не 70-Кбит/с? Причина — в теореме Найквиста. Телефонный канал осуществляет передачу данных внутри системы в виде цифровых измерений. Ширина диапазона частот каждого телефонного канала составляет 4000 Гц с учетом защитных полос частот. Таким образом, необходимо восстановить 8000 измерений в секунду. Число битов на измерение в Северной Америке — 8, из которых один используется в целях контроля; это позволяет передавать 56 000 бит/с пользовательских данных. В Европе пользователям доступны все 8 бит, поэтому теоретически можно было бы использовать 64 000-бит/с модемы, но ради единого международного стандарта была выбрана скорость в 56 000 бит/c.

В результате возникли стандарты модемов V.90 и V.92. Они предусматривают 56-килобитный входящий (от ISP к пользователю) канал передачи данных и 33,6- и 48-килобитные исходящие (от пользователя к ISP) каналы. Причина такой асимметрии в том, что от ISP пользователю поступает обычно больше информации, чем в обратном направлении. Вдобавок это позволяет выделить большую часть ограниченной полосы пропускания на нисходящий канал и повысить шансы на то, что скорость передачи данных действительно будет близка к 56 Кбит/с.


Цифровые абонентские линии (DSL)

Когда телефонные компании наконец-то добрались до скорости в 56 Кбит/с, это был повод для гордости. В это же время провайдеры кабельного телевидения уже предлагали скорости до 10 Мбит/с. Предоставление интернет-доступа становилось все более важной частью бизнеса региональных телефонных компаний. Это заставило их задуматься о более конкурентоспособном продукте и предложить новые цифровые услуги по абонентскому шлейфу.

Изначально рынок был наводнен множеством пересекающихся вариантов высокоскоростного доступа в интернет под общим названием цифровых абонентских линий (Digital Subscriber Line), или xDSL, где x меняется в зависимости от конкретной технологии. Сервисы с большей пропускной способностью, чем у обычных телефонных линий, иногда назывались широкополосными (broadband), хотя это понятие скорее из сферы маркетинга, чем технологий. Мы обсудим наиболее популярный вариант, асимметричный DSL, или ADSL. В качестве краткого названия для всех этих вариантов мы будем использовать DSL или xDSL.

Причина медленной работы модемов в том, что телефоны изначально были предназначены для передачи человеческого голоса и вся система максимально оптимизирована под эту цель. Передача данных всегда была на втором месте. В точке подключения абонентского шлейфа к оконечной телефонной станции провод проходит через фильтр затухания, ослабляющий все частоты ниже 300 Гц и выше 3400 Гц. Срез происходит достаточно плавно (300 Гц и 3400 Гц — 3-дБ точки), и обычно указывается, что полоса пропускания равна 4000 Гц, хотя расстояние между 3-дБ точками составляет 3100 Гц. Данные в проводах также ограничиваются этой узкой полосой.

Хитрость, благодаря которой работает xDSL, заключается в том, что при подключении абонента входящий канал связи соединяется с особым сетевым коммутатором без вышеупомянутого фильтра. Это позволяет использовать всю пропускную способность абонентского шлейфа. Теперь ограничивающим фактором становятся физические характеристики линии, а не фильтр, и мы получаем около 1 МГц против искусственно созданного лимита в 3100 Гц.

К сожалению, пропускная способность абонентского шлейфа довольно быстро падает по мере удаления от оконечной станции и ослабления сигнала. Кроме того, она зависит от толщины и общего качества витой пары. График потенциальной пропускной способности как функции расстояния приведен на илл. 2.28. В нем предполагается, что все остальные факторы — оптимальны (новые провода, качественные световоды и т.д.).

Илл. 2.28. Пропускная способность относительно расстояния при использовании для DSL кабелей UTP категории 3

Из графика следует проблема телефонных компаний. Выбирая скорость для своего коммерческого предложения, компания автоматически ограничивает радиус действия услуги. Это значит, что некоторым потенциальным клиентам придется отвечать: «Благодарим за интерес к нашему предложению, но вы живете на сто метров дальше от АТС, чем нужно, и не можете стать нашим абонентом. Не хотите ли переехать поближе?» Чем ниже выбранная скорость, тем длиннее радиус и больше абонентов. Но низкая скорость делает услугу менее привлекательной и меньше людей соглашается за нее платить. Вот так коммерческие соображения сталкиваются с технологическими.

Все услуги xDSL проектировались в соответствии с определенными критериями. Во-первых, они должны работать на уже имеющихся абонентских шлейфах с витыми парами категории 3. Во-вторых, не мешать существующим телефонам и факсам абонентов. В-третьих, их скорость должна значительно превышать 56 Кбит/с. В-четвертых, услуга должна быть всегда доступной и оплачиваться ежемесячно, а не поминутно.

Для удовлетворения технических требований имеющийся диапазон в 1,1 МГц абонентского шлейфа разбит на 256 независимых каналов, по 4312,5 Гц каждый. Эта архитектура показана на илл. 2.29. Для пересылки данных по этим каналам используется схема OFDM, которую мы обсуждали в предыдущем разделе. В связи с DSL ее часто называют дискретной многотональной модуляцией (Discrete MultiTone, DMT). Канал 0 используется для обычной телефонной связи (Plain Old Telephone Service, POTS). Каналы 1–5 не используются, чтобы голосовые и информационные сигналы не мешали друг другу. Из оставшихся 250 каналов один служит для управления входящим трафиком, еще один — для управления исходящим. Остальные каналы доступны для пользовательских данных.

Илл. 2.29. Функционирование ADSL на основе дискретной многотональной модуляции

В принципе, для полнодуплексной передачи данных может использоваться любой из оставшихся каналов, но гармоники, перекрестные помехи и другие эффекты не позволяют реальным системам достичь теоретически возможного предела. Количество каналов, доступных для входящего и исходящего потоков данных, выбирает поставщик услуги. Технически можно распределить их в соотношении 50/50, но большинство ISP отдает около 80–90 % пропускной способности входящему каналу, поскольку большинство пользователей скачивает больше данных, чем отправляет. Отсюда и «A» в ADSL. Распространенный вариант: 32 канала на исходящий поток данных, а остальные — на входящий. Также можно сделать несколько верхних исходящих каналов двунаправленными для повышения пропускной способности, хотя такая оптимизация потребует специального контура подавления эха.

Международный стандарт ADSL — G.dmt — был одобрен в 1999 году. Он допускает входящую скорость до 8 Мбит/с и исходящую до 1 Мбит/с. В 2002 году его заменили более совершенным стандартом второго поколения, ADSL2, с входящей скоростью до 12 Мбит/с и исходящей до 1 Мбит/с. Стандарт ADSL2+ еще в два раза повысил входящую скорость, до 24 Мбит/с, за счет удвоения полосы пропускания (2,2 МГц через витую пару).

Следующим шагом, в 2006 году, стал VDSL. Входящая скорость передачи данных по коротким абонентским шлейфам достигала 52 Мбит/с, а исходящая — 3 Мбит/с. В период с 2007 по 2011 год появился ряд новых стандартов под общим названием VDSL2. При полосе пропускания 12 МГц на высококачественных абонентских шлейфах входящая скорость достигала 200 Мбит/с, исходящая — 100 Мбит/с. В 2015 году для шлейфов короче 250 м был предложен стандарт Vplus. Теоретически он позволяет достичь входящей скорости до 300 Мбит/с и исходящей до 100 Мбит/с, но реализовать это непросто. Вероятно, из уже существующих кабелей категории 3 больше выжать нельзя, разве что на более коротких расстояниях.

Внутри каналов используется модуляция QAM на скорости примерно в 4000 символов/с. При этом непрерывно отслеживается качество связи в каждом канале, с подстройкой скорости за счет использования больших или меньших схем модуляции, как на илл. 2.17. Скорость передачи данных в различных каналах отличается: до 15 бит/символ для канала с высоким SNR и 2, а то и 1 бит/символ для канала с низким SNR в зависимости от стандарта.

Типовая схема работы ADSL показана на илл. 2.30. Согласно этой схеме специа­лист телефонной компании устанавливает в помещении абонента устройство сопряжения с сетью (Network Interface Device, NID). Эта маленькая пластмассовая коробочка отмечает точку, где заканчивается оборудование, принадлежащее телефонной компании, и начинается собственность абонента. Неподалеку от NID (а иногда они даже совмещаются) располагается разделитель (splitter) — аналоговый фильтр, отделяющий полосу POTS (0–4000 Гц) от каналов данных. Сигнал POTS направляется к телефону или факсу, информационный сигнал — в ADSL-модем, реализующий OFDM при помощи цифрового обработчика сигналов. А поскольку большинство ADSL-модемов — внешние, компьютер подключается к модему по высокоскоростному соединению. Обычно для этого используется Ethernet, USB-кабель или 802.11.

Илл. 2.30. Типовая конфигурация оборудования ADSL

На другом конце провода, на стороне телефонной станции, устанавливается аналогичный разделитель. Сигнал с частотой выше 26 кГц направляется к специальному устройству — мультиплексору доступа к цифровой абонентской линии (Digital Subscriber Line Access Multiplexer, DSLAM), включающему такой же цифровой сигнальный процессор, как и ADSL-модем. DSLAM преобразует сигнал в биты и отправляет пакеты в сеть интернет-провайдера.

Благодаря полному разделению системы передачи голоса и ADSL, развертывание ADSL для телефонной компании упрощается. Достаточно закупить DSLAM и разделитель и подключить абонентов ADSL к разделителю. Прочие сервисы с высокой пропускной способностью, предоставляемые по телефонной сети (например, ISDN), требуют от компаний куда больших изменений в коммутационном оборудовании.

Следующая вершина, которую предстоит покорить DSL, — скорости передачи данных в 1 Гбит/с и более. Для этого применяется множество вспомогательных методов, включая связывание (bonding) — создание единого виртуального DSL-соединения за счет объединения двух или более физических DSL-соединений. Разумеется, при объединении двух витых пар пропускная способность также удваивается. В некоторых регионах в здания проводят телефонные кабели, состоящие из двойных витых пар. Изначально идея была в использовании двух отдельных телефонных линий с разными номерами в одном помещении. Но с помощью парной сцепки можно сделать на их основе одно высокоскоростное подключение к интернету. Все больше ISP в Европе, Австралии, Канаде и США развертывает технологию G.fast, в которой используется парное связывание. Как и в случае с остальными DSL, быстродействие G.fast зависит от расстояния, на которое передается сигнал. Недавние тесты показали, что на расстоянии 100 м скорость передачи по симметричному каналу приближается к 1 Гбит/с. В сочетании с оптоволокном это дает технологию FTTdp (Fiber to the Distribution Point — «оптоволокно до точки распределения»). Оптоволокно прокладывается до точки распределения между несколькими сотнями абонентов, а на оставшемся участке (в случае VDSL2 — до 1 км, хотя и с меньшей скоростью передачи) используются медные провода. FTTdp — лишь один из вариантов использования оптоволокна не только в ядре сети, но и ближе к ее периферии. Ниже представлены другие системы такого типа.


Оптоволокно до точки X (FTTX)

Скорость на последнем участке сети часто ограничена медными проводами, которые используются в обычных телефонных сетях. Они не способны на высокоскоростную передачу данных на столь большие расстояния, как оптоволоконный кабель. Следовательно, необходимо проложить оптоволокно как можно ближе к домам абонентов, то есть реализовать FTTH (Fiber to the Home — «оптоволокно до дома»). Телефонные компании стремятся повысить быстродействие абонентского шлейфа, для чего зачастую прокладывают оптоволокно максимально близко к домам. И если даже не прямо в дом, то хотя бы поблизости. При использовании технологии FTTN (Fiber to the Node/Neighborhood — «оптоволокно до узловой точки/микрорайона») кабель заканчивается в коммутационном шкафу на улице, иногда в нескольких километрах от дома абонента. В случае FTTdp оптоволокно оказывается еще ближе к домам, иногда буквально в нескольких метрах. Промежуточное положение между этими вариантами занимает FTTC (Fiber to the Curb — «оптоволокно до бордюра»). Все эти виды FTTX иногда называют «оптоволокном в абонентском шлейфе», поскольку часть абонентского шлейфа составляет оптоволокно.

Существует несколько вариантов FTTX: X может означать подвал, бордюр или микрорайон. Все эти названия используются, чтобы указать на возможность прокладки оптоволокна ближе к дому абонента. В этом случае медные провода (витая пара или коаксиальный кабель) обеспечивают достаточно высокую скорость на последнем коротком участке. Насколько далеко прокладывать оптоволокно — вопрос экономический, выбор зависит от соотношения затрат и ожидаемой прибыли. В любом случае смысл в том, чтобы оптоволоконный кабель перешел границу «последней мили». В нашем обсуждении мы сосредоточимся на технологии FTTH.

Как и медные провода, оптоволоконный абонентский шлейф пассивен, то есть не требует никакого оборудования для усиления или другой обработки сигналов. Оптоволокно просто переносит сигналы между жилищем абонента и оконечной станцией, снижая таким образом затраты и повышая надежность. Как правило, ведущие из домов кабели объединяются, так что от группы из 100 зданий к оконечной станции доходит только один оптоволоконный кабель. В исходящем направлении передаваемый из коммутатора сигнал разбивается оптическими разделителями, чтобы попасть во все дома. Если сигнал предназначается только для одного абонента, в целях безопасности используется шифрование. Во входящем направлении оптические сумматоры соединяют сигналы от всех домов в один, который и поступает в оконечную станцию.

Подобная архитектура, представленная на илл. 2.31, называется пассивной оптической сетью (Passive Optical Network, PON). Обычно для входящей передачи данных все дома совместно используют одну длину волны, а для исходящей — другую.

Илл. 2.31. Пассивная оптическая сеть для технологии FTTH

Даже при разделении колоссальная пропускная способность и незначительное затухание оптоволоконного кабеля позволяют PON работать на высоких скоростях при расстоянии до 20 км. Фактическая скорость передачи данных и другие нюансы зависят от типа PON. Наиболее распространены два вида: гигабитные PON (GPON) и Ethernet PON (EPON). GPON пришли из мира электросвязи, а потому описаны в стандарте МСЭ. EPON больше связаны с компьютерными сетями и описываются стандартом IEEE. Обе разновидности работают на скорости около гигабита и могут передавать трафик для различных нужд, включая интернет, видео и голосовые сервисы. Например, сети GPON обеспечивают входящую скорость 2,4 Гбит/с и исходящую — 1,2 или 2,4 Гбит/с.

Чтобы несколько зданий могли совместно использовать возможности одного оптоволоконного кабеля, идущего из оконечной станции, необходимы дополнительные протоколы. Во входящем направлении проблем нет. Оконечная станция может отправлять сообщения в разные дома в любом порядке. А вот одновременная передача данных из нескольких домов в исходящем направлении приведет к конфликту сигналов. Вдобавок различные дома не могут принимать передаваемые другими домами сигналы, а значит, и не могут прослушивать, прежде чем передавать, не передает ли кто-то еще. Для решения этой проблемы устройства оконечной станции выделяют домовому оборудованию, по запросу последнего, интервалы времени для работы. Для успешного функционирования такой схемы необходимо выстроить хронометраж передачи данных от различных домов, чтобы синхронизировать все получаемые на оконечной станции сигналы. Такая архитектура аналогична архитектуре кабельных модемов, которую мы рассмотрим далее в этой главе. Больше информации о PON можно найти в работах Гроуба и Элберса (Grobe and Elbers, 2008), а также Де Андраде и др. (De Andrade et al., 2014).


2.5.3. Соединительные линии и мультиплексирование

Соединительные линии в телефонных сетях не только работают намного быстрее абонентских шлейфов, но и отличаются от последних еще двумя нюансами. В основной телефонной сети передается цифровая, а не аналоговая информация, то есть биты, а не голос. Из-за этого в оконечной станции нужна конвертация в цифровую форму для передачи по междугородним соединительным линиям. По соединительным линиям передаются тысячи, иногда миллионы звонков одновременно. Такое совместное использование позволяет значительно сэкономить, ведь проведение и обслуживание высокоскоростной и низкоскоростной линий стоят примерно одинаково. Совместное использование обеспечивается при помощи различных вариантов TDM и FDM.

Ниже мы кратко поговорим о преобразовании голосовых сигналов в цифровую форму для их передачи по телефонной сети. После этого мы рассмотрим применение TDM для отправки битов по соединительным линиям, включая систему TDM, используемую для оптоволокна (SONET). Затем мы обсудим применение FDM для оптоволокна: мультиплексирование по длинам волн.


Преобразование голосовых сигналов в цифровую форму

На начальном этапе существования телефонных сетей голосовые звонки передавались в виде аналоговой информации. В течение долгих лет для мультиплексирования голосовых каналов по 4000 Гц каждый (3100 Гц плюс защитные полосы) в большие блоки использовались методики FDM. Например, 12 звонков в полосе от 60 до 108 кГц называются группой, пять групп (всего 60 звонков) — супергруппой и т.д. Эти методы FDM до сих пор иногда применяются для медных проводов и микроволновых каналов. Впрочем, FDM требует аналоговых электрических схем и не подходит для компьютерной обработки. TDM, напротив, можно полностью отдать на откуп цифровой электронике, поэтому в последние годы эта система получила широкое распространение. TDM работает только с цифровыми данными, а абонентские шлейфы генерируют аналоговые сигналы. Поэтому на оконечной станции, где все отдельные шлейфы сходятся и формируют исходящие соединительные линии, аналоговые сигналы преобразуются в цифры.

Преобразование происходит с помощью специального устройства — так называемого кодека (сокращение от «кодировщик/декодировщик»), который применяет методику импульсно-кодовой модуляции (Pulse Code Modulation, PCM). Эта методика — основа современной телефонной системы. Кодек создает 8000 сэмплов в секунду (по 125 мкс на сэмпл). Согласно теореме Найквиста этого достаточно для захвата всей информации от телефонного канала с полосой пропускания в 4 кГц. При меньшей частоте сэмплирования часть данных будет утрачена, при более высокой — дополнительных данных все равно получить нельзя. Практически все интервалы времени в любой телефонной системе кратны 125 мкс. Таким образом, стандартная скорость передачи несжатых данных для голосового телефонного звонка равна 8 битам каждые 125 мкс, то есть 64 Кбит/с.

Каждый сэмпл амплитуды сигнала квантуется до 8-битного целого. Чтобы снизить погрешность, шаги квантования выбираются неравномерно. При этом используется логарифмическая шкала, вследствие чего на малые амплитуды сигналов приходится относительно больше битов, а на большие амплитуды — относительно меньше. Таким образом, погрешность пропорциональна амплитуде сигнала. Широко применяются два варианта квантования: µ-закон в Северной Америке и Японии и A-закон в Европе и остальном мире. Оба варианта описаны в стандарте МСЭ G.711. Этот процесс можно представить так: динамический диапазон сигнала (отношение между минимальными и максимальными значениями) сжимается перед его квантованием (равномерным), а после восстановления аналогового сигнала — расширяется. По этой причине данный метод называют компандированием (companding). Можно также сжимать сэмплы после их оцифровки, так что для них потребуется куда меньшая скорость канала данных, чем 64 Кбит/с. Впрочем, мы отложим этот вопрос до обсуждения аудиоприложений, например передачи голоса по IP.

На другой стороне звонка аналоговый сигнал восстанавливается из цифровых сэмплов путем их воспроизведения (и сглаживания). В точности соответствовать исходному аналоговому сигналу он, конечно, не будет, хотя мы и производили сэмплы со скоростью, указанной теоремой Найквиста, поскольку они были преобразованы в цифровую форму.


Система связи T: мультиплексирование цифровых сигналов в телефонных сетях

Система связи T (T-Carrier) — спецификация передачи данных через несколько каналов TDM в одном физическом канале. TDM с PCM применяется для трансляции нескольких голосовых звонков по соединительным линиям посредством отправки сэмплов сигналов всех звонков каждые 125 мс. Когда цифровая передача данных стала реальностью, ССЭ МСЭ (тогда он носил название МККТТ) не смог согласовать международный стандарт PCM. В результате сейчас в различных странах используется множество разнообразных несовместимых между собой схем.

В Северной Америке и Японии используется система связи T1, показанная на илл. 2.32. (Строго говоря, формат называется DS1, а сама система связи — T1, но мы, следуя общепринятой в данной отрасли традиции, не станем вдаваться в подобные нюансы.) Система связи T1 состоит из 24 голосовых каналов, мультиплексированных в один. Каждый из этих 24 каналов, в свою очередь, выдает в исходящий поток сигналов 8 бит. Эта система связи возникла в 1962 году.

Илл. 2.32. Система связи T1 (1,544 Мбит/с)

Фрейм состоит из 24×8 = 192 бит плюс один дополнительный контрольный бит, то есть 193 бита каждые 125 мкс. Получается довольно приличная скорость передачи данных в 1,544 Мбит/с, из которых 8 Кбит/с отводится на вспомогательные цели. Этот 193-й бит используется для синхронизации фреймов и в сигнальных целях. В одном из вариантов он входит в состав группы из 24 фреймов, которая называется расширенным суперфреймом (extended superframe). Шесть битов, на 4-й, 8-й, 12-й, 16-й, 20-й и 24 позициях, соответствуют повторяющемуся паттерну 001011. . . Как правило, чтобы убедиться в должной синхронизации, приемник непрерывно проверяет наличие этого паттерна. Еще шесть битов используются для отправки кода проверки ошибок, чтобы приемник мог подтвердить синхронизацию. В случае рассинхронизации приемник ищет паттерн и подтверждает код проверки ошибок для восстановления синхронизации. Оставшиеся 12 бит отводятся на контрольную информацию, необходимую для функционирования и сопровождения сети, например данные о быстродействии с удаленной стороны.

Существует несколько вариантов формата T1. В более ранних версиях сигнальная информация посылалась внутриполосным образом (in-band), то есть по одному каналу с данными, используя некоторые биты. Эта архитектура представляет собой одну из форм передачи служебных сигналов по отдельному каналу (channel-associated signaling), поскольку у каждого канала есть свой собственный сигнальный подканал. В одной из схем в каждом шестом фрейме используется наименее значимый бит из 8 бит сэмпла каждого канала. Этот вариант получил красочное название передачи служебных сигналов с украденным битом (robbed-bit signaling). Основная его идея — несколько «украденных» битов не играют никакой роли для голосовых разговоров. Никто не услышит разницы.

Однако с данными все иначе. Отправка неправильных битов по меньшей мере бесполезна. При передаче данных с помощью более старых версий T1 в каждом из 24 каналов можно было задействовать лишь семь из восьми бит, то есть 56 Кбит/с. Более новые варианты T1 обеспечивают свободные каналы с использованием всех битов. Свободные каналы — это именно то, что нужно компаниям, арендующим линии T1 для отправки по телефонной сети данных вместо голоса. При этом передача служебных сигналов для всех голосовых звонков производится внеполосным образом (out-of-band), то есть по каналу, отделенному от данных. Зачастую передача служебных сигналов происходит по общему, то есть совместно используемому, каналу (common-channel signaling). Для этой цели можно задействовать один из 24 каналов.

За пределами Северной Америки и Японии вместо T1 распространена система связи E1 со скоростью 2048 Мбит/с. В ней используется 32 8-битных сэмпла, упакованных в стандартный 125-мкс фрейм. Тридцать каналов используются для информации и один-два — для передачи служебных сигналов. Каждая группа из четырех фреймов включает 64 бита для служебных сигналов, половина из которых используется для их передачи (по выделенному или общему каналу), а другая половина — для синхронизации фреймов (или же она резервируется — в каждой стране под разные нужды).

Мультиплексирование с разделением по времени позволяет объединять несколько T1 в системы более высокого порядка. На илл. 2.33 показано, как это происходит. Слева представлено четыре канала T1, мультиплексируемых в один канал T2. На уровне T2 и выше 24 голосовых канала, составляющие фрейм T1, мультиплексируются побитно, а не побайтно. Четыре потока T1 со скоростью 1,544 Мбит/с должны давать 6,176 Мбит/с, но на деле скорость T2 составляет 6,312 Мбит/с. Дополнительные биты используются для синхронизации фреймов и восстановления в случае сбоев системы связи.

Илл. 2.33. Мультиплексирование каналов T1 в системы связи более высокого порядка

На следующем уровне семь потоков T2 объединяются побитно в T3. Далее шесть потоков T3 соединяются в T4. На каждом шаге присутствуют небольшие накладные расходы на синхронизацию фреймов и восстановление (на случай рассинхронизации между отправителем и получателем). T1 и T3 широко используются абонентами, в то время как T2 и T4 применяются только внутри самой телефонной системы, поэтому они менее известны.

В США и остальном мире нет единого стандарта для базовой системы связи, так же как нет и согласия относительно ее мультиплексирования в систему с большей пропускной способностью. Принятую в США схему с шагами 4, 7 и 6 в остальном мире не сочли лучшим из возможных вариантов, поэтому стандарт МСЭ призывает мультиплексировать по четыре потока в один на каждом уровне. Кроме того, данные для синхронизации фреймов и восстановления также отличаются в стандартах США и МСЭ. В иерархии МСЭ используется 32, 128, 512, 2048 и 8192 канала, работающие на скоростях 2048, 8848, 34 304, 139 264 и 565 148 Мбит/с.


Мультиплексирование оптических сетей: SONET/SDH

На самых первых этапах развития оптоволоконной связи каждая телефонная компания имела свою патентованную оптическую TDM-систему. После того как в 1984 году правительство США разделило AT&T, местным телефонным компаниям пришлось подключаться к многочисленным междугородним линиям с оптическими TDM-системами от различных производителей и поставщиков. Стало очевидно, что без стандартизации не обойтись. В 1985 году Bellcore, исследовательское подразделение Regional Bell Operating Companies (RBOCs), начало работу над этим стандартом, получившим название синхронные оптические сети (Synchronous Optical NETwork, SONET).

Позднее к этой работе подключился МСЭ, в результате чего в 1989 году появился стандарт SONET и набор сопутствующих рекомендаций МСЭ (G.707, G.708 и G.709). Эти рекомендации МСЭ называются синхронной цифровой иерархией (Synchronous Digital Hierarchy, SDH), но отличаются от SONET лишь мелкими нюансами. Практически все междугородние линии в США, да и во многих других странах в настоящее время используют SONET на физическом уровне. Дополнительную информацию вы найдете в работе Перроса (Perros, 2005).

Основные цели создания SONET:


1. Совместимость различных систем связи: SONET был призван обеспечить взаимодействие разных систем связи. Для этого понадобился общий стандарт обмена служебными сигналами с учетом длин волн, распределения интервалов времени, структуры фреймов и прочих нюансов.

2. Унификация стандарта для различных стран: пришлось приложить некоторые усилия, чтобы привести к одному виду цифровые системы США, Европы и Японии. Все они основаны на 64-Кбит/с каналах PCM, но группируют их различными (причем несовместимыми) способами.

3. Мультиплексирование цифровых каналов: SONET должен был обеспечить возможность мультиплексирования нескольких цифровых каналов. На момент создания SONET самой быстрой из распространенных в США систем цифровой связи была T3 со скоростью 44,736 Мбит/с. T4 уже существовала на бумаге, но использовалась не слишком широко, а стандарт со скоростью, превышающей T4, даже не был описан. Часть миссии SONET заключалась в том, чтобы расширить эту иерархию до скоростей порядка гигабит в секунду и выше. Кроме того, был необходим стандартный способ мультиплексирования медленных каналов в один канал SONET.

4. Поддержка управления системой: задачей SONET было обеспечить поддержку эксплуатации, администрирования и обслуживания (operations, administration and maintenance, OAM), необходимых для управления. Предыдущие системы плохо с этим справлялись.

Изначально было решено сделать SONET обычной системой TDM и всю полосу пропускания оптоволокна предоставить одному каналу, выделяя слоты времени для различных подканалов. Поэтому SONET является синхронной системой. Все отправители и получатели привязаны к единому синхросигналу. Точность главного генератора синхроимпульсов, управляющего всей системой, составляет примерно 1 на 109. Биты по линии SONET отправляются в исключительно точные промежутки времени, контролируемые главным генератором синхроимпульсов.

Простейший фрейм SONET представляет собой блок из 810 байт, передаваемый каждые 125 мкс. А поскольку SONET — синхронная система, фреймы генерируются вне зависимости от наличия полезных данных для отправки. Скорость 8000 фреймов/с в точности соответствует скорости получения измерений каналов PCM во всех телефонных системах.

Можно представить 810-байтные фреймы SONET в виде прямоугольника байтов, 90 столбцов в ширину и 9 строк в высоту. Таким образом, 8000 раз в секунду передается по 8 × 810 = 6480 бит, и общая скорость равна 51,84 Мбит/с. Эта схема отражает простейший канал SONET — синхронный транспортный сигнал-1 (Synchronous Transport Signal-1, STS-1). Все соединительные линии SONET кратны STS-1.

Первые три столбца фрейма резервируются для управляющей информации системы, как показано на илл. 2.34. В этом блоке первые три строки содержат служебные данные секции (они генерируются и проверяются в начале каждой секции); следующие шесть строк составляют служебные данные линии (генерируются и проверяются в начале и конце каждой линии).

Илл. 2.34. Два идущих подряд фрейма SONET

Передатчик SONET отправляет один за другим 810-байтные фреймы без промежутков, даже если данных для отправки нет (в таком случае отправляются фиктивные данные). С точки зрения приемника они выглядят как непрерывный поток битов. Как же он различает границы фреймов? Дело в том, что первые два байта каждого фрейма содержат фиксированный паттерн. Если приемник находит этот паттерн в одном и том же месте в большом числе последовательно идущих фреймов, то он делает вывод, что синхронизирован с отправителем. Теоретически пользователь может вставлять данный паттерн в отправляемые полезные данные через равные промежутки, но на практике это невозможно по разным причинам, например из-за мультиплексирования данных от нескольких пользователей в одном фрейме.

Оставшиеся 87 столбцов каждого фрейма содержат 87 × 9 × 8 × 8000 == 50,112 Мбит/с пользовательских данных. Они могут быть голосовыми сэмплами в случае T1 и других систем связи или пакетами. SONET — это просто контейнер для передачи битов. Огибающая синхронной полезной нагрузки (Synchronous Payload Envelope, SPE) не всегда начинается в столбце 4 ряда 1. SPE может начинаться в любом месте фрейма. Первая строка служебных данных линии включает указатель на первый байт SPE. А первая строка SPE представляет собой служебные данные пути (то есть заголовок сквозного протокола подуровня пути).

Благодаря тому что SPE может начинаться в любом месте фрейма SONET и даже охватывать два фрейма, как показано на илл. 2.34, система становится более гибкой. Например, если во время формирования фиктивного фрейма SONET в источник поступает пользовательская информация, ее можно вставить в текущий фрейм, а не ждать начала следующего.

Иерархия мультиплексирования SONET/SDH приведена на илл. 2.35. В стандарте описаны скорости от STS-1 до STS-768, то есть примерно от линии T3 до 40 Гбит/с. Несомненно, со временем будут описаны и более высокие скорости. Следующей будет система OC-3072 со скоростью 160 Гбит/с, когда это станет технически выполнимым. Оптическая система, соответствующая STS-n (синхронному транспортному сигналу n-уровня), называется OC-n и совпадает с ним с точностью до бита, с той разницей, что для синхронизации требуется некоторая перестановка битов. Названия SDH отличаются — они начинаются с OC-3, поскольку в системах на основе стандартов МСЭ нет скорости, близкой к 51,84 Мбит/с. На илл. 2.35 приведены распространенные варианты скоростей, начиная с OC-3 и далее, кратные 4. Общая скорость учитывает все служебные данные. Скорость передачи SPE не учитывает служебные данные линии и секции. Скорость передачи пользовательских данных учитывает все три вида служебных данных и охватывает только 86 столбцов пользовательских данных.

Когда система связи (например, OC-3) не мультиплексируется, а переносит данные от единственного источника, в ее обозначение добавляется буква c (от concatenated — «конкатенированный»). Таким образом, OC-3 — это система связи со скоростью 155,52 Мбит/с, состоящая из трех отдельных систем OC-1, а OC-3c — поток данных из одного источника на скорости в 155,52 Мбит/с. Три потока данных OC-1 в OC-3c чередуются по столбцам: столбец 1 из потока 1, столбец 1 из потока 2, столбец 1 из потока 3, затем столбец 2 из потока 1 и т.д., в результате чего получается фрейм шириной в 270 столбцов и глубиной в 9 строк.

SONET

SDH

Скорость передачи данных (Мбит/с)

Электрическая

Оптическая

Оптическая

Общая

SPE

Пользовательских данных

STS-1

OC-1

51,84

50,112

49,536

STS-3

OC-3

STM-1

155,52

150,336

148,608

STS-12

OC-12

STM-4

622,08

601,344

594,432

STS-48

OC-48

STM-16

2488,32

2405,376

2377,728

STS-192

OC-192

STM-64

9953,28

9621,504

9510,912

STS-768

OC-768

STM-256

39813,12

38486,016

38043,648

Илл. 2.35. Скорости мультиплексирования SONET и SDH


2.5.4. Коммутация

С точки зрения обычного телефонного инженера, телефонная система состоит из двух основных частей: наружное оборудование (абонентские шлейфы и соединительные линии), физически находящееся вне АТС, и внутреннее оборудование (коммутаторы), расположенное на АТС. До сих пор мы рассматривали только наружное оборудование. Пришло время обсудить внутреннее.

Сегодня в сетях применяются два различных метода: коммутация каналов и коммутация пакетов. Первый метод использовался в традиционных телефонных системах, а в основе технологии передачи голоса по IP лежит второй метод. Мы обсудим коммутацию каналов несколько подробнее, а затем сравним ее с коммутацией пакетов. Оба метода важны, поэтому мы вернемся к ним еще раз, когда будем говорить о сетевом уровне.


Коммутация каналов

Изначально при совершении человеком или компьютером телефонного звонка коммутационное оборудование строило физический маршрут между двумя абонентами и поддерживало его во время разговора. Эта методика называется коммутацией каналов (circuit switching). Схематически она представлена на илл. 2.36 (а). Каждый из шести прямоугольников соответствует коммутатору системы связи (оконечной телефонной станции, центральной телефонной станции и т.д.). В этом примере у каждой станции три входящие и три исходящие линии. При прохождении звонка через коммутатор устанавливается физическое соединение между линией связи, по которой поступил звонок, и одной из выходных линий, показанных пунктиром.

Илл. 2.36. (а) Коммутация каналов. (б) Коммутация пакетов

В первые годы существования телефонной связи подключение осуществлял оператор, вручную вставляя гибкий кабель во входной и выходной разъемы. С изобретением автоматического оборудования для коммутации каналов связана забавная история. Его создал в XIX веке владелец похоронного бюро Элмон Б. Строуджер (Almon B. Strowger) из штата Миссури. После изобретения телефона в случае чьей-нибудь смерти люди звонили на коммутатор и говорили телефонистке: «Соедините меня, пожалуйста, с похоронным бюро». К несчастью для мистера Строуджера, телефонистка в их городке была женой владельца другого похоронного бюро. Стало ясно, что либо он придумает автоматический коммутатор, либо разорится. И он выбрал первый вариант. В течение почти сотни лет после этого по всему миру применялось оборудование для коммутации каналов, известное под названием декадно-шагового искателя Строуджера (Strowger gear). История умалчивает о том, не стала ли потерявшая работу телефонистка оператором справочного бюро, отвечая на вопросы вроде: «Каков номер телефона похоронного бюро?»

Приведенная на илл. 2.36 (а) модель, конечно, сильно упрощена, поскольку физический путь между двумя телефонами может включать микроволновые или оптоволоконные каналы связи, сочетающие путем мультиплексирования тысячи звонков. Тем не менее основная идея все та же: во время звонка устанавливается соединение и возникает выделенный путь между абонентами, который поддерживается до завершения звонка.

Важная особенность коммутации каналов: необходимо сформировать сквозной путь между абонентами перед отправкой данных. Между окончанием набора номера и тем, когда зазвонит телефон, может пройти 10 с (или больше — при междугородних или международных разговорах). В это время телефонная система ищет путь, как показано на илл. 2.37 (а). Обратите внимание, что еще до начала передачи данных сигнал запроса звонка должен пройти весь путь до точки назначения, а его получение должно быть подтверждено. Во многих компьютерных приложениях (например, при проверке наличия средств на карте в POS-системах) длительное ожидание нежелательно.

Илл. 2.37. Хронометраж событий при: (а) коммутации каналов; (б) коммутации пакетов

Как только путь между участниками разговора установлен, задержка данных зависит только от скорости распространения электромагнитного сигнала: примерно 1000 км за 5 мс. Кроме того, благодаря выделенному маршруту можно не бояться перегруженности — после соединения вы уже не услышите сигнала «занято».


Коммутация пакетов

Альтернатива коммутации каналов — коммутация пакетов (packet switching), показанная на илл. 2.36 (б) и описанная в главе 1. При использовании этой технологии пакеты отправляются сразу же — заранее формировать выделенный путь не требуется (в отличие от коммутации каналов). Коммутация пакетов напоминает отправку нескольких писем по почте: все они передаются независимо друг от друга. Перемещение каждого отдельного пакета до пункта назначения производят маршрутизаторы на основе передачи с промежуточным хранением данных. Данная процедура отличается от коммутации каналов, при которой после установления соединения резервируется полоса пропускания на всем протяжении пути от отправителя к получателю. Все данные в канале следуют по этому пути строго в порядке отправления. При коммутации пакетов фиксированного пути не существует. А значит, пакеты могут передаваться по разным маршрутам в зависимости от сложившихся в сети условий на момент их отправки и могут доставляться в произвольном порядке.

Сети с коммутацией пакетов ограничивают максимальный размер пакета, гарантируя тем самым, что ни один пользователь не сможет надолго (например, на большое число миллисекунд) полностью занять линию передачи. Таким образом, сети с коммутацией пакетов могут работать с интерактивным трафиком. Кроме того, это снижает задержку: первый пакет длинного сообщения передается дальше до того, как полностью прибудет второй. Но задержка пакета в памяти маршрутизатора перед дальнейшей отправкой (связанная с буферизацией данных) превышает задержку при коммутации каналов, где биты непрерывно движутся по проводам, и ничего не сохраняется для последующей отправки.

Коммутация пакетов и каналов различается не только этим. Поскольку при коммутации пакетов не резервируется полоса пропускания, пакетам иногда приходится ждать дальнейшей передачи. В результате при одновременной отправке большого числа пакетов возникает задержка в очереди (queueing delay) и перегруженность сети. С другой стороны, нет риска услышать сигнал «занято» и потерять возможность использовать сеть. Таким образом, при коммутации каналов сеть перегружается во время установки соединения, а при коммутации пакетов — во время отправки данных.

Но если канал зарезервирован для конкретного пользователя, а трафика нет, то полоса пропускания простаивает, хотя могла бы использоваться для другого трафика. При коммутации пакетов такого не бывает, а значит, этот метод эффективнее с точки зрения системы. Чтобы увидеть принципиальную разницу между коммутацией пакетов и коммутацией каналов, необходимо осознать следующий компромисс. Либо мы получаем гарантированный сервис с напрасной тратой ресурсов, либо — негарантированный, но без таковой. Коммутация пакетов устойчивее к сбоям, чем коммутация каналов. На самом деле именно поэтому она и была создана. Когда отказывает сетевой коммутатор, все подключенные к нему каналы обрываются и их нельзя использовать для передачи. При коммутации пакетов можно перенаправить пакеты в обход неработающих сетевых коммутаторов.

Еще одно различие между коммутацией пакетов и каналов — тарификация трафика. При коммутации каналов (например, для голосовых звонков по телефону через PSTN) трафик тарифицируется в зависимости от расстояния и времени. В мобильной связи расстояние обычно не имеет значения (разве что при международных звонках), а время играет лишь второстепенную роль. Например, тарифный план на 2000 бесплатных минут обходится дороже плана с 1000 минут и пониженным тарифом по ночам или выходным. При коммутации пакетов, как в стационарных, так и в мобильных сетях, длительность соединения роли не играет и основным фактором является объем трафика. С домашних пользователей в США и Европе ISP обычно взимают ежемесячную абонентскую плату (так проще для ISP и понятнее для клиентов). В некоторых развивающихся странах тарификация до сих пор происходит на основе объема трафика: пользователи покупают «пакет данных» определенного размера, который используется на протяжении цикла тарификации. При этом в определенное время дня или по некоторым направлениям трафик может быть бесплатным либо не входить в ежедневную квоту. Такие сервисы иногда называют сервисами с нулевой ставкой (zero-rated services). В целом ISP в опорной сети интернета тарифицируют услуги исходя из объемов трафика. В основе типовой модели тарификации лежит 95-й процентиль пятиминутных измерений. ISP измеряет трафик, прошедший через конкретное соединение за последние 5 минут; 30-дневный расчетный период включает 8640 подобных 5-минутных интервалов; ISP выставляет счет, исходя из 95-го процентиля этих измерений. Эту методику часто называют тарификацией 95-го процентиля (95th percentile billing).

На илл. 2.38 приведена общая сводка различий между двумя видами коммутаций. Традиционно коммутация каналов применялась в телефонных сетях ради

Пункт

С коммутацией каналов

С коммутацией пакетов

Соединение

Необходимо

Не требуется

Выделенный физический путь

Да

Нет

Все пакеты следуют по одному пути

Да

Нет

Пакеты прибывают в порядке отправления

Да

Нет

Отказ коммутатора играет критическую роль

Да

Нет

Доступная полоса пропускания

Фиксированная

Динамическая

Время возможной перегруженности сети

Во время установления соединения

На любом пакете

Вероятность траты полосы пропускания впустую

Да

Нет

Передача данных с их промежуточным хранением

Нет

Да

Тарификация

Поминутно

Побайтно

Илл. 2.38. Сравнение сетей с коммутацией каналов и коммутацией пакетов

повышения качества звонков, а коммутация пакетов использовалась в компьютерных сетях из-за ее простоты и эффективности. Впрочем, существуют заслуживающие упоминания исключения. В некоторых более старых компьютерных сетях «под капотом» используется коммутация каналов (например, в сетях, основанных на стандарте X.25), а в более новых телефонных сетях при передаче голоса по IP используется коммутация пакетов. Для пользователей это выглядит как обычный телефонный звонок, но внутри сети происходит коммутация сетевых пакетов голосовых данных. Это способствовало развитию рынка дешевых международных звонков с помощью переговорных карточек (хотя, вероятно, с более низким качеством звонка, чем у официальных телефонных компаний).



22 Также встречаются названия «локальный шлейф», «локальная кольцевая линия» и др. — Примеч. пер.

23 Она же решетчатое кодирование, или решетчатая кодированная модуляция. — Примеч. пер.

Загрузка...