Когда-нибудь ученые напишут «Всеобщую историю углерода» — элемента, без которого немыслима жизнь на Земле, а быть может, и на других планетах. Но один факт его «биографии» вряд ли удастся установить с достоверностью. Никто не ответит, сколько тысячелетий назад первобытный человек впервые познакомился с углеродом. Вероятно, когда вырвал у природы тайну получения огня. Химический элемент предстал перед ним в виде пламенеющих угольков первого костра.
В глубокой древности теряются и следы кремния — ближайшего «собрата» углерода. В свободном состоянии он был получен немногим меньше полутораста лет назад. Но с его соединениями люди познакомились в ту бесконечно далекую от нас эпоху, когда взяли в руки кремневые топоры.
Если углерод «создал» на Земле органическую жизнь, то кремний — основа неорганической: земных руд и минералов. Одним словом, он основной цемент «земной тверди».
По странной прихоти природы, углерод и кремний оказались на одном «меридиане» карты Страны элементов: оба они представители четвертой группы периодической системы Менделеева.
Как это ни парадоксально на первый взгляд, содержание углерода в земной коре по сравнению с другими элементами невелико — всего 0,14 процента. Его гораздо меньше, чем кислорода, кремния, алюминия, натрия, магния или железа. Но легко представить, как выглядела бы наша планета, если бы с нее исчез весь углерод: исчезло бы все живое, целые горные хребты и плоскогорья, сложенные из известняков, Земля превратилась бы в мертвую пустыню. Не было бы угля, нефти, даже климат стал бы гораздо суровее.
Углерод встречается на поверхности Земли и в виде соединений и в свободном виде. Свободный углерод образует три так называемые аллотропические модификации.
Аллотропия довольно часто встречается у элементов периодической системы, как металлов, так и неметаллов. Атомы одного и того же элемента могут по-разному располагаться в кристаллических решетках; тогда говорят о различных аллотропических модификациях элемента.
У углерода их три: алмаз, графит и аморфный углерод (то есть сажа или древесный уголь).
Самая редкая, но и самая своеобразная из этих форм — алмаз. Чистый алмаз прозрачен, бесцветен, обладает сильным блеском. Примеси часто придают ему различную окраску; встречается даже черный алмаз. Он сильно засорен графитом — другой аллотропической модификацией углерода. Большая твердость алмаза была известна уже несколько тысяч лет назад, и нет в природе веществ более твердых, чем он.
Алмаз в четыре-пять раз тверже всех известных минералов и твердых сплавов, применяемых для его замены, кроме боразона. Алмазный резец служит без заточки в тысячи раз дольше, чем резец из самого твердого сплава. Поэтому алмазные резцы незаменимы во многих отраслях техники. Если бурильщикам встречается на пути твердая порода, то на помощь им приходит алмаз. На бур надевают алмазную коронку. Коронка, конечно, стальная, но в ее нижнюю, режущую поверхность вделаны специально заточенные обломки кристаллов алмаза. Недавно советские ученые и инженеры приняли решение о бурении сверхглубоких скважин. Они достигнут глубины в 15–18 километров и выведают у земной коры ее новые тайны. Алмазный бур поможет преодолеть самые твердые породы на пути буровых скважин.
Во многих областях техники алмаз пока незаменим. И только в своем самом старом применении — в качестве украшения (бриллианты) — он уже давно вытесняется другими, более дешевыми драгоценными камнями и даже стеклом. Ведь для украшений огромная твердость алмаза не играет никакой роли, а обыкновенное стекло и отшлифовать гораздо легче, чем природный алмаз, и окрасить можно в самые разнообразные цвета.
Правда, алмаз гораздо сильнее преломляет свет, разлагая его на различные цвета, и сильнее блестит, но есть камни, которые в этом отношении ничуть не уступают алмазу. Поэтому будущее принадлежит не алмазу-вельможе, ограненному и отшлифованному так, что от его природного веса остается одна треть, а алмазу-труженику, неважно какому — черному, желтому или прозрачному, как вода, но всегда прочному и побеждающему пока все другие материалы.
Алмаз, как и многие другие полезные ископаемые, встречается в основных и россыпных, так называемых вторичных, месторождениях. Он образуется на большой глубине под действием огромных температур и давлений. Иногда глубинная магма прорывается наверх и застывает в виде узкой, расширяющейся кверху кимберлитовой трубки. Такие выходы издавна были известны в Африке и Бразилии. Несколько лет назад и у нас в Якутии обнаружены кимберлитовые трубки, содержащие богатейшие запасы алмазов. Однако содержание алмазов в кимберлите — не более одного грамма на тонну, а дробление твердой породы и отделение алмазов — трудная задача. Поэтому часто алмазы добывают из вторичных россыпных месторождений. Они образуются тогда, когда верхняя часть основного месторождения разрушается и вымывается водой.
Много усилий потратили ученые, пытаясь получить искусственные алмазы.
Первые опыты ставились еще в конце прошлого века. Они не имели успеха. В лабораториях нужно было создать такие условия, какие существуют в глубинах Земли: высокие температуры и огромные давления. Это позволила сделать лишь новая техника. В 1956 году английским ученым удалось синтезировать алмаз. Они использовали давление свыше 100 тысяч атмосфер в сочетании с температурой около 3 тысяч градусов. В 1961 году советские ученые, научные сотрудники Института синтетических сверхтвердых материалов в Киеве изготовили в подарок XXII съезду КПСС 2 тысячи каратов искусственных алмазов (1 карат = 0,2 грамма).
В чем же причина огромной прочности алмаза? Связь атомов углерода между собой отличается огромной устойчивостью. В алмазе каждый атом углерода связан с четырьмя другими, причем образуется симметричная фигура тетраэдра. Чтобы оторвать хотя бы один атом углерода с поверхности алмаза, нужно разорвать не менее двух углерод-углеродных связей. Такая прочная химическая связь и взаимное расположение атомов придают кристаллам алмаза их удивительную твердость.
Но стоит лишь «перестроить» кристаллическую решетку алмаза, как исчезает его твердость, и вместо прекрасного блестящего кристалла мы получаем мягкий минерал. Это графит.
В кристаллической решетке графита каждый атом углерода тоже соединен с четырьмя другими, но в противоположность алмазу все эти атомы лежат в одной плоскости. Последние связаны между собой слабо, поэтому графит легко расслаивается на чешуйки, отдельные его плоскости скользят друг вдоль друга. Это свойство позволяет применять его в качестве твердой смазки.
Графит имеет серый цвет и абсолютно непрозрачен. Он хорошо проводит электрический ток.
В природе графит образует целые месторождения. Его можно получить и искусственно: надо нагревать чистый уголь до нескольких тысяч градусов без доступа воздуха. Если в аналогичные условия (при температуре около 2000 °C) поместить алмаз, он переходит в графит. Это свидетельствует, что графит — наиболее устойчивая при обычных условиях форма углерода.
Сейчас графит находит большое применение в промышленности. Из него делают различные трущиеся контакты, электроды для электропечей, угли для прожекторов, тигли для плавки металлов, наконец, стержни самых обычных карандашей. Но больше всего чистого графита (десятки тысяч тонн) используется в атомных реакторах.
Ученые обнаружили, что чистый графит почти не поглощает нейтроны, образующиеся при делении урана, и в то же время очень хорошо замедляет их. Кроме того, графит дешев, легко обрабатывается, не боится высокой температуры и излучений реактора. Все эти качества сделали его незаменимым материалом в атомной промышленности.
Третья аллотропическая форма углерода встречается в природе в виде обычной сажи, а также каменного и древесного угля. Правда, каменный уголь — это не совсем чистый углерод. Лучшие его сорта — антрациты — содержат не более 95 процентов углерода, остальное приходится на примеси: соединения углерода с водородом, серу и негорючие вещества (различные соединения кремния), дающие при сгорании золу и шлак.
Уголь широко используется в металлургии для выплавки чугуна. Чем выше качество угля, тем чище получается чугун. Поэтому уголь вначале стараются очистить от примесей, перерабатывая его в кокс. Для приготовления кокса уголь сильно нагревают без доступа воздуха; летучие органические вещества и часть серы испаряются, давая коксовый газ, который сам по себе является ценным сырьем. Оставшийся после прокаливания каменноугольный кокс идет на металлургические заводы.
Издавна для выплавки чугуна и стали применяли и древесный уголь. Раньше, когда не умели приготовлять из каменного угля кокс, весь чугун выплавляли с помощью древесного угля. Почти все леса Англии были сведены на уголь для металлургической промышленности.
Древесный уголь снискал себе славу и как великолепный поглотитель газов. Этой способностью обладают многие вещества, но древесный (особенно березовый) уголь оказывается вне конкуренции. Один объем древесного угля способен поглотить при комнатной температуре до 200 объемов воздуха и еще большее количество ядовитых газов: хлора, фосгена и других — так велика его пористость. Поэтому древесный уголь с успехом используется в противогазах, заменяя сложные химические фильтры.
Если уголь охладить жидким воздухом, его поглотительная способность возрастает примерно в десять раз. Этим пользуются в лабораториях для создания вакуума. Охлажденные кусочки угля помещают в сосуд, откуда выкачивают воздух, и каждый кусочек «впитывает» в себя влагу и газы, которые надо удалить. Вакуум в сосуде резко повышается.
Между прочим, углерод является одним из самых тугоплавких веществ. Он плавится при температуре около 3700 градусов.
С химической стороны углерод оказывается малоактивным элементом. Однако он «инертен» лишь при обычных условиях. Достаточно высокие температуры заставляют его вступать в реакции со многими элементами — металлами и неметаллами.
Из трех аллотропических форм самой реакционноспособной оказывается аморфный углерод. При небольшом нагревании на воздухе он энергично соединяется с кислородом, образуя двуокись углерода — углекислый газ CO2. Если горение происходит при недостатке кислорода, получается угарный газ — окись углерода CO. С серой углерод образует очень важное соединение — сероуглерод, прекраснейший растворитель жиров, масел и смол. К химическим свойствам углерода мы еще вернемся.
Оно не только самое важное, но и самое вездесущее. Углекислый газ содержится в атмосфере (0,03 процента), растворен в воде рек и морей, выделяется в огромных количествах при извержениях вулканов и, следовательно, содержится в недрах Земли. Любопытно, что на Венере его несравненно больше, чем в земной атмосфере.
Углекислый газ непрерывно перерабатывается растениями в органические вещества, растения поедаются животными, которые выдыхают углекислый газ, и углерод вновь, таким образом, попадает в атмосферу. Так происходит круговорот углерода в природе. Однако этот цикл имеет и разветвления. Значительные количества углекислого газа поступают в атмосферу Земли при извержениях вулканов. В то же время много углекислого газа, растворенного в воде океанов в форме карбонатов, используется морскими животными для построения скелетов и раковин.
В древние периоды истории Земли огромные количества углерода были выведены из круговорота жизни и погребены под толщей осадочных пород в виде залежей кальцита, каменного угля и нефти.
В течение последнего столетия человек, добывая и сжигая большие количества полезных ископаемых, увеличил поступление углекислого газа в атмосферу. Содержание его в атмосфере сейчас медленно нарастает. Но не только пищей растений служит углекислый газ, он еще и «одеяло» Земли. Он легко пропускает солнечные лучи, нагревающие земную поверхность, но задерживает инфракрасные лучи, которые Земля излучает в мировое пространство. Если бы в атмосфере отсутствовал углекислый газ, климат нашей планеты был бы намного холоднее и суше. Поэтому деятельность человека, постепенно увеличивающего содержание CO2 в атмосфере Земли, должна со временем привести к потеплению и увлажнению климата.
Углекислый газ не так безвреден для организма человека, как может показаться на первый взгляд. Когда его в воздухе больше 3 процентов, это ведет к серьезным нарушениям работы организма. При 10-процентной концентрации наступает почти мгновенная смерть вследствие остановки дыхания.
В повседневной практике CO2 широко применяется в виде так называемого сухого льда — твердого углекислого газа. Он используется для охлаждения, а также при проведении взрывных работ. С этой целью его помещают поверх заряда взрывчатого вещества. При высокой температуре сухой лед мгновенно испаряется с образованием большого объема CO2, что значительно увеличивает силу взрыва.
Нефть — сложная смесь различных соединений углерода, встречающихся в природе. Это черная маслянистая жидкость с характерным запахом, в состав которой входят углеводороды и более сложные органические соединения. Нефть перерабатывается на химических заводах. Сначала отгоняют из нее самые легкие молекулы — бензин, затем более тяжелые — керосин и, наконец, смазочные масла. Оставшаяся смесь называется мазутом и используется в качестве топлива при варке стали в мартеновских печах, в топках пароходов и электростанций. Продукты, содержащиеся в мазуте, применяются для производства взрывчатых, красящих и лекарственных веществ.
Часто полагают, что нефть образует под землей целые «озера» и даже «моря». Действительно, нередко бывает, что после проходки скважины нефть бьет фонтаном. Один такой фонтан может дать от 100 до 1000 тонн нефти в сутки. Однако она отнюдь не собирается под землей в естественных нефтехранилищах, а пропитывает, как губку, рыхлые, пористые породы и изливается на поверхность лишь благодаря давлению верхних слоев Земли и растворенных газов. Если же давление нефти в пласте недостаточно, ее приходится выкачивать насосами. Тогда для поддержания необходимого пластового давления, то есть давления, под которым в пласте породы находится нефть, туда закачивают воду.
Если происхождение каменного угля из древних растений не вызывает у ученых сомнений, то в вопросе о происхождении нефти до сих пор еще нет единого мнения. Некоторые исследователи, в том числе Менделеев, считали, что нефть образовалась из минеральных веществ — карбидов металлов, излившихся из земных глубин, и воды. Если это так, то месторождения нефти должны располагаться в основном около трещин земной коры, у мест вулканической деятельности. Но из 10 тысяч месторождений нефти, известных на Земле, только 30 расположены вблизи трещин земной коры, а остальные залегают в осадочных породах, никогда не соприкасавшихся с магмой.
Поэтому большинство ученых в настоящее время придерживается иного мнения. По-видимому, нефть образовалась из остатков древних животных и растений. Если такие остатки попадают в среду, содержащую кислород, они при разложении дают каменный уголь. Но если среда, в которой захоронены органические остатки, бедна кислородом, образуется нефть. При этом уголь так и остается на месте захоронения, а нефть перемещается под землей и может рассеяться, если не встретит благоприятных условий для накопления — выпуклых «линз» из глинистых грунтов.
Когда вышележащие слои породы непроницаемы и для газов, то самые легкие из образующихся углеводородов — метан, этан и другие — тоже накапливаются под землей и образуют месторождения природного газа. Природный газ — самое дешевое и прекрасное химическое сырье.
По многообразию и численности своих соединений углерод оставляет позади все остальные элементы таблицы Менделеева, вместе взятые.
В сочетании с водородом, кислородом, азотом, серой и фосфором он образует почти все органические вещества, существующие в природе и синтезированные в лаборатории. Их известно более двух миллионов и теоретически возможно бесконечное множество. По образному выражению академика Несмеянова, язык органической химии — это язык, алфавит которого состоит всего из шести букв, а словарный запас непрерывно растет и уже сейчас с трудом умещается в сотне объемистых томов.
Многообразие углеродистых соединений обусловлено уникальной способностью атомов углерода образовывать чрезвычайно прочные связи друг с другом. Цепи из углеродных атомов могут достигать очень большой длины и вполне устойчивы. В то же время даже короткие цепи из атомов других элементов в подавляющем большинстве случаев непрочны. Так, например, для кислорода максимальная длина цепи состоит из двух атомов; соединения, содержащие такие цепи, малоустойчивы. Для углерода получено вполне устойчивое соединение, содержащее цепочку из 70 углеродных атомов.
Но и в неорганической химии углерод занимает видное место. Особо нужно отметить углекислый газ и его производные.
Растворяясь в воде, углекислый газ соединяется с ее молекулами и образует слабую угольную кислоту H2CO3.
В чистом виде эту кислоту получить невозможно, потому что она очень неустойчива. Напротив, соли угольной кислоты — карбонаты и бикарбонаты — соединения устойчивые. Самое важное из них — карбонат натрия Na2CO3, или сода, — находит огромное применение в промышленности и хозяйстве. Аналогичное соединение калия (K2CO3) называется поташом. Как и все соли калия, это очень ценное удобрение. Если металл заместил в молекуле угольной кислоты только один атом водорода, получается бикарбонат. Наиболее известный бикарбонат — двууглекислая, или питьевая, сода NaHCO3.
Другое важное соединение углерода с кислородом — его окись CO.
Как мы уже говорили, окись углерода образуется при горении угля, если количество кислорода недостаточно для его полного сгорания. При нехватке воздуха в нижней части печи, где кислород еще есть, идет обычное горение с образованием углекислого газа: C + O2 = CO2, а в верхней ее части раскаленный уголь омывается уже не воздухом, а CO2, уголь отнимает кислород у углекислого газа и образуется окись углерода: C + CO2 = 2CO.
Окись углерода иногда называют угарным газом, потому что она очень ядовита. Отравление ею (угар) часто происходит при преждевременном закрывании дымохода в печи. При отравлении окисью углерода человеческая кровь теряет способность поглощать и передавать тканям организма кислород воздуха. Это может привести к смерти.
Взамен недостающего (до устойчивого соединения CO2) кислорода окись углерода охотно присоединяет другие атомы или группы атомов. Химики в таких случаях говорят о склонности к реакциям присоединения. Например, при температуре около 500 °C или просто на свету окись углерода «захватывает» два атома хлора: CO + Cl2 = COCl2. Образуется известное отравляющее вещество — фосген. Фосген — очень ценный реактив для получения многих сложных органических соединений. При повышенной температуре и большом давлении окись углерода соединяется с металлами; таким путем удается получить, в частности, летучее соединение железа — карбонил железа Fe(CO)5.
При сгорании окиси углерода выделяется большое количество тепла, поэтому ее получают в различных газогенераторных установках и используют как горючий газ.
При подземной газификации уголь в значительной степени превращается в окись углерода, которая затем выводится по трубам на поверхность и используется.
С помощью окиси углерода может быть получена синильная, или цианистоводородная, кислота HCN, например, при взаимодействии с аммиаком: СО + NH3 = HCN + H2O.
Синильная кислота — один из самых сильных ядов.
При высоких температурах углерод соединяется со многими металлами, образуя карбиды. Наиболее известны карбиды вольфрама WC и W2C. Они незаменимы при изготовлении сверхтвердых сплавов, по твердости приближающихся к алмазу.
Самым простым соединением углерода с водородом, находящимся на условной границе органических и неорганических соединений, является газ метан CH4. Он получается при высокой температуре прямо из углерода и водорода. В природе он образуется при разложении органических веществ без доступа воздуха. Метан — главная часть природных горючих газов.
Атомы водорода в метане могут полностью или частично заместиться на атомы галоидов. При замещении трех атомов водорода атомами хлора образуется хлороформ CHCl3, широко применяемый в медицине, а если все четыре атома водорода замещены хлором, получается четыреххлористый углерод CCl4 — очень хороший негорючий растворитель. Различные смеси таких галоидных соединений углерода, как CCl2F2, CClF3 и т. д., носят техническое наименование фреонов и используются в холодильной технике.
Во всяком случае, и по многообразию своих неорганических соединений углерод занимает одно из ведущих мест среди всех элементов периодической системы.
Кремний — замечательный химический элемент, атомы которого широко распространены на Земле. Хотя оболочка нашей планеты слагается из огромного количества не похожих друг на друга минералов, кремний занимает видное место в большинстве из них. На долю кремния приходится около 30 процентов веса земной коры. Кремний содержится во всех растениях. Особенно много его в хвоще и бамбуке.
В небольших количествах кремний входит также в состав живых организмов, а некоторые микроорганизмы используют растворенную в океане кремниевую кислоту для постройки своих крошечных скелетов. В организме человека кремния менее 0,1 процента, и его биологическая роль пока неясна.
Атом кремния так же, как и атом углерода, четырехвалентен. Это значит, что он может присоединить четыре одновалентных атома, например водорода или фтора.
Сравнительно большая химическая активность кремния приводит к тому, что элемент не может находиться в природе в свободном состоянии.
Наиболее удачно сочетаются электронные оболочки атома кремния и двух атомов кислорода, образуя двуокись кремния. Это очень тугоплавкое, твердое, химически малоактивное вещество. Двуокись кремния встречается в природе в различных видах. Чаще всего это белые кварцевые жилы, прорезающие более мягкие минералы, или продукт выветривания горных пород — белый кварцевый песок.
Реже встречаются различные красиво окрашенные примесями разновидности кварца: яшма, агат, халцедон, тридимит, кристобалит.
Обычно кварц состоит из множества сросшихся между собой белых полупрозрачных кристалликов. Он очень прочен — прочнее многих других минералов. При выветривании горных пород кварц разрушается последним, образуя «останцы» кварцевых жил; продукт их разрушения — кварцевый песок — часто содержит золото (золотой песок и даже самородки весом до нескольких килограммов). Особенно прочны натечные формы кварца — яшма и агат. Из яшмы и агата изготовляют красивые украшения и некоторые технические детали: химические ступки, призмы для точных весов, камни для часов и измерительных приборов.
Довольно часто встречаются в природе большие прозрачные кристаллы кварца — горный хрусталь. Один из найденных на Мадагаскаре имел в длину 8 метров.
Раньше горный хрусталь служил лишь украшением, но сейчас ученые раскрыли многие замечательные свойства этого красивого минерала, и применение его в науке и технике очень широко. Если изгибать пластинку, вырезанную из кристалла горного хрусталя в определенном направлении, на ее плоскостях появляются электрические заряды. Благодаря этому свойству кристаллы хрусталя называют пьезоэлектрическими. Такими же свойствами обладает не только кварц, но и другие вещества, например сегнетова соль. Но в кварце они очень удачно сочетаются с исключительными механическими свойствами. Он очень прочен и упруг. Если изготовить из кварца камертон и поместить в вакуум, он может колебаться часами. Температура на кварц почти не действует, его коэффициент расширения ничтожно мал.
Если к плоскостям кварцевой пластинки, покрытым слоем металла, подвести переменный ток, она придет в колебательное движение. Колебания усилятся, когда наступит резонанс, частота электрического поля сравняется с частотой ее свободных колебаний. Кварцевые пьезоэлектрические пластинки очень широко применяются в технике. С их помощью стабилизируется длина волны радиостанций, получается ультразвук. Пьезокварцевые пластинки используются для создания сверхточных «кварцевых» часов, для измерения огромных давлений, возникающих, например, в стволе орудия.
Ученые установили, что кварц прозрачен не только для видимых лучей, но хорошо пропускает ультрафиолетовые лучи. Поэтому из кристаллов горного хрусталя изготовляют детали точнейших оптических приборов — линзы и призмы.
Двуокись кремния — простейшее, но не самое распространенное в природе его соединение. Гораздо большее количество кремния входит в состав минералов, составляющих основу земной коры: базальта, гранита, гнейса и других.
Многие содержащие кремний минералы широко используются человеком. Совершенно незаменимы по своим свойствам слюда и асбест. Кристаллы слюды легко расщепляются на тонкие пластинки. Ее применяют для изготовления различных нагревательных элементов, высококачественных электрических конденсаторов, тончайших окошек счетчиков заряженных частиц, применяемых в атомной физике. В древности, когда люди еще не умели делать оконное стекло, в окна вставляли пластинки слюды.
Асбест — белый волокнистый минерал, прекрасный тепловой и электрический изолятор, выдерживающий температуры выше 1000 градусов. Из асбеста изготовляют огнеупорный картон и несгораемую ткань, смесь асбеста с цементом — асбоцемент — прекрасный строительный материал, сочетающий прочность цемента и эластичность асбеста.
Долгое время ученым не удавалось получить достаточно чистый кремний и исследовать его свойства. Сейчас с помощью перегонки в вакууме и другими методами получают кремний чистотой до 99,999 процента и выше. Чистый кремний образует твердые кристаллы серо-стального цвета, расположение атомов в которых такое же, как и у алмаза. Но алмаз — хороший изолятор, а кремний — полупроводник. Сверхчистый кремний незаменим для изготовления солнечных фотоэлементов, имеющих высокий коэффициент полезного действия.
Кремниевый солнечный фотоэлемент — это металлическая пластинка, покрытая тончайшим, полупрозрачным слоем кремния. Солнечный свет выбивает из атомов кремния электроны, которые создают электрический ток. «Солнечные» батареи кремниевых фотоэлементов снабжают электроэнергией космические корабли.
Из кремния изготовляют полупроводниковые диоды и триоды. Они применяются в радиотехнике для приемников, усилителей, радиолокаторов и различных приборов.
При обычной температуре кремний — инертное вещество. При нагревании же он соединяется почти со всеми элементами. Наиболее важны его природные соединения — минералы, о которых мы рассказали, и многочисленные соли кремниевой кислоты H2SiO3. Эта очень слабая кислота образует в воде не обычный, а так называемый коллоидный раствор. Коллоидный раствор — это очень тонкая взвесь: на свет он выглядит мутным, но не оседает, потому что частички растворенного вещества очень малы. Почти все соли кремниевой кислоты нерастворимы в воде. Некоторые из них — полевые шпаты — широко распространены в природе. Хорошо растворяется только натриевая соль кремниевой кислоты Na2SiO3. Ее раствор в воде называют жидким стеклом и используют для изготовления клея и как огнезащитный состав для пропитки тканей и дерева.
Не будь кремния — не было бы и стекла. Теперь известно много различных сортов стекол.
Обычное стекло (оконное, бутылочное) — сложная соль кремниевой кислоты Na2CaSi6O14 или Na2O·CaO·6SiO2. Его изготовляют в огромных печах, сплавляя песок SiO2, известняк CaCO3 и соду Na2CO3. Примеси железа часто окрашивают такое стекло в желто-зеленый цвет. Если необходимо получить окрашенное стекло, то добавляют в расплав различные примеси — кобальта для синего цвета, хрома для зеленого и т. д. Для получения декоративного стекла с сильным блеском («хрустального») добавляют к составу соли свинца.
Обычное стекло имеет один большой недостаток: оно легко бьется при ударах и трескается при неравномерном нагревании. Наша промышленность выпускает для автомобилей специальное закаленное небьющееся стекло. За счет закалки наружный слой этого стекла сильно сжат, а внутренний — растянут. Поэтому оно прочнее обычного стекла, а если все-таки разбивается, осколки получаются тупыми.
Для изготовления химической посуды используют термостойкий сорт стекла «пирекс», а для работы при особо высокой температуре — кварцевое (чистый SiO2). Оно почти не расширяется при нагревании, поэтому его можно раскалить докрасна и опустить в холодную воду — оно не треснет. В некоторые сорта стекла легко впаиваются металлические проволочки — его используют для изготовления электроламп и радиоламп.
Особо тщательно — строго по специальным рецептам — «варится» оптическое стекло. Объектив телескопа или фотоаппарата дает хорошее изображение лишь в том случае, когда налицо абсолютная прозрачность оптического стекла. Чтобы изделия из оптического стекла не изменяли свою форму при шлифовке, заготовки изделий тщательно отжигают — очень медленно охлаждают. Самые лучшие результаты дают объективы, линзы которых изогнуты из двух сортов стекла: кронгласа и флинтгласа. Из легкого кронгласа делаются выпуклые, а из тяжелого флинтгласа — вогнутые линзы. Такое сочетание линз помогает объективу собирать лучи всех цветов в одну точку, не давая цветных полос по краям изображения.
Керамические изделия с незапамятных времен вошли в жизнь человека. Самый древний пример керамического изделия — кирпич. Кирпичи изготовляют из влажной смеси глины и песка, сушат и затем обжигают. Обожженная смесь спекается и перестает пропускать и поглощать воду.
Давно известно людям гончарное ремесло — изготовление глиняной посуды. Гончар бросает комок глиняного теста на медленно вращающийся круг и ловкими движениями пальцев вытягивает из бесформенной глины стенки горшка, тарелки, кринки. Готовый сосуд покрывается узорами, подрезается тонкой ниткой и ставится на просушку. Обязательной операцией при изготовлении любого керамического изделия является обжиг. Чем выше температура, при которой обжигается изделие, тем лучше его качество.
Фарфоровую и фаянсовую посуду делают из одного и того же сорта белой глины — каолина (Al2O3·2SiO2·H2O), но фарфоровая обжигается при более высокой температуре и поэтому получается полупрозрачной. Фарфоровую и фаянсовую посуду покрывают сверху легкоплавкими сортами стекла — глазурью.
Керамические изделия играют огромную роль в современной технике. Они широко применяются в электро- и радиопромышленности. Разработаны специальные сорта радиофарфора, содержащие, кроме чистого каолина, многие другие химические вещества и обладающие высокими изоляционными свойствами.
Кроме стекла и керамики, кремний образует много других важных и полезных соединений. Соединение кремния с углеродом — карборунд SiC получают прокаливанием смеси SiO2 и угля; он уступает по твердости лишь алмазу и является одним из основных материалов для изготовления наждачных и шлифовальных кругов, которые могут обработать самую твердую сталь.
Кремний, как и углерод, может образовывать цепи из своих атомов. Известны соединения кремния SiH4 — силан, Si2H6 и вплоть до Si6H14, но они гораздо менее прочны, чем углеводороды, и способны самовоспламеняться на воздухе. Здесь, как и всюду, сказывается стремление кремния образовывать свое самое устойчивое соединение SiO2. На примере карборунда видно, что связь атомов кремния и углерода Si — С очень прочна. Ученые воспользовались этим и ввели в состав молекул масел, лаков и других веществ атомы кремния вместо некоторых атомов углерода. Получились прочные смешанные углеродно-кремниевые цепочки. Такие соединения назвали кремний-органическими, они очень устойчивы, не боятся высокой температуры. Сейчас кремний-органические соединения используются для приготовления теплостойких масел, лаков и эмалей. Электромотор, обмотка которого сделана проводом в кремнийорганической изоляции, имеет вдвое большую мощность, чем такой же мотор с обычной обмоткой.
Неустойчивость связи атомов кремния друг с другом говорит о том, что не может быть жизни без соединений углерода. Атомы кремния никогда и ни при каких условиях не образуют без атомов углерода таких огромных и сложных цепей, как это делают углеродные атомы. Поэтому научные фантазии, что на «других мирах» может быть совсем другая жизнь, на основе соединений кремния, имеют мало оснований.
Роль соединений кремния в жизни человека быстро возрастает. Камень, цемент и керамика вытесняют недолговечный металл, все шире используются стекло, эмали, проводятся успешные опыты по изучению «настоящего» каменного литья, чистый кремний становится незаменимым материалом в радиотехнике, входят в жизнь теплостойкие кремнийорганические соединения.