Везде и всюду нас окружает атмосферный воздух. Из чего он состоит? Ответ не составляет труда: из 78,08 процента азота, 20,9 процента кислорода, 0,03 процента углекислого газа, 0,00 005 процента водорода, около 0,94 процента приходится на долю так называемых инертных газов. Последние были открыты всего лишь в конце прошлого столетия.
К концу XVIII века были обнаружены многие из известных газов. К ним относились: кислород — газ, поддерживающий горение; углекислый газ — его можно было легко обнаружить по весьма примечательному свойству: он мутил известковую воду; и, наконец, азот, горения не поддерживающий и на известковую воду не действующий. Таков был в представлении химиков того времени состав атмосферы, и никто, кроме известного английского ученого лорда Кэвендиша, не сомневался в этом.
И у него был повод для сомнения.
В 1785 году он проделал довольно простой опыт. Прежде всего Кэвендиш удалил из воздуха углекислый газ. На оставшуюся смесь азота и кислорода он подействовал электрической искрой. Азот, реагируя с кислородом, давал бурые пары окислов азота, которые, растворяясь в воде, превращались в азотную кислоту. Эта операция повторялась многократно.
Однако немного менее одной сотой части объема воздуха, взятого для опыта, оставалось неизменной. К сожалению, этот эпизод был забыт на многие годы.
Во второй половине XIX века возникла горячая полемика по поводу гипотезы Проута, утверждавшего, что атомные веса всех элементов должны выражаться целыми числами, то есть атомы их должны, по мнению Проута, состоять из атомов водорода. Чтобы решить спор, химики сочли необходимым точно измерить атомные веса элементов, в первую очередь газов азота, кислорода и водорода.
Путь к определению атомных и молекулярных весов газов лежал через определение их плотностей.
В 1892 году английский физик Рэлей измерял удельный вес азота. К своему удивлению, он обнаружил, что удельный вес азота воздуха равен 1,257 г/л, а удельный вес азота из химических соединений: азотнокислого аммония, закиси и окиси азота, мочевины — только 1,251 г/л. Рэлей повторял опыты, брал различные вещества, содержащие азот, но результат был тем же самым. Шесть тысячных грамма — вес блохи. Но эти шесть тысячных грамма не могли быть ошибкой опыта, ибо техника измерений уже в то время позволяла оперировать с гораздо меньшими величинами.
Осенью 1892 года Рэлей обратился к ученым коллегам с письмом. Он просил их указать причину обнаруженного им несовпадения. Опытами Рэлея заинтересовался английский физико-химик Рамзай. Он предположил, что причина неодинаковой плотности заключается в присутствии неизвестного тяжелого газа, и сообщил об этом Рэлею.
Ученые решили выделить таинственный газ, но пути к обнаружению его они выбрали разные. Рамзай обратился за помощью к химии.
Во время своих многолетних демонстрационных опытов он заметил, что магниевые опилки поглощают азот. «Магний поможет решить задачу», — думал Рамзай. Он поглотил кислород воздуха медью. Оставшийся азот в течение 10 дней прогонял многократно через трубку с раскаленным магнием. Объем газа уменьшался изо дня в день, а его плотность возрастала. Через 10 дней в руках Рамзая было 100 кубических сантиметров нового газа с плотностью 19,086.
Рэлей в своих исследованиях использовал физические методы. От своего друга физика Дьюара он узнал об опытах Кэвендиша. Рэлей повторил опыт Кэвендиша, применив гораздо более совершенную аппаратуру. Азот окислялся в 50-литровом колоколе.
Через несколько дней Рэлей получил половину кубического сантиметра неизвестного газа.
Итак, новый газ был в руках. 13 августа 1894 года физик Рэлей и химик Рамзай сделали предварительное сообщение на съезде Британского общества естествоиспытателей в Оксфорде об открытии новой составной части воздуха. Один физик, прослушав сообщение, спросил: «Не открыли ли вы, господа, и имени этого газа?»
Вопрос не был праздным. Открыть новое вещество — это еще не все. Надо изучить его, узнать, соединение это или элемент. Каковы его характерные свойства? Название ведь обычно выражает наиболее характерную особенность вещества.
Рамзай, основываясь на кинетической теории газов, нашел, что молекула нового газа состоит из одного атома. Следовательно, если газ одноатомен, то соединением он быть не может. Новый газ был элементом.
Много усилий и времени было затрачено на то, чтобы получить соединение нового газа. Его пробовали соединить со фтором, хлором, с металлами, нагревали, сжимали. Газ оставался самим собой: он не реагировал ни с одним веществом. И поэтому на вопрос ученые ответили: «Газ недеятелен, ленив, так его и назовем». Новый газ был назван «аргоном», что в переводе с греческого означает «ленивый, безразличный».
Известие об открытии нового газа потрясло научный мир. Им заинтересовались и химики, и физики, и минералоги. В феврале 1895 года Рамзай получил письмо от лондонского минералога Майерса, где тот сообщал об опытах американского геолога Гиллебранда, который кипятил в серной кислоте редкие урановые минералы и наблюдал выделение газа, по свойствам своим напоминавшего азот. Чем больше урана содержал минерал, тем больше выделялось газа. Гиллебранд условно предположил, что газ является азотом. «А может быть, это аргон?» — спрашивал автор письма.
Вскоре Рамзай послал своих помощников в лондонские химические магазины за урановым минералом клевеитом. Было куплено 30 граммов клевеита, и в тот же день Рамзай со своим помощником Метьюзом извлек несколько кубических сантиметров газа. Рамзай подверг этот газ спектроскопическому исследованию. Он увидел яркую желтую линию, очень похожую на линию натрия и в то же время отличающуюся от нее по своему положению в спектре. Рамзай был настолько удивлен, что разобрал спектроскоп, прочистил его, но при новом опыте снова обнаружил яркую желтую линию, не совпадавшую с линией натрия. Рамзай просмотрел спектры всех элементов. Наконец он вспомнил о загадочной линии в спектре солнечной короны.
В 1868 году во время солнечного затмения французский исследователь Жансен и англичанин Локьер обнаружили в спектре солнечных протуберанцев яркую желтую линию, которой не оказалось в спектрах земных источников света. В 1871 году Локьер высказал предположение, не принадлежит ли эта линия спектру неизвестного на Земле вещества.
Он называет этот гипотетический элемент гелием, то есть «солнечным». Но на Земле он обнаружен не был. Физики и химики им не заинтересовались: на Солнце, мол, совершенно другие условия, там и водород сойдет за гелий.
Так неужели в его руках этот самый гелий?! Рамзай почти уверен в этом, но он хочет услышать подтверждение от известного спектроскописта Крукса. Рамзай посылает ему газ на исследование и пишет о том, что нашел какой-то новый газ, названный им криптоном, по-гречески означает «скрытный». Телеграмма от Крукса гласила: «Криптон есть гелий».
К 1895 году открыли два инертных газа. Было ясно, что между ними должен находиться еще один газ, свойства которого Рамзай описал заранее по примеру Менделеева. Лекок де Буабодран предсказал даже атомный вес неоткрытого газа — 20,0945.
Но где же искать этот газ? Рамзай исследовал все тела, которые могли содержать газы, исследовал даже метеориты, но ничего нового не обнаружил. Тогда Рамзай снова обратился к воздуху. И неизвестно, обнаружил бы ученый новые инертные газы, если бы во время его поисков Линде в Германии и Хэмпсон в Англии не взяли одновременно патент на машину, сжижающую воздух.
Эта машина словно была изобретена специально для открытия инертных газов. Принцип ее действия основан на известном физическом явлении, если сжать воздух, а затем дать ему быстро расшириться, он охладится. Охлажденным воздухом охлаждают новую порцию сжатого воздуха, поступившую в машину, и т. д., пока воздух не превратится в жидкость.
В конце 1897 года Рамзай от Хэмпсона получил 100 кубических сантиметров жидкого воздуха.
Испарив почти весь азот и кислород, Рамзай оставшийся жидкий воздух поместил в газометр. Он думал найти там гелий, так как считал, что этот газ испаряется медленнее, чем кислород и азот. Он очистил газ в газометре от примеси кислорода и азота и снял спектр, в котором обнаружил две яркие ранее неизвестные линии.
Они принадлежали еще неизвестному газу, который Рамзай назвал псевдонимом гелия — криптоном, то есть «скрытным». Далее Рамзай поместил 15 литров аргона в баллоне в жидкий воздух. Для того чтобы найти инертный газ, по расчетам, более легкий, чем аргон и криптон. Рамзай собрал первые порции испарения аргона. Получился новый спектр с ярко-красными линиями. Рамзай назвал выделенный газ неоном, что по-гречески означает «новый».
В 1888 году помощник Рамзая Трэверс построил машину, способную давать температуру до –253 °C. С ее помощью был получен твердый аргон. Были отогнаны все газы, кроме криптона. И уже в неочищенном криптоне был найден ксенон («чуждый»). Для того чтобы получить 300 кубических сантиметров ксенона, ученым пришлось в течение двух лет переработать 77,5 миллиона литров атмосферного воздуха.
Таким образом, было найдено пять инертных газов. Оставалась очередь за шестым, самым тяжелым.
Уже было сказано, что гелий присутствует в урановых минералах. Чем больше в клевеите урана, тем больше гелия. Рамзай долгое время старался найти взаимосвязь между содержанием урана и гелия, но это ему не удалось. Разгадка пришла с другой стороны; она была связана с открытием радиоактивности.
Обнаружили, что радий выделяет газообразное вещество, названное эманацией. 1 грамм радия давал в сутки 1 кубический миллиметр эманации. В 1903 году Рамзай и известный физик Содди занялись изучением эманации. Они имели в своем распоряжении всего лишь 50 миллиграммов бромистого радия; одновременно у них было не более 0,1 кубического миллиметра эманации.
Для выполнения работ Рамзай построил сверхчувствительные весы, показывающие четыре миллиардные доли грамма. Вскоре исследователи выяснили, что эманация является последним представителем семейства инертных газов.
Им долго не удавалось разглядеть спектр эманации. Как-то, оставив трубку с эманацией на несколько дней, они поместили ее в спектроскоп и были удивлены, увидев в спектре знакомые линии гелия.
Этот факт подтвердил предположение Резерфорда и Содди о том, что радиоактивное превращение связано с превращением атомов. Радий, самопроизвольно распадаясь, превращался в эманацию и выделял ядро атома гелия.
Один элемент превращался в другой!
Ученым стало понятным, почему гелий обнаруживается в урановых минералах; он один из продуктов распада урана. В 1923 году по решению Международного комитета по химическим элементам эманация была переименована в радон.
Вернемся снова к составу земной атмосферы. Вспомним, что на долю азота и кислорода приходится более 99 процентов. На все остальные газы, включая водород и двуокись углерода, приходится менее одного процента. Львиную долю этого процента забирает аргон. По сравнению с остальными инертными газами аргона очень много в атмосфере — 0,93 процента. Это объясняется радиоактивным распадом 40K, в результате которого образуется 40Ar, кстати, по этой же причине тяжелый изотоп аргона преобладает. 1 килограмм воздуха содержит 12,9 грамма аргона и десятую долю грамма всех остальных инертных газов.
Ксенон — очень редкий газ, его содержание в атмосфере равно 9·10–7 процента, но в то же время абсолютное его содержание огромно. Если бы мы захотели поместить этот газ в железнодорожные цистерны, то потребовался бы поезд длиною в 80 земных экваторов, и если бы ваш путь пересек этот поезд, мчащийся со скоростью 90 километров в час, то подъема шлагбаума пришлось бы ждать четыре года.
Содержание радона в атмосфере ничтожно: 6·10–18 процента. Если собрать весь радон земной атмосферы, то его можно будет поместить в пивную бочку средних размеров, объемом всего лишь 230 литров. Весит это количество радона два с небольшим килограмма, столько же, сколько том Большой Советской Энциклопедии.
Инертные газы содержатся не только в атмосфере: гелий и аргон можно обнаружить в снеге, граде, дождевой воде и минералах. При каждом вулканическом извержении выделяется значительное количество аргона. В 1902 году во время извержения вулкана Мон-Пеле на острове Мартиника выделялись газы, содержащие 0,7 процента аргона.
Совершенно иные цифры получим мы, если рассмотрим распространение элементов в космосе.
По последним научным данным, вселенная состоит по весу из 76 процентов водорода, 23 процентов гелия; только 1 процент приходится на долю всех остальных элементов таблицы Менделеева.
Вот, кажется, и все об инертных газах…
Впрочем, вправду ли они такие инертные, ленивые, химически мертвые? Еще в 1896 году был получен кристаллический гидрат аргона, но, по словам советского химика Б. А. Никитина, и через тридцать лет этот факт оставался непонятным и удивительным для многих исследователей.
Б. А. Никитин положил много сил исследованию соединений инертных газов. Он предложил оригинальный метод получения легкодиссоциирующих молекулярных соединений благородных газов.
Что такое молекулярное соединение и почему оно характерно для инертных газов?
Инертные газы обладают законченной, совершенной структурой электронных оболочек. На внешней электронной оболочке у них содержится восемь электронов, у гелия — два. Благородные газы очень крепко держат свои электроны, не отдают их чужим атомам и сами не принимают ничьих электронов — короче говоря, ионных соединений типа NaCl или NaF они не в состоянии образовать.
Атомы инертных газов не склонны также обобществить свой электрон с электроном другого атома и дать соединение с ковалентной связью, типа молекулы хлора. Валентная связь, обусловленная переходом электрона или обобществлением его, не имеет места у благородных газов. Но мы знаем, что при низких температурах они могут быть и жидкостью и даже твердым телом.
Какие же силы стягивают в жидкость однородную молекулу инертного газа? Межмолекулярные, или, как их еще называют, в честь голландского химика Ван дер Ваальса, вандерваальсовы силы…
В любой молекуле есть как положительно заряженные частицы — ядра атомов, так и отрицательные — электроны. И для отрицательных и для положительных зарядов есть точки, которые можно назвать «электрическим центром тяжести». Эти точки — своего рода полюсы молекулы. Если в молекуле отрицательный и положительный полюсы совпадают, то молекула будет неполярной. Молекулы инертных газов неполярны; они построены очень гармонично.
При несовпадении электрических центров тяжести получается полярная молекула.
Молекулярные соединения образуются за счет вандерваальсовых сил, имеющих электрическое происхождение. Эти силы примерно в 100 раз слабее обычных валентных химических сил.
Итак, вандерваальсовы силы связывают молекулы инертных газов в жидкость. Какой характер имеют эти силы здесь? Ведь молекула в данном случае совершенно неполярна. Оказывается, не совсем. В атоме не только электроны вращаются вокруг ядра, но и сами ядра колеблются относительно своих положений равновесия. А поэтому на очень короткое время идеальная симметричная структура молекулы инертного газа искажается. Часть электронных орбит время от времени на мгновение смещается и образует диполь, правда очень небольшой.
А могут ли вандерваальсовы силы связать молекулу инертного газа с молекулой другого вещества? Могут, особенно если эти другие молекулы близки им по размерам и по форме, или, как говорят химики, изоморфны. Б. А. Никитин обнаружил, что радон, например, изоморфен с сероводородом и двуокисью серы; их кристаллические структуры сходны. Частицы радона могут заменять частицы сероводорода в кристаллической решетке, образуя смешанные кристаллы.
Гидрат радона также изоморфен с гидратом сероводорода. Если под большим давлением пропускать радон через ледяную воду, то образующийся гидрат тут же распадается. Стоит только добавить к инертному газу сероводород, и образующийся гидрат сероводорода уловит радон в свою кристаллическую решетку.
Наряду с гидратом сероводорода получится гидрат радона. Этим методом, названным методом изоморфного соосаждения, Никитин впервые получил кристаллогидраты всех инертных газов, кроме гелия, и обнаружил, что все они содержат по шесть молекул воды. Здесь атом инертного газа плотно взят в кольцо полярными молекулами воды.
Молекулярные соединения инертных газов малоустойчивы, но являются полноценными химическими соединениями, так как обладают вполне определенным химическим составом.
Чем выше молекулярный вес инертного газа, тем прочнее его гидрат. Если гидрат ксенона получают при 0 °C, почти при нормальном давлении, то гидрат неона при той же температуре необходимо сжимать до 300 атмосфер. Различная устойчивость гидратов благородных газов может быть использована для их разделения.
В результате работ советского ученого образовалась новая глава в химии — химия инертных газов, играющая важную роль в изучении природы молекулярных соединений.