Глава первая Работа на костях

• Сибирский палец указывает нам на новых доисторических людей • У генетиков — золотая лихорадка и волшебные машины • Адам и Ева жили раздельно • Неандертальцы были обманом • Парк Юрского периода сводит всех с ума • И да, мы все — родственники Карла Великого

Кость на письменном столе

Кончик пальца, который я обнаружил зимним утром 2009 года у себя на письменном столе, на самом деле представлял собой лишь жалкие останки. Ноготь отсутствовал, кожа тоже. Оставался, по сути, только кончик дистальной фаланги, не больше вишневой косточки. Как я впоследствии выяснил, принадлежал он девочке пяти-семи лет. Кончик кости лежал в стандартном конверте с мягким наполнителем и прибыл издалека, из Новосибирска. Не каждый обрадуется, если перед утренней чашечкой кофе обнаружит на своем столе часть тела, прибывшую почтой из России. Но я-то как раз был рад.

Примерно за 10 лет до того, в 2000 году, американский президент Билл Клинтон провел в Белом доме пресс-конференцию, посвященную проекту «Геном человека». Спустя десятилетия напряженной работы, сопровождавшейся миллиардными инвестициями, было объявлено о расшифровке человеческого генома. Тема ДНК обсуждалась повсеместно, даже «Франкфуртская всеобщая газета» вышла без фельетона, чтобы разместить у себя на полосах последовательности человеческого генома — бесконечную цепочку А, Т, Ц и Г, из которых состоит ДНК. Многие внезапно осознали, какое значение обретает генетика. Все обсуждали перспективу рассматривать ДНК человека как строительный чертеж.

В 2009 году наука заметно приблизилась к этой цели. В то время я работал как постдокторант в лейпцигском Институте эволюционной антропологии общества Макса Планка, известном под аббревиатурой MPI-EVA.

Уже тогда Институт был местом номер один в мире для исследователей и исследовательниц, которые хотели секвенировать ДНК из старых костей с помощью высоких технологий. Этому предшествовали неимоверные усилия генетиков, научные изыскания, длившиеся десятилетиями. Благодаря им с помощью кости пальца, лежавшей на моем письменном столе, стало возможно хотя бы в какой-то степени описать историю возникновения человечества. Дело в том, что сибирская находка была частью останков девочки, жившей 70 тысяч лет тому назад. А эта девочка принадлежала к доселе неизвестному виду древних людей. Об этом поведали пара миллиграммов костяной пыли и сложное устройство для секвенирования генома — секвенатор. Еще нисколько лет назад было технически невозможно, даже невероятно, по крошечному кусочку пальца определить кому он принадлежал. Но маленькие кусочки кости рассказали нам не только это. Благодаря им мы также узнали, что связывает нас, ныне живущих, с той доисторической девочкой и чем она от нас отличается.


Миллиард в день

Концепция ДНК как строительного чертежа жизни известна уже более сотни лет. В 1953 году Джеймс Уотсон и Фрэнсис Крик, благодаря проведенной ранее Розалиндой Франклин работе, узнали структуру ДНК. Через 9 лет Уотсон и Крик получили за это Нобелевскую премию по медицине. Франклин к тому моменту уже скончалась — она прожила всего 37 лет. Именно медицина с тех пор стимулировала исследования ДНК, и в конце концов объявила о проекте по расшифровке генома человека. Важнейшей вехой на пути к расшифровке и прочтению ДНК в 1980-е годы стало развитие полимеразной цепной реакции[1].

Этот процесс лег в основу работы сегодняшних секвенаторов, которые прочитывают последовательности оснований молекулы ДНК. С 2000-х годов эти устройства существенно развились. Каждый, кто помнит свой старый кнопочный телефон, а сегодня имеет смартфон, может представить, насколько быстро развивалась техника, в том числе та, что используется в области генетики. Несколько чисел помогут понять, в каком направлении мы движемся, когда речь идет о расшифровке ДНК. Геном человека состоит из 3,3 миллиарда пар оснований[2]. Чтобы расшифровать информацию о наследственности человека, потребовалось 2003 года (полный геном человека был расшифрован в 2003 году под руководством Джеймса Уотсона), однако даже после окончания проекта «Геном человека» потребовалось еще больше 10 лет, чтобы дополнительно проанализировать некоторые участки[3]. Сегодня в нашей лаборатории мы исследуем по миллиарду пар оснований в день. Пропускная способность приборов за последние 12 лет увеличилась в сотни миллионов раз, и сегодня на одной такой машине мы способны декодировать 300 человеческих геномов в день. За 10 лет по всему миру совершенно точно будут расшифрованы геномы миллионов человек. При этом будущее развитие технологий до сих пор почти повсеместно недооценивается. Секвенировать ДНК будет еще быстрее и дешевле, эта возможность станет общедоступной. В среднем исследование генома стоит дешевле, чем большая гемограмма. Легко представить, что для молодых родителей расшифровка генома новорожденного скоро станет рутиной.

Секвенирование ДНК предлагает невероятные возможности, по крайней мере в области раннего распознавания генетической предрасположенности к определенным болезням. И потенциал этого метода будет расти[4]. Пока медицина расшифровывает геномы ныне живущих людей для лучшего понимания болезней и развития новых методов лечения и лекарственных препаратов, археогенетики используют технологии, развившиеся в сфере генетики человека, чтобы анализировать археологические находки — древние кости, зубы или даже образцы почвы. Это позволяет делать выводы о происхождении давно умерших людей. Для археологии при этом открываются совершенно новые пути. По-новому обстоят дела не только с теориями и интерпретациями. Даже миграционное движение людей на основе генетического анализа можно установить с доселе невиданной точностью. Расшифровка старых ДНК для археологии примерно так же важна, как другая техническая революция, свершившаяся в 50-е годы прошлого века. Тогда метод радиоуглеродного анализа перевел датировку археологических находок на совершенно новые рельсы. С ним впервые стала возможной надежная датировка человеческих останков с точностью чуть ли не до года[5]. Археогенетика теперь также позволяет читать прошлое по фрагментам скелетов, устанавливая взаимосвязи, о которых не знали даже сами обладатели костей. Таким образом человеческие останки (а некоторые из них пролежали в земле десятки тысяч лет!) становятся ценными посланиями из прошлого. В них записаны истории наших предков, которые мы рассказываем в этой книге. Причем некоторые истории публикуются впервые.


Прогресс через мутации

Молодая наука археогенетика может помочь с ответами на некоторые старейшие и важнейшие вопросы человеческой истории: что делает нас людьми? Откуда мы ведем свое происхождение? Как мы стали теми, кем являемся сегодня? Один из выдающихся пионеров в этой области — Сванте Паабо. В 1999 году он стал директором Института эволюционной антропологии в Лейпциге. Будучи ученым по натуре, в 1984 году, во время учебы в Уппсальском университете, он практически тайком, ночами в лаборатории экстрагировал ДНК египетской мумии. Это стало началом большой карьеры. В 2003 году Паабо взял меня к себе дипломником в Лейпциг. Когда два года спустя я должен был выбрать тему докторской, он предложил мне присоединиться к его команде, которая расшифровывала геном неандертальца. Это было настоящее безумие: при тогдашнем состоянии техники для такого предприятия требовались десятилетия. К тому же мы должны были бы перемолоть дюжины килограммов настоящих неандертальских костей. Но я доверился Паабо и его способности реалистично оценить проект. Я принял вызов, и мое решение оказалось верным. Техника секвенирования развивалась так быстро, что просто захватывает дух. Благодаря этому мы завершили свою работу три года спустя, и костей нам понадобилось гораздо меньше, чем планировалось.

Вот тогда и попал ко мне кусочек пальца с Алтая. Такие кости — носители данных в археогенетике. Благодаря им мы можем получить ключи ко многим разгадкам. Относится ли первобытный человек, которому принадлежала кость, к нашим прямым предкам или его ветвь вымерла? Чем его наследственный материал отличается от нашего? Геном первобытного человека становится шаблоном, с которым мы сравниваем наши сегодняшние ДНК. Как исследователей, нас интересуют места, которые не совпадают с шаблоном. Это позиции, по которым наша ДНК изменилась, мутировала. Возможно, звучит не слишком приятно, но мутация — не только двигатель эволюции, но и причина, по которой человек и шимпанзе сегодня смотрят друг на друга по разные стороны решетки в зоопарке. Для археогенетики мутации — это вехи истории человечества.

За то время, что вы читаете эту главу, ДНК в миллионах клеток вашего тела химически меняется: она должна постоянно ломаться и обновляться в коже, кишечнике — повсюду. Если при этом что-то идет не так, мы говорим о мутациях. Они случаются очень часто, что, учитывая высокую частоту обновления клеток, совсем неудивительно. Как правило, тело тут же чинит мутации, но починка срабатывает не всегда. Если мутации встречаются в половых клетках, то есть в сперматозоидах и яйцеклетках, эти мутации могут передаться по наследству следующему поколению. При этом включается собственная защитная функция организма: зародышевые клетки с мутациями, несущими в себе тяжелые заболевания, чаще всего умирают. Если мутации маленькие, этого произойти не должно. Тогда генетические изменения наследуются[6].

Генетические изменения, которые ведут к большему числу последствий, распространяются в популяции быстрее всего — они чаще передаются дальше. Например, то, что у человека меньше волос, чем у его дальнего родственника, человекообразной обезьяны, — следствие многочисленных мутаций: вместо волос у человека развивались потовые железы. Благодаря этой новой охлаждающей системе умеренно волосатый первобытный человек мог дольше бежать и убегать, соответственно, дольше жил и имел больше шансов оставить потомство. Первобытные люди с наследственностью, которая обеспечивала больше волос, напротив, вымерли. Большинство мутаций не целенаправленны и ни к чему не ведут. Они либо не оказывают никакого воздействия на организм, либо вредят ему и подвергаются негативной селекции — отсортировываются. Редкие исключения, изменения, необходимые для выживания и размножения, ждет положительная селекция. Такие мутации распространяются и постоянно развиваются. Следовательно, эволюция — это вечная игра случая.


Вас приветствует первобытный человек

Взгляд на наследственный материал старых костей для археогенетика сравним с путешествием на машине времени. Основываясь на ДНК наших предков, которые жили десятки тысяч лет тому назад, мы можем узнать, какие мутации закрепились у ныне живущих людей, а какие исчезли. На такие знания рассчитывали и мы, анализируя палец из России.

Анатолий Деревянко, один из самых прославленных российских археологов, нашел кость возрастом 70 тысяч лет в Денисовой пещере, на Алтае, на высоте примерно 700 метров. Этот горный массив находится посреди Азии, более чем в 3500 километрах восточнее Москвы, на русской границе с Китаем, Казахстаном и Монголией.

Денисова пещера — это не только любимое многими место паломничества, но и настоящий клад для ученых, которые уже многие годы регулярно находят здесь кости и обработанные человеком предметы из каменного века. То, что Алтай расположен так глубоко в Сибири, как только можно себе представить, — большое преимущество: холод консервирует находки особенно хорошо. Когда Сванте Паабо, несколько его коллег и я прибыли в этот регион в начале 2010 года для встречи с Деревянко, я узнал, что при температуре –42 °C на коже могут вырастать ледяные кристаллы.

В лейпцигской лаборатории алтайский палец пережил многочисленные манипуляции. В кости пробуравили дырочку, заветную костяную пыль поместили в специальную жидкость и в ней из останков наконец-то выделили ДНК. У нас было ограниченное количество попыток: мы могли экстрагировать всего 10 миллиграммов костяного порошка — это как хлебная крошка. Мы предполагали, что имеем дело с обычной костью современного человека, ну или, возможно, с костью неандертальца. Но внезапно секвенатор выдал результаты, к которым я сперва даже не знал как подступиться. ДНК не принадлежала ни современному человеку, ни неандертальцу. Я спешно собрал нашу команду, чтобы представить загадочные данные. Спросил коллег: «В чем я ошибся?» Мы вместе снова и снова изучали полученную информацию. Но в конце концов стало ясно: моей ошибки тут нет. Когда я чуть позже позвонил своему шефу, то попросил его присесть, а потом сказал: «Сванте, думаю, мы нашли Homo erectus». Homo erectus — это общий предок современного человека и неандертальца, у нас до сих пор нет его расшифрованного ДНК. Я думал, мы первые, кому удалось его получить.

Что мы увидели в ДНК этого пальца? Оказалось, что она в два раза сильнее отличается от ДНК человека XXI века, чем ДНК неандертальца. Это должно было означать, что человек из Денисовой пещеры и неандерталец уже давно пошли каждый по своему пути, как неандерталец и современный человек. Наши тогдашние расчеты подводили к тому, что примерно миллион лет назад Homo erectus из Африки основал две отдельные ветви. От одной произошли неандертальцы и современный человек, а от другой, развивавшейся в Азии, — денисовцы. Это опровергало многие знания, полученные в процессе изучения эволюции, которые мы считали точными. Прежде всего знание о том, что 70 тысяч лет назад кроме первых современных людей и неандертальцев на планете не существовало других форм первобытного человека.

Полученные данные ввели нас в заблуждение, но ясно это стало не сразу. И вот в своей первой «денисовской» публикации в марте 2010 года в журнале Nature, святом Граале научных СМИ, мы рассказали эту историю. Весь мир заинтересовался мной, помню, как в нашей лаборатории одновременно оказалось множество камер. Целую неделю я без остановки давал телеинтервью об открытии денисовцев — так мы окрестили наших первобытных людей. Но уже через несколько недель в нас зародились первые сомнения — всё ли верно с данными, которые мы уже опубликовали? Лучше сказать даже так: правильно ли мы эти данные интерпретировали?

Наполовину мусор, наполовину строительный чертеж

Когда мы говорим о генах человека и при этом имеем в виду геном, с научной точки зрения это на самом деле некорректно. Лишь небольшая часть из 3,3 миллиарда пар оснований нашего генома — это гены. Эти два процента ответственны за кодировку белков. Кроме того, они представляют собой чертежи примерно 30 миллиардов клеток, строительных материалов нашего тела[7].

У человека в общей сложности 19 тысяч генов, и это на удивление мало. У амебы, крошечного одноклеточного, 30 тысяч генов, у обычной сосны — 50 тысяч. Но само по себе число генов не определяет то, насколько сложен живой организм. У организмов с клеточным ядром информация из одного гена может комбинироваться в различных «строительных материалах»; ген не несет постоянную ответственность только за одну функцию тела. У примитивных форм жизни, например у бактерий, как правило, из одного гена получается один строительный материал, который обычно выполняет только одну задачу. Можно сказать, что гены людей и большинства животных — это очень маленькая команда, зато невероятно сплоченная.

Пятьдесят процентов человеческого генома, как слишком большие жесткие диски, забиты мусором — последовательностями ДНК, которые не имеют для нас никакого очевидного значения. Помимо генов, важную роль играют молекулярные переключатели — они составляют примерно 10 % весьма сложной структуры генома. Эти переключатели активируются и деактивируются транскрипционными факторами и отвечают за то, чтобы каждая часть тела производила правильный белок — чтобы клетки в кончике пальца не воспринимались как клетки желудка и там не производилась кислота. В основном все клетки человека содержат одинаковую информацию, из которой нужно отобрать нужную.

Для археогенетики бесполезные составные части генома — на вес золота, ведь только благодаря им могут работать так называемые генетические часы. Ученые измеряют мутации в целом геноме и вычисляют момент, когда две популяции разошлись. Чем раньше по времени, тем больше различий в ДНК. Если бы весь геном состоял из генов, число различий, то есть мутаций, зависело бы не от того, как давно произошло разделение, а от того, насколько различается среда, в которой живут популяции. У африканцев в некоторых генах меньше изменений, чем у потомков людей, которые вышли из Африки. Дело в том, что гены эмигрантов должны были приспособиться к новым внешним условиям, а гены африканцев — нет, или по крайней мере не в такой степени. Тем не менее в геномах сегодняшних африканцев, за исключением 2 % генов, почти столько же мутаций, сколько у всех остальных людей на земле. Причина в том, что в большой «мусорной» части генома, как и в генах, есть мутации, но нет положительной или отрицательной селекции. Со времен нашего последнего общего предка в каждом из нас накопился примерно одинаковый объем мутаций. Генетические часы работают всегда, и неважно, как сильно развивались порознь собственные гены каждой из двух популяций, которые мы хотим сравнить.


Праматерь всех генов

Как мы теперь понимаем, наши сомнения в интерпретации денисовской ДНК были оправданны. Путь, который позднее привел нас к истинной, не менее поразительной истории, объяснявшей эту ДНК, примечателен тем, насколько мощно развилась генетика за последние годы и как при этом обесценились знания, что на протяжении десятилетий считались в археологии верными. Стало ясно: именно потому, что мы придали данным об алтайской находке ложное значение, мы смогли обнаружить еще большую ошибку в изучении первобытных людей. ДНК денисовца из Азии дала нам — не напрямую, но вполне определенно — новый взгляд на заселение Европы современным человеком. Мы поняли, что он еще сотни тысяч лет назад встретился здесь с неандертальцем. И у них был секс.

Чтобы восстановить генеалогическое древо денисовской девочки, для первой публикации мы использовали ДНК митохондрий, которые также называют электростанциями клеток. Митохондриальная ДНК (мтДНК) — это лишь крошечная доля нашего генома. Сегодня стандартом является секвенирование гораздо более емкой и релевантной ядерной ДНК; до 2010 года за митохондриальную ДНК брались, чтобы существенно снизить временные и финансовые расходы[8].

Митохондриальная ДНК не дает особенно детализированных результатов, но хорошо подходит для составления генетического древа. С одной стороны, все люди наследуют свою митохондриальную ДНК исключительно от матери. С другой стороны, можно уверенно говорить о том, что примерно раз в 3000 лет в митохондриальной ДНК происходит мутация, которая передается всем последующим поколениям, то есть на протяжении 3000 лет по женской линии наследуется идентичная митохондриальная ДНК. Если сравнить такую ДНК у двух человек, можно вычислить, когда жила их последняя общая прародительница. Речь при этом идет о тех самых генетических часах. Митохондриальная ДНК ныне живущих людей ведет к единой общей прародительнице — «прабабушке». Она жила приблизительно 160 тысяч лет назад. В генетике ее называют «митохондриальной Евой». Существует и ее противоположность — «Y-хромосомный Адам», к которому восходят Y-хромосомы, передающиеся от отца к сыну. Но Адам жил почти на 200 тысяч лет раньше, чем Ева, так что эти двое совершенно точно не были парой[9].

На то, чтобы при подготовке первой денисовской публикации не дожидаться секвенирования ядерной ДНК, у нас была простая причина: Анатолий Деревянко дал кусочек пальцевой кости еще одной лаборатории помимо нас, и мы боялись, что коллеги могут опередить нас с публикацией. И митохондриальная ДНК, и ядерная ДНК позволяют считывать генетические часы[10], поэтому мы не видели проблемы в нашей поспешности.

Ядерная ДНК значительно углубляет знания, полученные из митохондриальной ДНК, но обычно ей не противоречит. Однако в случае с денисовской девочкой произошло именно это: ядерная ДНК показала совершенно другое генеалогическое древо. Оказалось, что денисовцы откололись не от общего предка современного человека и неандертальца, то есть от Homo erectus, а значительно позже, от линии неандертальцев. Новые данные показали, что сначала отделилась первая линия предков сегодняшних людей, чтобы позднее разделиться на неандертальцев и денисовцев. Предки современного человека перебрались в Европу, другая форма — в Азию. Это уже близко к тому, что мы сегодня знаем. Но не хватало еще одной поправки, и ждать ее нам пришлось еще 6 лет.

Противоречие между митохондриальной ДНК и ядерной ДНК объяснилось, когда были найдены останки первобытного человека на севере Испании, в Сима де лос Уэсос, что переводится как «Костяная дыра». Генетические исследования провела в 2016 году рабочая группа Сванте Паабо. Оказалось, что костям 420 тысяч лет. Благодаря ядерной ДНК их можно было приписать неандертальцу. Загвоздка в том, что раньше считалось, будто тогда никаких неандертальцев в Европе еще не было. С помощью всех неандертальских костей, которые до тех пор были обследованы, на основании митохондриальной ДНК было установлено, что этот вид человека отщепился от наших предков в Африке максимум 400 тысяч лет тому назад. Испанская находка говорила о гораздо более ранней миграции[11], а заодно о том, что со старыми расчетами что-то не так.

Помимо прочего, в публикации говорилось, что митохондриальная ДНК испанского неандертальца не совпадает с другими, полученными от гораздо более поздних неандертальцев. Этим митохондриальная ДНК испанца походила на ДНК денисовской девочки. Что было решающим фактором. Всплыла ошибка первой денисовской публикации, она стала очевидной, поскольку мы взяли для сравнения митохондриальную ДНК более позднего неандертальца, а она явно не соответствовала какой-либо другой митохондриальной ДНК пренеандертальцев. Более молодые индивиды (по-видимому, в какой-то период уже после испанского неандертальца) унаследовали другую митохондриальную ДНК — ДНК архаического сапиенса, вернее, архаической современной женщины. Какой-то неандерталец в Европе или на граничащем с Европой Ближнем Востоке вступил с этой женщиной в сексуальный контакт. Поэтому митохондриальная ДНК и указывала на тесное родство поздних неандертальцев с современными людьми.

Денисовцы в Азии, напротив, остались неизменными: по крайней мере в годы жизни денисовской девочки у них не было следов генетических смешений. С помощью митохондриальной и ядерной ДНК они законсервировали относительно близкое родство с пренеандертальцем. С учетом новых знаний данные, полученные из митохондриальной и ядерной ДНК, идеально подходили друг другу. Только доселе принятую датировку разделения в генеалогическом древе человека оставалось немного отрегулировать. Получалось, что неандертальцы и денисовцы должны были разделиться полмиллиона лет тому назад, а не 300 тысяч лет назад, как считалось раньше. А отделение общей линии неандертальцев и денисовцев от современного человека должно было произойти 600 тысяч, а не 450 тысяч лет назад.

Открытие, согласно которому денисовец нес в себе митохондриальную ДНК пренеандертальца, а более поздние неандертальцы приблизились к современному человеку, затронуло меня не только в научном, но и в личном плане. Одна из причин, почему меня вообще заворожили древние люди, связана с историей моего родного города Лайнефельде, расположенного на плато Эйхсфельд. Там, всего в нескольких улицах от дома моих родителей, на свет появился Йоханн Карл Фульротт, открывший неандертальцев. Когда я был подростком, Фульротт был моим кумиром. Я даже не смел мечтать о том, что однажды смогу немного дополнить его труд.


Дикие годы позади

Открытие денисовца и второе открытие неандертальцев показывают, насколько стремительно развивалась археогенетика на своем самом раннем этапе и как быстро она будет развиваться и дальше. Наука, еще только набирающая высоту, уже переросла детские болезни, или, точнее, уже оставила позади пубертат. К истории этого молодого научного направления относится также дикий период, когда по иррациональным причинам порой публиковались ужасные по качеству работы — просто потому, что все были буквально очарованы свершившимся прогрессом. Из-за этого многие генетики еще несколько лет назад сомневались в том, что старые ДНК вообще возможно достоверно расшифровать. Чрезмерная эйфория, которая выдвинула на первый план скептиков, была связана с одним из главных фильмов Стивена Спилберга.

Редкие кости подходят для секвенирования, ведь для этого в них должна хорошо сохраниться ДНК. Излучение, тепло и влажность — ее злейшие враги, а самый злой враг — время. Чем дольше кость лежит, тем меньше вероятность найти в ней пригодную для исследования ДНК. Впрочем, кое-какую ДНК всегда можно обнаружить. Она происходит от бактерий, которые населяют соседние кости, археологов, которые ее выкопали, и от всех, кто когда бы то ни было к ней приближался, например, в музее. ДНК, как песок в домике у моря, заполняет собой пространство почти беспрерывно, пока не займет каждый уголок. Например, ДНК, которую в 80-е годы Сванте Паабо извлек из мумии, происходила, как мы теперь знаем, не из Египта, а из Швеции. Это была его собственная ДНК.

Несмотря ни на что, в 90-е началась настоящая волна секвенирования ДНК. Эта тема цепляла публику, это был многообещающий предмет исследований. Многие думали, что из древнего комара, застрявшего в янтаре, можно пробудить к жизни динозавра — потому что «Парк Юрского периода» Спилберга представлял все именно так.

Многое, что тогда секвенировали из старой ДНК, не стоило бумаги, на которой печатали результаты исследований. Чаще всего дело было в загрязненных ископаемых. Даже если пробы были взяты самым тщательным образом, практически ничего невозможно было расшифровать, потому что образцы оказывались загрязнены ДНК бактерий или ДНК самих исследователей. И хотя ближе к концу 1980-х появились научные критерии аутентичности древних ДНК, многие исследователи их в расчет не принимали.

В середине нулевых техническая революция секвенаторов значительно повысила их пропускную способность, и исключать загрязнения стало гораздо проще. Новый прорыв произошел в 2009 году во вверенной мне студии MPI-EVA. Мы впервые расшифровали полную митохондриальную ДНК человека ледникового периода, который жил в западной части России. Но наиболее важным в этой работе, с сегодняшней точки зрения, была методическая часть. Мы разработали процесс, в ходе которого анализируется вред, нанесенный человеческой ДНК. Сегодня это уже стандарт археогенетики. При этом перепроверяются специфические образцы повреждений, которые возникают гарантированно, ведь ДНК с течением времени разрушается. Чем сильнее она разрушена, тем, значит, она старше. Исходя из этого для старой ДНК можно вывести своего рода принцип чистоты. Если в ней находятся образцы повреждений, свойственные молодой ДНК, значит, образец загрязнен и его не следует рассматривать дальше. В случае с русским человеком ледникового периода мы впервые надежно доказали, что ДНК не была загрязнена.


Легенда древнего народа

Вред, нанесенный псевдонаучными открытиями за прошедшие годы, до сих пор имеет свои последствия. У археогенетиков волосы встают дыбом от того, сколько вокруг недопонимания относительно наследственности и как нагло эти недопонимания монетизируются. Есть целые фирмы, которые вешают лапшу на уши, будто могут установить, к каким «пранародам» принадлежали предки их клиентов. Того и гляди обнаружат у вас ген Наполеона. Такие генетические тесты недешевы, за них отдают и четырехзначные суммы. К сожалению, зачастую они все равно не работают.

Дело в том, что в подобных фирмах сравнивают митохондриальную ДНК и Y-хромосому клиента с ДНК человека из прошлого. Приманкой служит, например, ДНК кельтов. Если ДНК клиента совпадает с образцом ДНК из кельтского захоронения, на основе этого выстраивают прямую родословную. Но митохондриальная ДНК кельтов происходит из каменного, бронзового века или из средневековой Европы, а к тому времени кельтской культуры еще не существовало. Митохондриальная ДНК совершенно не подходит для того, чтобы устанавливать с кем-либо тесное родство. Это всего лишь наследственная информация одной-единственной женщины, одной из миллионов прародительниц. Представления о кельтском пранароде не больше чем россказни. И про родство с Наполеоном такие тесты не расскажут. Носителем митохондриальной ДНК Наполеона был не только он сам, но и его мать, а кроме того, вероятно, тысячи других людей, живших в то же время.

В остальном можно практически безвозмездно наслаждаться родством с великими предками. Карл Великий, который более тысячи лет тому назад стал отцом по крайней мере 14 детей, сойдет за общего предка большинства европейцев. Это чистая математика, которая говорит, что количество предков одного современного европейца превышает количество людей, живших тысячу лет назад. Можно сказать, что почти все дошедшие до наших дней родовые ветви людей той эпохи тянутся к каждому европейцу. Вероятность, что к одной из этих ветвей принадлежал хотя бы один ребенок Карла Великого, почти стопроцентная[12].

Другими словами, у всех европейцев за последнюю тысячу лет были общие предки.

Однако общая с неким предком ДНК в каждом поколении уменьшается вполовину. Наследственность предполагаемого предка, отстоящего от вас на 10 поколений, с высокой вероятностью отследить по современному геному невозможно. Конечно, есть и серьезные специалисты, которые обследуют весь ядерный геном и предлагают достоверные результаты генетического происхождения. При этом генетические особенности соотносятся с регионами. Принцип, который за этим стоит, прост: чем ближе друг к другу живут люди, тем больше между ними родства, ведь это значит, что тем меньше времени прошло с тех пор, как у них был общий предок. При этом бритты и греки так же генетически далеки друг от друга, как испанцы и балты, а между ними находятся жители Центральной Европы. Если изобразить генетическую удаленность между европейцами с помощью осей X и Y, эти координаты будут практически конгруэнтны географической карте Европы.

Никакого отношения к «пранародам» все это не имеет. Например, если обратиться к Великому переселению народов, ключевому положению широко распространенной идеи о «пранародах», то обнаружится большой генетический обмен между европейцами, но никакого серьезного генетического сдвига мы не увидим. Нужно вернуться на 5000 лет назад, чтобы столкнуться с последним большим миграционным движением, которое ощутимо изменило ДНК всех европейцев. ДНК людей, которые в то время вышли из восточноевропейской степи, до сих пор остается одним из трех доминирующих генетических компонентов на континенте. Два других компонента восходят к ранним охотникам и собирателям, а также к земледельцам, вышедшим из Анатолии. Генетический вклад этих трех прапопуляций (лишь в этом случае уместно подобное обозначение) для каждого человека с европейскими корнями можно вычислить с помощью расшифровки ДНК. Такие тесты тоже предлагают многие фирмы. Принимать ли подобные предложения, каждый должен решать сам.

Без сомнения, интересно узнать, к кому вы генетически ближе — к охотникам и собирателям, древним земледельцам или жителям степей. Но большинство коммерческих проектов не могут предложить ничего, кроме фольклора: различающиеся компоненты могут сообщить нам кое-что о генетическом происхождении, но ничего о наших склонностях. Генетически наиболее удаленные друг от друга люди на земле все равно несут в себе ДНК, которая может быть идентичной на 99,8 %. Даже от неандертальцев нас отличает менее процента нашего генома. Так что когда говорят о генетическом сдвиге, на самом деле речь идет лишь о крошечной частичке ДНК. Когда мы имеем дело с популяциями настолько географически и генетически близкими друг другу, как французы и португальцы, различить их можно только с помощью секвенирования на высокопроизводительных устройствах.

Однако то, что генетический фундамент европейцев был заложен около 4500 лет тому назад, не означает, что археогенетике нечего добавить о более позднем времени. Эта дисциплина все еще находится в начале своего развития, тщательно исследованы пока только доисторический и раннеисторический периоды. Следующими в фокус археогенетиков, вероятно, попадут шумеры, египтяне и римляне. До сих пор интерес к ним был довольно ограниченным, поскольку до нас дошло значительное письменное наследие, мы знаем многочисленные исторические детали, вплоть до подробностей трапез римских императоров. Для большинства археогенетиков в приоритете те эпохи, о которых нет письменных свидетельств.

ДНК может добавить новые знания и о миграционных потоках, связанных с переселением народов, но речь при этом идет скорее о рассеянных генетических «микроэлементах». В VI веке нашей эры прибывшие в Европу мигранты не могли оставить более существенных генетических следов. Здесь попросту жило слишком много людей, и даже группы, состоявшие из десятков тысяч иммигрантов, не могли вызвать генетических отклонений. Об общественных, политических и культурных последствиях иммиграции мы при этом, конечно, не говорим.


Путешествие чумы и холеры

Наряду с расшифровкой ДНК давно умерших людей в последнее время много внимания привлекло к себе другое направление исследований в рамках археогенетики — расшифровка старых ДНК возбудителей болезней. Миграция людей, обмен между популяциями сделали современного человека тем, кто он есть, позволили ему выстроить высокоразвитую, глобальную сетевую цивилизацию. Но за такую мобильность пришлось дорого заплатить. И расплата пришла в виде инфекционных заболеваний. Многие миллионы людей в ходе последних тысячелетий умерли от бактерий и вирусов, и вызвано это двумя взаимосвязанными мегатрендами. Во-первых, растущая плотность населения облегчила возбудителям болезней распространение среди людей. Во-вторых, срабатывает все более интенсивный обмен между популяциями, спровоцированный, помимо прочего, торговлей. Весьма вероятно, именно она была первопричиной, по которой возбудители болезней проложили себе путь в новые регионы.

История продолжается: коренные жители Северной Америки после прибытия европейцев стали массово страдать от оспы и кори, а европейцы, в свою очередь, вероятно, привезли домой сифилис, который вплоть до XX века был распространен по всему континенту, принес много страданий и потребовал многочисленных жертв. И во время вспышки лихорадки Эболы в Западной Африке несколько лет назад люди по всему миру боялись, что болезнь перейдет и на другие регионы.

В последние годы стали появляться более веские доказательства того, что между ранними миграционными волнами и инфекционными заболеваниями есть взаимосвязь. Так, примерно 5200 лет тому назад на юге современной России уже был возбудитель чумы. А ведь это регион, откуда люди впоследствии массово переместились в Центральную Европу, и там примерно в то же время значительно сократилось коренное население. Возможно ли, что незадолго до того занесенный возбудитель болезни убил этих людей и их место заняли другие, которые к этому возбудителю уже давно приспособились? Многое указывает на то, что этот сценарий вероятен.

Примерно 3000 лет назад генетическое путешествие европейцев в целом завершилось, но возбудители болезни вплоть до последнего столетия по-прежнему, снова и снова, приводили континент в беспокойство. Понять, как эволюционировали эти маленькие бестии — большой вызов, и археогенетики в будущем примут его вместе с медиками. Человеку нравится быть самым успешным и мобильным видом в истории Земли. Но бактерии и вирусы, чье генетическое развитие длится тысячелетия, наступают ему на пятки. Что мы знаем об этой гонке и что эти знания говорят нам о наших возможностях противостоять таким врагам? В своей книге мы подробно отвечаем на эти вопросы.

Загрузка...