Где предел?

Посмотрите еще раз на систему химических элементов. Она начинается с водорода и кончается… Лет двадцать пять назад мы бы уверенно заявили, что в самом конце системы химических элементов Д. И. Менделеева стоит уран. Еще вчера мы бы сказали, что последним элементом является нобелий (порядковый номер 102), но сегодня уже синтезирован № 103 (лоуренсий). А что будет завтра?

Итак, верхняя граница системы смещается в сторону более тяжелых элементов, и о том, сколь долго она будет еще смещаться, мы поговорим дальше.


Сначала о нижней границе

С нижней границей, кажется, все в порядке. Водород всегда был самым легким из всех известных элементов. В самом деле, что называется химическим элементом?

«Совокупность атомов, обладающих одинаковым зарядом ядра».

У водорода заряд ядра минимальный: 1. Таким образом, водород является первым химическим началом, или элементом, и вести разговор о нижнем пределе системы больше как будто бы нечего. Однако то, что не вызывает сомнений на первый взгляд, далеко не всегда ясно на самом деле.

Когда в 1869 году Менделеев открыл периодический закон, еще не были известны многие из химических элементов и решить вопрос об их количестве считалось невозможным.

Самым легким был водород; его атомный вес — единица. За ним шел литий, почти в семь раз более тяжелый. Гелий, который теперь занимает второе место в системе, тогда еще не обнаружили на Земле. За литием шли элементы с близкими атомными весами (9Be, 11B, 12C, 14N, 16O и т. д.[8]).

Менделеев, конечно, обратил внимание на столь большой разрыв в атомных весах соседних элементов, какой имел место между водородом и литием. Подобные разрывы обнаруживались и в некоторых других местах системы. Автор периодического закона совершенно справедливо считал, что решение этого вопроса раскроет внутреннюю природу элементов и приведет к выяснению их числа. По мнению Менделеева, некоторые элементы могли отсутствовать в системе из-за своей неустойчивости. Он писал, что есть немало элементов, «существование которых до некоторой степени подвержено сомнению, потому что нам не известна природа тех сил, которые производят так называемую элементарную форму материи». «Некоторые равновесия, — заключал Менделеев, — просто невозможны». Это было сказано задолго до открытия радиоактивности.

Указывал он и на то, что глубокое изучение физических и химических свойств урана — тогда последнего элемента — приведет к новым открытиям в физике и химии.

С 1875 года начали отыскиваться новые элементы, для которых Менделеев оставил пустые клетки в своей системе. В 1886 году был открыт уже третий из таких элементов — германий. Однако в том же году английский ученый Уильям Крукс говорил: «Мы смотрим на число элементов, на их отличительные свойства и спрашиваем себя: случайны или чем-нибудь обусловлены эти обстоятельства? Другими словами, могло ли быть только 7, или 700, или 7000 абсолютно различных элементов?»

Почему же возникали такие вопросы?

Прежде всего из-за неполноты тогдашних знаний о самих элементах. Периодический закон был открыт, а причина периодичности оставалась непонятной, так как в XIX веке почти ничего не знали о строении атома. Представление о заряде ядра появилось значительно позже, в начале второго десятилетия XX века. Раньше порядковый номер элемента был просто регистрационным номером в таблице элементов.


Поэтому не нужно удивляться тому, что Д. И. Менделеев мог делать уверенные предсказания только о недостающих внутри системы элементах на основании данных о всех соседях «невидимки». Но выйти за рамки системы он не мог.

Для иллюстрации сказанного приведем такой пример. Возьмем первые два периода системы элементов.

Если бы мы не знали, что порядковые номера химических элементов есть не что иное, как заряд ядра, который увеличивается ровно на единицу при переходе от одного элемента к другому, то не могли бы совершенно уверенно сказать, находятся ли еще какие-нибудь элементы между водородом и гелием и, точно так же, есть ли элементы выше водорода. Можно предполагать, например, существование в первом периоде элемента с атомным весом 3, аналогом которого являются фтор и другие галогены. Действительно, подобные предположения высказывались.

Как же в те годы решался вопрос о начале системы?

Опыт изучения легких элементов свидетельствовал, что все они широко распространены в природе. Поэтому высказывалось мнение о невозможности найти еще какие-либо новые, более легкие элементы. Однако начиная с 1894 года была открыта группа инертных газов, в том числе гелий, имеющий малый атомный вес (4). Вновь открытые элементы оказались химически недеятельными, а потому и малораспространенными. Таких элементов химики раньше не знали.

В течение десятков лет многие ученые высказывались в пользу идеи единства простых тел химии, считая все химические элементы построенными из одного, более легкого элемента, чем все до сих пор известные. Это было возрождением нашумевшей когда-то гипотезы Проута, полагавшего, что химические элементы построены из атомов водорода. Однако гипотеза Проута была опровергнута экспериментальными определениями величин атомных весов: у большинства элементов они вовсе не являются кратными атомному весу водорода.

Это было в начале XIX века, а в конце его стали говорить то о гипотетическом «протиле», то об элементе «коронии», спектр которого якобы наблюдался в солнечной короне. Поиски более легких элементов на Солнце объясняются, конечно, огромной температурой нашего светила, создающей условия для появления этих простых, как думали, элементов, из которых затем складываются более сложные.

Выдающиеся открытия в науке — открытие электрона, рентгеновых лучей, радиоактивности, взаимопревращаемости элементов — раскрыли природу химических элементов и показали, что атом состоит из ядра, заряженного положительно, и электронов, вращающихся вокруг ядра. Тогда-то и было утверждено положение о заряде ядра, которому равен порядковый номер элемента в системе. Итак, водород остался первым, так как заряд его ядра равен 1. И все же история с нижним пределом оказалась не совсем завершенной. «Виновником» этого был отчасти Менделеев. В 1906 году он поместил в системе элементов наряду с нулевой группой нулевой период, желая тем самым подчеркнуть существование элементов в еще большей степени, чем инертные газы, лишенных химической активности. В нулевой период вошли два гипотетических (предполагаемых) элемента X и Y, ставших выше водорода и имевших атомные веса 10–6 для X и 0,4 для Y.

Надо сказать, что о существовании более легкого, чем водород, элемента Менделеев задумывался еще в 1871–1872 годах, понимая важность решения этого вопроса для объяснения причины периодичности и природы элементов.

Позднее на основе учения о строении атома было уточнено понятие о «химическом элементе» и первым из них признан водород. X и Y, как не соответствующие этому определению, изъяли из системы элементов.

Однако затишье наступило ненадолго. Когда были открыты протоны и нейтроны, составляющие ядра атомов, появились попытки включить нейтрон в систему элементов. Предлагалось считать его элементом с порядковым номером, равным нулю. В подкрепление выдвигаемой точки зрения ссылались на менделеевские элементы X и Y. Один из химиков даже советовал назвать нейтрон «менделеевием».

Включить электрон в систему элементов химики пробовали еще ранее.

Отдельные ученые пытались ввести представление о циклах или сдвоенных периодах. Известно, что в системе элементов периоды по 8, 18 и 32 элемента повторяются дважды. Исключением является единственный (первый), состоящий из двух элементов. С введением нулевого периода нарушенная его отсутствием стройность системы восстанавливалась. Такая система хорошо подчиняется формуле: Z = 2(n12 + n22), где n1 — номер нечетного, а n2 — четного ряда системы, a Z — число элементов в любом периоде.

Из каких же элементов состоит нулевой период? Ими оказываются электрон и нейтрон. Совершенно очевидно, что ни тот, ни другой не подходят под определение элемента. Ведь в нейтральном состоянии каждый из атомов какого-либо элемента имеет ядро и оболочку, состоящую из электронов. В периодической системе элементов как раз и выражается закономерное усложнение электронной оболочки с увеличением заряда ядра. При отсутствии этой совокупности (ядра и оболочки) мы переходим к качественно новому виду частиц материи. Действительно, ядра атомов и изотопов образуют свою систему, элементарные частицы — свою и т. д.

В стремлении включить в систему элементов нулевой период сказалось желание наглядно представить все ту же идею единства материи, взаимосвязь различных частиц материи. Ведь электрон, нейтрон, протон и гелий (их иногда называют «праэлементами») являются как бы составной частью всех элементов. В последнее время развитие этого вопроса привело к тому, что на страницах научных журналов стали появляться публикации «периодических систем элементов и антиэлементов». Под последними понимаются материальные образования, состоящие из позитронов (которые являются антиэлектронами: электрон — e, позитрон — e+) и антиядер, составленных, в свою очередь, из антипротонов и антинейтронов, которые тоже теперь открыты.

Химики же в своей работе используют пока обычную «классическую» систему элементов, начинающуюся с водорода — первого химического элемента.


Теперь о верхней границе

Было время — и тянулось оно, надо сказать, весьма долго, — когда таблицу элементов замыкал элемент уран. За ним начиналось Неизвестное. Беспокойная мысль ученых не могла ответить на вопрос, почему в природе не обнаружены элементы тяжелее урана. Может, они невообразимо редки, может, не существует вообще, — недаром же Менделеев завещал грядущим поколениям ученых особое внимание обратить на уран. «От последнего в списке элементов можно ожидать всяких сюрпризов», — говорил великий ученый. Это предвидение начало сбываться уже при его жизни. Ведь именно с ураном оказалось связанным открытие явления радиоактивности.

Элементы конца периодической системы неустойчивы — к такому выводу пришли ученые в начале XX века. Простая логика подсказывала, что трансурановые элементы обладали, по-видимому, невысокими периодами полураспада и потому не сохранились до нашего времени. Вот почему менделеевская система обрывается на уране. Но это было лишь качественное объяснение.

Чтобы дать отсутствию трансурановых элементов в природе более строгое научное объяснение, нам придется сделать некоторое отступление.

Все элементы конца таблицы Менделеева, начиная с полония, радиоактивны. Но лишь уран и торий сохранились и по сей день с той поры, как образовалась солнечная система. Существующие в природе их изотопы (торий-232, уран-235, уран-238) имеют периоды полураспада, превышающие возраст Земли, равный 5 миллиардам лет. Остальные же радиоактивные элементы — полоний, радий, актиний и другие — гораздо менее долговечны. Те их количества, которые мы сейчас обнаруживаем в земной коре, представляют собой продукты распада долго живущих изотопов урана и тория. Они являются вторичными элементами. Супруги Кюри выделили из иоахимстальской руды вторичные радий и полоний, Дебьерн открыл вторичный актиний.

Чему же обязаны уран и торий своей сравнительно огромной долговечностью? Казалось бы, чем дальше расположен элемент в периодической системе, тем он неустойчивее. А на деле периоды полураспада изотопов урана и тория превосходят периоды полураспада всех прочих изотопов радиоактивных элементов в миллионы и десятки миллионов раз.

Ответ дадут нам некоторые закономерности ядерной физики.

46 радиоизотопов входят в ряды радиоактивных превращений урана-238, урана-235 и тория-232; 34 из них являются альфа-активными.

Испускание ядер гелия — главный вид распада у тяжелых элементов, и именно у них альфа-распад проявляется весьма энергично. Для каждого альфа-активного изотопа характерна своя величина энергии распада. Чем выше эта энергия, тем менее долговечен изотоп, тем меньше период его полураспада.

Физики измеряют эту энергию в специальных единицах — электроновольтах. Так, у астата-213 эта энергия составляет 9,2 миллиона электроновольт (Мэе), а у тория-232 — 4,05 Мэе. Первый погибает, не успев родиться, живет сотые доли секунды; второй теряет половину атомов за астрономически большой срок — 10 миллиардов лет. Как будто противоречие: более легкий элемент оказывается куда менее устойчивым, чем более тяжелый. Парадокс. Но физика, и особенно ядерная, гораздо богаче парадоксами, чем какая-нибудь другая наука.

И вот как он решается. Изучая атомное ядро, ученые пришли к выводу, что в ядрах имеются особые протонные и нейтронные оболочки. Восьмиэлектронные оболочки инертных газов оказываются весьма устойчивыми. Это и обуславливает «благородство» инертных газов. Ядра, содержащие заполненные протонные или нейтронные оболочки, также резко выделяются по своим качествам. Например, ядра со 126 нейтронами значительно устойчивее своих соседей. Изотопы полония, астата, радона, франция находятся, выражаясь на языке ядерной физики, в области нейтронной оболочки из 126 нейтронов. Что для нас особенно важно, этот факт сильно влияет на величины энергий альфа-распада.

У всех изотопов, имеющих более 126 нейтронов, эти энергии сначала резко возрастают. По аналогии с обычной химией, когда каждый ион стремится достичь электронной структуры инертного газа, ядра как бы желают заполучить устойчивую 126-нейтронную оболочку. Вот почему элементы от полония до радия так неустойчивы по отношению к альфа-распаду.

Далее влияние «магической» оболочки ослабевает, и энергии альфа-распада уменьшаются. А это, в свою очередь, приводит к росту периодов полураспада. У тория, протактиния и урана ее влияние ничтожно, но протактиний подводит то, что он элемент нечетный, а они, как правило, менее устойчивы, чем их четные соседи.

Но за ураном должна сказываться другая тенденция — более тяжелые ядра по самой своей природе будут представлять малоустойчивые образования. Они слишком перегружены нейтронами и протонами и, образно говоря, «разваливаются под действием собственной тяжести». Действительно, у нептуния, плутония и последующих трансуранов энергия альфа-распада возрастает. Поэтому они недолговечны; поэтому уран долгое время оставался последним элементом периодической системы.

То, что мы рассказали, хорошо известно теперь; ученые начала XX века ничего не знали об этом, ибо сама наука о превращении элементов только лишь зарождалась, и ничьи уста не произносили еще столь привычного нам термина «ядерная физика». Исследователи вслепую шли по проторенной дорожке — искали заурановые элементы в земных минералах. Иные тешили себя мечтой обнаружить хотя бы ближайших соседей урана, другие прибегали к эффектным, но на деле совершенно беспочвенным научным спекуляциям.

…Пожалуй, одной из наиболее оригинальных в истории человечества была небольшая экспедиция в Гренландию, состоявшаяся в начале 20-х годов нашего века. Ученые бороздили бескрайние просторы «ледяного острова» отнюдь не ради географических исследований. Их цель была так же проста, как и непонятна на первый взгляд. Они стремились собрать побольше странного сероватого пепла, который местами четко выделялся на ослепительно сверкавших под солнцем льдах. Полагали, что эта своеобразная полярная «пыль» имеет космическое происхождение.

В ней немецкий ученый Рихард Свинне рассчитывал обнаружить элементы тяжелее урана. У исследователя была своеобразная концепция относительно трансурановых элементов, основанная на сложных, мало кому понятных умозаключениях. Он считал, что некоторые трансураны будут довольно устойчивыми, например элементы № 108 и 110.

Затея (здесь трудно подобрать другое слово) Свинне потерпела крах. С тех пор поиски трансурановых элементов в природе представляли собой долгую цепь неудач и разочарований. В конце концов нептуний и плутоний обнаружили в земных минералах, но в количествах, представляющих скорее теоретический интерес. Весь нептуний и плутоний, содержащиеся на нашей планете, легко погрузить на средней руки самоходную баржу.

Практически имеет смысл говорить лишь об искусственном получении трансурановых элементов. В 1940 году были синтезированы нептуний и плутоний, в 1961 году мир узнал о «рождении» сто третьего элемента, лоуренсия. Иными словами, за какое-то двадцатилетие ядерная физика преуспела в «наращивании» периодической системы элементов.

Говоря о верхней границе периодической системы, мы должны теперь иметь в виду предел синтеза новых элементов. Где тот последний элемент, выше которого ядерный синтез уже не будет иметь смысла?


Где же последний элемент таблицы Менделеева?

Тут мы снова сделаем маленькое отступление. Если проследить за историей открытия изотопов радиоактивных элементов, выявляется любопытная деталь. Сначала ученые обнаруживали изотопы с большими периодами полураспада (сотни и десятки лет, годы и дни). Потом проникли в область часов и минут. Далее им удалось «поймать» изотопы, которые жили секунды и десятые доли секунды. Подобно тому как совершенствование микроскопа позволяло ученым разглядывать все более и более мелкие частицы, развитие радиометрической техники давало возможность «засекать» изотопы с более короткими периодами полураспада. Следовательно, чем совершеннее станет аппаратура, тем более короткоживущие изотопы удастся обнаружить. Только когда изотоп будет распадаться фактически в момент образования (период полураспада окажется порядка 1020 секунды), никакие экспериментальные ухищрения уже не позволят его зафиксировать.

У какого же по счету трансуранового элемента следует ждать изотопа с подобным периодом полураспада?

Какие виды радиоактивного превращения свойственны тяжелым ядрам?

Во-первых, альфа-распад, испускание ядер гелия; о его закономерностях мы уже сказали ранее несколько слов.

Во-вторых, спонтанное, или самопроизвольное, деление ядер; оно в малой степени проявляется уже у урана и тория (например, период полураспада урана-238 по спонтанному делению составляет 8·1015 лет), а начиная с фермия (№ 100) становится весьма вероятным. (Так фермий-255 имеет период полураспада по спонтанному делению равный 20 годам.)

В-третьих, наконец, превращение ядра путем захвата электрона с ближайшей K-оболочки, так называемый K-захват.

Какая же из этих возможностей окажется роковой для сверхтяжелых трансурановых элементов? Для какой из них период полураспада ранее всего достигнет критического минимума — 10–20 секунды.

Сразу покончим с K-захватом. Представим себе, что тяжелые ядра были бы подвержены только этому виду превращений. Тогда можно было бы беспрепятственно синтезировать все новые и новые элементы, вплоть до поистине ядра-гиганта с зарядом, равным 137. Лишь у его атома K-оболочка настолько бы приблизилась к ядру, что электрон немедленно «провалился» бы в ядро и заряд уменьшился на единицу.

Но вся беда в том, что альфа-распад и спонтанное деление у сверхтяжелых ядер куда более вероятны, нежели K-захват, и именно им суждено определить верхнюю границу периодической системы. Значит, остается обсудить первые две возможности. Сразу оговоримся, что теория пока не может указать, у каких изотопов появится минимально возможный период полураспада по альфа-излучению или спонтанному делению. Теория дает пока лишь вероятные интервалы значений.

Уже начиная с нептуния, энергия альфа-распада изотопов возрастает, и уменьшаются соответственно периоды полураспада. Ученые предсказывают, что у изотопов элементов с зарядом ядра, равным 104, «долговечность» не будет превышать миллионной доли секунды. Однако у ядер, расположенных в этой области, появится устойчивая оболочка из 152 нейтронов. Изотопы с большим числом нейтронов окажутся еще более подверженными альфа-распаду. По-видимому, у элементов с зарядами ядер 105–107 периоды полураспада изотопов по альфа-излучению будут весьма близкими к минимальному критическому значению.

Со спонтанным делением вопрос обстоит так. Выдающийся американский ученый, «отец» трансурановых элементов Гленн Сиборг показал, что периоды полураспада по спонтанному делению зависят от величины отношения Z2/A, где Z заряд, а A — массовое число изотопа. Чем больше это отношение, тем меньше период полураспада. Для урана-238 оно равно, например, 35,5. Изотоп, который бы распался мгновенно, должен иметь Z2/A, равное 47. Это должно случиться у изотопов с зарядами ядер 114–116 и массовыми числами 280–282. Таким образом, последний элемент в таблице Менделеева, образно говоря, скорее погибнет от альфа-распада, нежели от спонтанного деления.

Были времена, когда открытие нового химического элемента оказывалось событием и химики начинали подробно изучать его свойства, искать возможности практического применения. Но в книге об истории открытия элементов глава о трансуранах будет носить совершенно особый характер. Если свойства нептуния и плутония изучены хорошо, а плутоний к тому же — одно из основных ядерных горючих, если написаны монографии по химии америция и кюрия, то мало что можно сказать об остальных трансурановых элементах. Пока еще они достояние только физики. Ведь в самом деле, о каком изучении свойств можно говорить, если ученые синтезировали сначала лишь 17 (!) атомов сто первого элемента — менделеевия, а для сто второго и сто третьего счетчик зафиксировал лишь единичные атомы.

К концу периодической системы как бы исчезает привычное нам представление о химическом элементе. Но это ни в коей мере не грозит величественному зданию таблицы Менделеева, и с прежней силой звучат слова автора периодического закона: «Будущее не разрушение закону периодичности, а только расширение и развитие обещает!»

Загрузка...