Несущий свет

Так переводится с греческого языка слово «фосфор» — название удивительного вещества, открытого гамбургским купцом Геннингом Брандом в 1669 году.

В средние века широкое распространение получило мнение, будто любые металлы можно превратить в золото. Для этого нужно было «совсем немного» — иметь «философский камень», который якобы и обладает этой волшебной силой. Людей, которые старались изготовить «волшебный камень», называли алхимиками. Одним из таких искателей и был Бранд.

Когда-то Геннинг Бранд был довольно богатым купцом, жил на широкую ногу. Но дела его шли все хуже и хуже. Наконец пришло время, когда имущество его продали с молотка. И вот, чтобы поправить свои дела, Бранд решил заняться алхимией — ведь удача сулила моментальное обогащение!

Много дней и ночей провел Бранд за работой. Упорно, настойчиво проводил он свои опыты. Что только не использовалось в них! Руды и минералы, растения и кости животных, металлы и соли и многое, многое другое. Все это Бранд тщательно растирал в ступке, перемешивал, прокаливал, обрабатывал кислотами, смешивал со ртутью, серой, снова прокаливал… И так изо дня в день, неделя да неделей. Шло время, а секрет приготовления «философского камня» так и оставался секретом.

Но вот однажды, прокаливая на сильном огне сухой остаток мочи, Бранд заметил, что из реторты выделяется какое-то вещество, быстро сгорающее на воздухе с образованием густого белого дыма. Сама реторта слабо мерцала в полумраке лаборатории. Сердце Бранда забилось чаще: вот он, заветный «философский камень», который принесет ему богатство и славу!

Получить этот мнимый «камень» оказалось нелегко. Много пришлось еще поработать Бранду, пока, наконец, наступил долгожданный день. С замирающим сердцем следил Бранд за тем, как в приемнике реторты, под водой, собирается белое вещество, излучающее необыкновенное сияние. И чем больше его накапливалось, тем ярче становился свет, исходивший от удивительного вещества. Свечение стало настолько сильным, что можно было читать книги. Но не только это поразило Бранда.

Вещество оказалось поистине удивительным. Его свет не обжигал, его можно было трогать руками. А самое главное — все вещи, соприкасавшиеся с ним, приобретали способность светиться в темноте. Приемник реторты, пальцы Бранда, ложка, которой он пересыпал вещество в чашку, — все светилось ровным, холодным светом.

Бранд устало опустился на скамейку. Наконец-то он держит в руках «философский камень»! Все же скоро ему пришлось убедиться, что его «философский камень» не может превращать в золото другие металлы. Но это не смутило алхимика. Вещество было настолько удивительным, настолько не похожим на все остальные, что он все-таки сумел «превратить» его в золото: Бранд продавал его по очень высоким ценам. А само вещество он назвал «холодный огонь», и лишь впоследствии его переименовали в «фосфор».


Белый, красный, черный…

Что такое фосфор? Какими свойствами он обладает?

На первый вопрос еще в 1777 году ответил знаменитый французский химик Лавуазье. Он долго и тщательно изучал горение фосфора и первый признал его за новый элемент. Да и на второй вопрос ответить не трудно, если говорить о химических свойствах.

А каковы физические свойства фосфора?

Хотя со времени его открытия прошло почти 300 лет, однозначно ответить на этот вопрос нельзя. Существует не один фосфор, а три.

В течение 178 лет, с тех пор как Бранд открыл фосфор, его считали белым веществом. Считали, что он светится в темноте, что он мягок, как воск, и легко воспламеняется. В 1847 году немецкий химик Шреттер открывает другую разновидность фосфора — красный фосфор. По своим свойствам он довольно сильно отличается от белого: почти в полтора раза тяжелее, нерастворим в сероуглероде и, главное, совершенно не светится в темноте. Белый фосфор воспламеняется при 40 градусах, а красный — лишь при 440.

Но и на этом не кончаются превращения фосфора. В 1916 году была открыта новая разновидность — черный фосфор. Это уже совсем странный фосфор: по внешнему виду он напоминает графит и даже проводит электрический ток.

Однако и белый, и красный, и черный фосфор — это все тот же элемент, который был открыт Брандом. Оказалось, что все три разновидности могут переходить друг в друга при определенных условиях.


Химические превращения фосфора

Фосфор своеобразен не только в силу своих физических свойств. Он обладает «богатой» химией. Так, например, фосфор может проявлять валентность 5+, 3+ и 3–. Он может взаимодействовать не только с элементами, но и с различными сложными веществами, образуя множество разнообразных соединений. Мы здесь расскажем лишь об основных соединениях фосфора.

Этот элемент легко реагирует с галогенами. Взаимодействуя с хлором, он дает:

2Р + 5Cl2 = 2PCl5;

2Р + 3Cl2 = 2PCl3;

пятихлористый и треххлористый фосфор. Оба эти соединения, являясь так называемыми галоидангидридами, очень реакционноспособны и, в свою очередь, легко взаимодействуют с водой, образуя различные фосфорные кислоты:

PCl5 + 4H2O = Н3PO4 + 5HCl;

PCl3 + 3H2O = Н3PO3 + 3HCl.

Фосфор может соединяться и с водородом, образуя при этом вещества, которые получили название фосфинов. Реакцию взаимодействия фосфора с водородом можно написать следующим образом:

2P + 3Н2=2PH3.

Вещество, которое при этом образуется, называется фосфористым водородом. Это ядовитый газ с резким, неприятным запахом, по свойствам своим сходный с аммиаком. В этой реакции наряду с фосфином (фосфористым водородом) получаются и другие аналогичные соединения, например Р2Н4, который при обычных условиях представляет собой жидкость, самовоспламеняющуюся на воздухе.

При повышенных температурах фосфор хорошо взаимодействует с некоторыми металлами, образуя при этом соединения, которые получили название фосфидов, например:

3Ca + 2Р = Ca3Р2;

3Mg + 2P = Mg3P2.

Соединения эти, устойчивые сами по себе, в присутствии кислот разлагаются:

Mg3P2 + 6HCl = 3MgCl2 + 2РН3.

Фосфор легко соединяется с кислородом, причем, как и в случае взаимодействия с хлором, процесс может идти двумя путями, в зависимости от количества кислорода, принимающего участие в реакции:

4Р + 5O2 = 2Р2O5;

4Р + 3O2 = 2Р2O3.

Вещества, образующиеся при этом, называются соответственно фосфорным и фосфористым ангидридами. Это очень гигроскопические белые вещества, легко вступающие в реакцию с водой с образованием кислот.

Можно сказать, что фосфор способен реагировать с большинством элементов периодической системы и со многими соединениями, например: серой, едкими щелочами, кислотами, некоторыми солями и т. п. О многообразии соединений фосфора можно судить хотя бы по тому, что были получены вещества, формулы которых можно написать так: POFClBr и PSFClBr.

Интересно отметить, что с углеродом фосфор непосредственно не соединяется. Однако этот «недостаток» он с лихвой покрывает тем, что образует многочисленные фосфорорганические соединения, которые получаются при взаимодействии различных производных фосфора с органическими соединениями. О некоторых из них, играющих исключительно важную роль в жизни животных и человека, мы еще будем говорить.

Сам фосфор, как обычно принято говорить — «элементарный», находит лишь ограниченное применение. Белый фосфор весьма ядовит, поэтому его используют для борьбы с вредителями сельского хозяйства. Кстати, он применяется и в военном деле — как наполнитель специальных типов зажигательных бомб и дымообразующее вещество при постановке дымовых завес. Красный фосфор используют в производстве спичек. Но поистине громадное значение имеют соединения фосфора.


Фосфорные кислоты

Мы уже говорили, что фосфор способен соединяться с кислородом с образованием различных окислов. А теперь посмотрим, что же представляют собой продукты их взаимодействия с водой. Лучше всего начать с фосфорного ангидрида — Р2O5. Оказывается, если он реагирует с водой, то при этом образуется не одна кислота, как это бывает у обычных ангидридов, а три (опять число три — три вида элементарного фосфора, теперь три кислоты):

Р2O5 + H2O = 2НРО3;

Р2O5 + 3H2O = 2Н3PO4;

Р2O5 + 2H2O = Н4Р2O7,

которые называются соответственно метафосфорной, ортофосфорной (или просто фосфорной) и пирофосфорной. Таким образом, в зависимости от количества молекул воды, вошедших в реакцию с одной молекулой фосфорного ангидрида, могут образоваться различные кислоты. Для того чтобы легче уяснить себе такое странное поведение фосфорного ангидрида, напишем структурные формулы этих веществ:

Похоже, что все они, как принято говорить, генетически связаны, то есть все их можно получить друг из друга. Например, ортофосфорную можно получить из метафосфорной кислоты простым присоединением воды:

А пирофосфорную можно получить из ортофосфорной при конденсации ее молекул:

Вообще говоря, это не только теоретические возможности. В самом деле, из метафосфорной кислоты при определенных условиях можно получить и орто- и пирофосфорную кислоты.

Все эти кислоты при обычных условиях — кристаллические вещества, все они бесцветны и очень сильно поглощают воду. (Правда, еще сильнее воду поглощает сам фосфорный ангидрид. Он способен отнимать ее у других кислот, например таких, как азотная кислота, и даже обугливать некоторые органические вещества, забирая у них воду.)

Наиболее важное практическое значение имеет ортофосфорная кислота, и не столько она сама, как ее соли, которые используются в качестве удобрений.

Кроме мета-, орто- и пирофосфорной кислот, фосфор способен образовывать еще много других, из которых, пожалуй, самой интересной является фосфористая. Получается она при взаимодействии фосфористого ангидрида с водой:

Р2O3 + 3H2O = 2Н3PO3.

Это тоже белое кристаллическое вещество, легко растворимое в воде.

Однако в отличие от кислот, которые фосфор образует в своей высшей степени окисления, как фосфористая кислота, так и ее соли сильно ядовиты. И еще одно интересное обстоятельство. Строение фосфористой кислоты можно изобразить в виде двух формул:

Обе эти формы находятся в равновесии друг с другом, но в обычных условиях форма II сильно преобладает. Как самой кислоте, так и ее солям отвечает формула II, поскольку для нее известны лишь двузамещенные соли, например Na2HPO3·5H2O. Однако для формулы I получены сложные органические производные. Такое явление называется таутомерией и часто встречается в органической химии. Интересно, что фосфористая кислота — сильный восстановитель и из растворов солей серебра выделяет металлическое серебро, а из солей меди — медь. Сама по себе кислота очень устойчива и с трудом окисляется до фосфорной. Остается лишь добавить, что у нее, так же как и у фосфорных кислот, имеются свои аналоги — метафосфористая НРО2 и пирофосфористая Н4Р2O5 кислоты.


Пища растений

Еще задолго до нашей эры люди обнаружили, что при посевах почва истощается. Урожаи становятся все меньше и меньше, и в конечном итоге почва становится бесплодной. Целые селения снимались с обжитых мест и шли на поиски плодородных земель. Они сжигали леса, обрабатывали целину, а через несколько лет снова были вынуждены уходить на новые места. Шли века. Человек накапливал опыт, знания. И вот на одном из этапов развития люди стали использовать удобрения.

Кельты, например, применяли удобрения за несколько сот лет до новой ары. Известно также, что удобрения применялись и в древней Греции. Однако интенсивное использование их началось лишь около ста лет тому назад.

В первой трети прошлого века выдающийся немецкий ученый Юстус Либих сделал интересный эксперимент: он провел химический анализ большого количества различных растений. В результате оказалось, что все они содержат в своем составе лишь десять элементов: углерод, водород, кислород, азот, кальций, калий, фосфор, серу, магний и железо[4]. Все эти элементы имеют очень большое значение для нормального роста растений. Отсутствие одного из них, даже при избытке других, приводит растения к гибели.

Вскоре выяснилось, что углерод растения могут получать из воздуха, поглощая содержащуюся в нем углекислоту. Водород и кислород они получают из воды. В магнии, железе и сере растения нуждаются в незначительных количествах и с избытком могут получать их из почвы. Даже азот некоторые растения (например, бобовые) могут поглощать из воздуха. Таким образом, для хорошего роста растений в почву необходимо вносить калий, фосфор, азот, иногда кальций. При этом выяснилось, что недостаток фосфора в почве сказывается резче всего.

Самый заметный признак недостатка фосфора в почве — слабый рост растений и мелкие темно-зеленые листья. Но бывает и по-другому. Например, недостаток фосфора в долине Лима в Перу проявляется в том, что листья кукурузы приобретают пурпурную окраску. Аналогичную окраску листьев вызывает недостаток фосфора и у томатов. Но окраска листьев растений — это еще не самое главное. Пусть себе листья становятся хоть синими, лишь бы растения давали хороший урожай. Но оказалось, что при недостатке фосфора у растений слабо развиваются корни, сильно поражается сосудистая система. Крахмал не превращается в сахар, задерживается вызревание плодов. Если же почва богата фосфором, наблюдается прямо противоположная картина: бурно развивается корневая система растений, особенно в фазе всходов, повышается засухоустойчивость, скороспелость. Присутствие фосфора хорошо отражается на делении клеток, на образовании жира и белка, усиливается кущение зерновых культур.

Избыток фосфора приводит к усиленному образованию побегов у кукурузы. А клевер и люцерна при внесении в почву фосфатов дают семена в год посева, тогда как обычно приносят их лишь на следующий год.

Однако самое неприятное заключается в том, что удобрять почву фосфорной кислотой или белым фосфором нельзя: они действуют на растения как яды. Нельзя удобрять почву и красным фосфором: растения не усваивают его. Для этой цели в наше время на заводах производятся громадные количества различных специальных фосфорных удобрений.

Самое простое и доступное из них — фосфорит, природный фосфорнокислый кальций Ca3PO4)2. На заводах его размалывают в порошок и непосредственно используют в качестве удобрения под названием фосфоритной муки. Однако это удобрение пригодно не для всех почв. Ведь фосфорнокислый кальций нерастворим в воде, в твердом виде растения его не усваивают. Поэтому применять его можно только на кислых почвах, где содержащиеся в самой почве различные органические кислоты переводят его в более растворимую форму — двузамещенный фосфат кальция CaHPO4.

Более универсальным является суперфосфат, который содержит в своем составе однозамещенный фосфат кальция Ca(Н2PO4)2, хорошо растворимый в воде. Получают его обработкой размолотого фосфорита серной кислотой:

Ca3(PO4)2 + 2H2SO4 = Ca(Н2PO4)2 + 2CaSO4.

Образующаяся при этом смесь дигидрофосфата и сульфата кальция называется простым суперфосфатом и непосредственно используется в виде удобрения.

Однако большой недостаток простого суперфосфата — присутствие в нем сернокислого кальция, практически не нужного ни растениям, ни почве. А ведь этот балласт составляет почти 54 процента по весу, то есть больше половины.

Более выгодно поэтому производить двойной суперфосфат, который получают в две стадии. Из природного фосфорита вырабатывают сначала фосфорную кислоту:

Ca3(PO4)2 + 3H2SO4 = 2H3PO4 + 3CaSO4.

Образовавшийся осадок сернокислого кальция отфильтровывают, а полученной фосфорной кислотой действуют на новую порцию фосфорита:

Ca3(PO4)2 + 4Н3PO4 = 3Ca (Н2PO4)2.

Двойной суперфосфат представляет собой хорошо растворимую соль фосфорной кислоты и может использоваться практически на любых почвах.

Остается только добавить, что ежегодно урожаи всего мира уносят с полей около 10 миллионов тонн фосфорной кислоты.


Несущий жизнь…

В середине прошлого века было обнаружено, что фосфорнокислый кальций — основная составляющая часть костей животных и человека, а некоторые сложные соединения фосфора содержатся в мозговых тканях. Это позволило немецкому химику Молешотту заявить около ста лет тому назад: «Без фосфора нет мысли». И уже в наше время ученые пришли к выводу, что без фосфора не только «нет мысли», но и вообще немыслимо существование ни человека, ни животных, ни растений.

Для чего же нужен фосфор живым организмам? Ответить подробно на этот вопрос в нашем очерке довольно трудно, и, кроме того, роль многих фосфорных соединений, находящихся в живых организмах, до сих пор еще окончательно не выяснена.

Прежде всего необходимо отметить, что весь фосфор, находящийся в организме человека и животных, имеет или растительное, или животное происхождение. Лишь растения способны усваивать фосфор непосредственно из почвы, и то только в виде растворимых солей фосфорной кислоты. Он накапливается в растениях там, где идут интенсивные процессы синтеза органического вещества и клетки растений содержат много плазмы. Что же там происходит?

Обычно, когда мы говорим, что растение непосредственно усваивает углекислоту из воздуха и строит из нее органические соединения, мы описываем этот процесс уравнением:

6CO2 + 6H2O = C6H12O6 + 6O2,

то есть говорим, что из углекислоты и воды образуется глюкоза, которая путем дальнейших превращений преобразуется в более сложные органические вещества. Но этот процесс оказался далеко не таким простым.

Когда ученые занялись его детальным изучением, обнаружились два интересных факта. Во-первых, приведенная реакция требует затраты большого количества энергии. И действительно, попробуйте получить сахар из воды и угля! Откуда же берет растение эту энергию? И, во-вторых, фотосинтез (усвоение растениями углекислоты) резко затормаживается при недостатке фосфора в растении.

Ученые нашли, что фосфор входит в состав так называемых хлоропластов — своеобразных растительных органов, непосредственно осуществляющих фотосинтез. Дальнейшее изучение роли фосфора в растениях (которое, кстати сказать, шло не один десяток лет) позволило прийти к следующим выводам. Во-первых, фосфор играет довольно значительную роль в фиксации углекислоты из воздуха. Оказалось, что растворимые фосфаты могут поглощать двуокись углерода по схеме:

CO2 + H2O + HPO42– = HCO3 + Н2PO4.

Во-вторых, фосфор входит в состав хлоропластов в виде сложных органических производных, называемых фосфолипоидами. (Сами фосфолипоиды — это глицериды, отличающиеся от жиров тем, что в них два гидроксила глицерина соединяются всегда с двумя радикалами жирных кислот, а третий — с фосфорной кислотой.)

И, наконец, в-третьих, оказалось, что реакция взаимодействия CO2 и воды с превращением в глюкозу проходит в несколько стадий, и одной из промежуточных является образование сложного фосфорорганического соединения, так называемой фосфорноглицериновой кислоты.

Выяснилось также, что фосфор необходим и при дыхании. Здесь оказалось примерно то же, что и с синтезом глюкозы. Обычно мы пишем:

C6H12O6 + 6O2 = 6CO2+6H2O.

Следовательно, при дыхании глюкоза переходит в углекислоту и воду, которые мы и выдыхаем. Однако и этот процесс оказался далеко не таким простым.

В растительных и животных организмах находится сложное органическое вещество, содержащее в своем составе фосфор. Называется оно аденозинтрифосфат. В принципе формулу его можно представить в таком виде:

Оказалось, что это вещество и ему подобные образуются в процессе дыхания и в то же время служат своеобразными накопителями мышечной энергии в животных организмах. При процессе дыхания глюкоза образует сложные фосфорнокислые эфиры, так называемые дифосфаты. При этом примерно 5–6 молекул глюкозы образуют дифосфаты, а одна окисляется до CO2. Затем дифосфаты трансформируются в аденозинтрифосфат.

Молекулы аденозинтрифосфата, присоединяясь к молекулам белка, заставляют их принимать определенную форму. Это значит, что молекула запаслась энергией. Если такой «активной» молекуле нервные ткани приносят приказ «работать», структура молекулы резко меняется — она сокращается, и человек производит какую-нибудь работу, например сгибает руку. При этом молекула аденозинтрифосфата превращается в молекулу аденозиндифосфата, и, чтобы мышца могла снова произвести какую-нибудь работу, к молекулам белка опять должна присоединиться молекула аденозинтрифосфата, чтобы они приняли исходную форму, то есть запаслись новой порцией энергии.

Фосфор, открытый почти 300 лет назад, получил свое название за способность светиться в темноте. Однако, как мы увидели, он является «несущим свет» не только в прямом смысле. Это фосфор приносит нашим полям плодородие, а в наши дома — обилие продуктов; фосфор дает «жизненную силу» животному и растительному организму. Поистине его следовало бы назвать не «несущий свет», а «несущий жизнь».

Загрузка...