Металлы легче воды

Можно ли металл резать ножом? И даже костяным, которым обычно разрезают страницы книг? Мять пальцами, как воск? Расплавить теплом руки? И, наконец, может ли металл плавать в воде?

С первого взгляда вопросы эти кажутся несколько странными: в повседневной жизни мы привыкли иметь дело с твердыми, тугоплавкими металлами… И тем не менее существуют металлы мягкие, как воск, не тонущие в воде, плавящиеся от тепла руки. И более того, с точки зрения химических свойств они являются типичными: очень легко образуют катионы. При взаимодействии с водой они дают сильные щелочи; потому-то их и называют щелочными. Это литий, натрий, калий, рубидий и цезий.

Если вынуть кусочек щелочного металла из банки с керосином, где их обычно хранят, и разрезать ножом, то можно увидеть, что срез имеет серебристо-белый оттенок. Но стоит кусочку совсем немного побыть на воздухе, как срез темнеет и теряет свой блеск: металл взаимодействует с влагой воздуха — образуется пленка гидроокиси. Она поглощает углекислый газ воздуха и превращается в карбонат. Щелочные металлы очень активны. Потому их хранят в керосине. Если же бросить в воду маленький кусочек, например, натрия, он превратится в сверкающий шарик и, как паук-серебрянка, забегает по поверхности воды с потрескиванием и вспышками, подталкиваемый пузырьками образующегося водорода. Выделяется много тепла. Большее количество металла может вызвать воспламенение водорода и даже взрыв.

Необычная активность щелочных металлов объясняется слабой связью единственного внешнего электрона с атомом.

Три щелочных элемента — литий, натрий и калий — не тонут в воде. Удельный вес лития равен 0,534, он почти в два раза легче воды и в 40 раз легче осмия — самого тяжелого металла.


Пар межпланетных кораблей

Космический корабль преодолел земное притяжение. Мощные двигатели уже не нужны. Они требуют слишком много горючего. Что же заменит их в космосе? Ионный двигатель. Он очень прост. Вот его схема. Мощные солнечные батареи раскаляют пластины вольфрама. На них подается самый легкоплавкий и самый активный щелочной металл цезий.

Под действием тепла, излучаемого вольфрамом, цезий ионизируется. Образовавшееся ионное облако разгоняется в электростатическом поле при напряжении порядка 10 100 вольт. Со скоростью 12 миллионов сантиметров в секунду ионы цезия вылетают из сопла ракеты. Образуется необычайно мощная удельная тяга в 12 000 кг·сек/кг[3], но масса ионного луча очень мала, общая тяга двигателя, сообщают американцы, не превышает одного килограмма.

Однако в космосе и такой двигатель сообщит современному планетолету высокую скорость. Отметим: в ионном двигателе цезий не топливо, он лишь переносчик энергии солнца, подобно пару, переносчику энергии сжигаемого угля.

Ионный пар окажет огромную услугу людям и на Земле. В будущем плазменные генераторы вытеснят современные паровые котлы, турбины, генераторы и конденсаторы, такие привычные и вместе с тем, что греха таить, очень неудобные, громоздкие и неэкономичные переводчики тепла в электричество.

Принцип работы плазменных генераторов сравнительно прост. Из сопла газовой турбины со сверхзвуковой скоростью, с оглушающим ревом вырывается нагретый до 3000 °C поток ионизированного газа. По выходе из сопла его стережет сильное магнитное поле. Но, как известно, газы очень слабо ионизируются даже при такой высокой температуре. Их электропроводность несравнима с электропроводностью металла. Чтобы значительно повысить электропроводность газа, необходимо ввести в поток заряженные частицы.

И снова на помощь приходят активные, легкоионизирующиеся щелочные металлы. Цезий (рубидий, калий) впрыскивают в газовый поток.

Для получения электрического тока надо пересечь магнитное поле металлическим проводником: здесь роль металла выполняет электропроводящий газовый поток.

В плазменном генераторе тепло нагретого газа непосредственно переходит в электричество. Его коэффициент полезного действия равен 50–60 процентам, то есть в два раза больше, чем у обыкновенных генераторов тока: паровых котлов, турбин, электрогенераторов и т. д.


Трассы космических кораблей

Щелочные металлы связали свою судьбу с космосом. В этом 2 января 1959 года убедилось все человечество.

В морозную зимнюю ночь в назначенное время от невидимой ракеты, мчащейся к Луне, отделилось желтое пятнышко — облако паров атомарного натрия. Во вселенной появилась первая искусственная комета. С ее помощью определили точные координаты ракеты в момент выброса натриевого облака. Образованное на расстоянии 113 тысяч километров от Земли, оно обладало яркостью звезды шестой величины, звезды, заметной невооруженному человеческому глазу.

Для создания искусственных комет можно использовать все щелочные металлы. Все они легко испаряются и ярко светятся. Каждый элемент таблицы Менделеева светится по-своему, обладает своим, только ему присущим спектром.

Натрий окрашивает пламя в ярко-желтый цвет: киньте щепотку поваренной соли на пламя газовой горелки, и вы в этом легко убедитесь.

В космосе атомы натрия рассеивают желтую часть солнечного спектра, поглощая все остальные. Получается желтая комета, очень яркая. Общее количество света от кометы, на образование которой потребовался один килограмм натрия, такое же, как от электрического прожектора мощностью в 70 тысяч киловатт.

Но можно создать еще более яркую комету, воспользовавшись литием. Во-первых, атомы лития сильно рассеивают определенную часть солнечного спектра; во-вторых, в одном килограмме их в три раза больше, чем атомов натрия. Литиевая комета, образованная одним килограммом металла, будет светиться в 40 раз ярче натриевой. Только она окажется не желтой, а карминово-красной. Калиевая комета будет розово-фиолетовой. При помощи щелочного металла можно сделать путь космического корабля трассирующим: для этого надо выбрасывать литиевые облачка через определенные промежутки времени.


Реагируют со светом

В 1888 году известный русский физик А. Г. Столетов обнаружил, что свет электрической дуги выбивает электроны из цинковой пластинки. Это явление было названо фотоэлектрическим эффектом. Его величина зависит от подвижности электронов в металле, от того, насколько легко вырвать их из атома, ионизировать его. Напряжение поля, в котором внешний электрон атома покидает свою орбиту, называется ионизационным потенциалом.

Для щелочных металлов ионизационные потенциалы малы по сравнению с другими металлами. Для цезия, например, всего лишь 3,9 вольта. Не удивительно, что калий, натрий, а особенно рубидий и цезий очень чувствительны к свету. Немалое количество двух последних идет на производство фотоэлементов.

Что такое фотоэлемент?

Это небольшой, наполненный разреженным инертным газом баллончик, часть внутренней оболочки которого покрыта тончайшим слоем цезия или рубидия. Напротив этой серебристой части баллончика, похожей на отличное зеркало, впаяно кольцо или сетка.

Серебристая часть баллончика — катод, кольцо или сетка — анод. Когда освещается катод, кванты света выбивают электроны. Они движутся к аноду — в цепи возникает ток.

Фотоэлементом можно измерить яркость звезды, еле видимой человеческим глазом.

Фотоэлементы с кислородно-серебряно-цезиевыми катодами «видят» в темноте: они чутко отзываются на инфракрасные и фиолетовые лучи.

Фотоэлемент дал язык Великому Немому (кино), без него невозможно было бы телевидение. Он неотъемлемая часть множества современных установок для автоматизации производственных процессов.


Щелочные металлы и атомный реактор

Ученые расковали атомное ядро, добрались до неисчерпаемого клада энергии и… тут же столкнулись с серьезной проблемой.

Урановый реактор надо охлаждать, отводить непрерывно выделяемое им тепло. Возникла необходимость в веществе, которое бы эффективно и быстро отбирало тепло, легко проходило по трубам охлаждающей системы и было жидким при температуре в несколько сот градусов. Такова температура охлаждаемых частей реактора.

Вода — старый, испытанный теплоноситель. Теплоемкость у нее отличная, очень неплохая теплопроводность, в трубах не застрянет, но… но уже при 100 °C превращается в пар. На воде успешно работают многие реакторы, но ее низкая температура кипения требует сооружения систем высокого давления. К тому же при высоких температурах вода вступает в химическое взаимодействие с материалами конструкции.

Использование щелочных металлов в качестве теплоносителя позволяет упростить установку. Натрий, например, быстро и эффективно отбирает тепло. Он плавится при 97,8 °C, а кипит при 890 °C. Следовательно, он жидкость на протяжении почти 800 градусов. А это свойство далеко не маловажное: натрий применяют при высоких температурах и низких давлениях. К тому же он химически не взаимодействует с материалом системы охлаждения. Литий обладает диапазоном жидкого состояния в 1150 °C. Он также употребляется в качестве теплоносителя. Правда, щелочные металлы — гораздо более слабые замедлители нейтронов, чем вода; к тому же их наведенная радиоактивность выше, чем у воды.


В природе и в организме

Земная кора содержит одинаковое количество калия и натрия, примерно 2,5 процента по весу. На суше встречаются мощные залежи солей того и другого элемента, но в океане натрия в 40 раз больше, чем калия. В чем же здесь дело? Обратимся к радиусам ионов щелочных металлов. Вот что для них характерно. Чем больше атомный вес, тем большим ионным радиусом обладает металл, следовательно, тем легче он поддается влиянию со стороны всякого рода заряженных частиц. Такие частицы всегда есть в почве, они притягивают легко деформирующиеся ионы, каковыми являются катионы калия, рубидия и цезия.

С другой стороны, каждый ион является источником электрического поля и оказывает деформирующее действие на заряженные частицы внешней среды, причем тем сильнее, чем меньше ионный радиус. Из щелочных металлов наиболее сильным деформирующим действием обладает катион лития, у которого наименьший ионный радиус (0,78Å). Таким образом, можно сказать, что калий, рубидий и цезий задерживает почва, а литий сам в ней задерживается. У натрия же оптимальный размер иона (0,98Å), он слабо деформируется и слабо деформирует, а поэтому легко вымывается водами из почвы.

То, что калий удерживает почва, очень важно; ведь он один из трех китов плодородия. (Два других — фосфор и азот.) Ежегодный мировой урожай уносит из почвы более 30 миллионов тонн калия. Особенно много потребляют его свекла, картофель и табак.

При недостатке калия растения теряют способность синтезировать углеводы, в сахарной свекле понижается содержание сахара, в картофеле — крахмала. Особенно нужен калий молодому растению, где деление клеток идет более энергично. При недостатке этого элемента растение задерживается в росте, не плодоносит и в конце концов заболевает.

Главными калийными удобрениями служат хлористый калий и калийные соли, приготовляемые из сильвинита — горной породы, состоящей из смеси хлористого калия и хлористого натрия. Хлористый калий, идущий на удобрение, — это белый мелкокристаллический порошок. В нем более 50 процентов калия.

Сульфат калия содержит до 52 процентов калия, он эффективен для всех почв и особенно хорош для культур, чувствительных к хлору, таких, как картофель, лен, конопля, табак.

Непосредственно в качестве удобрения применяется и молотый сильвинит; в среднем он содержит до 15 процентов калия.

Долгое время крупнейшим месторождением калийных солей в мире было Страссфуртское в Германии. До революции Россия ежегодно закупала в Германии 4–5 миллионов пудов калийных солей.

Русские ученые настойчиво искали отечественные залежи калия, и в 1912 году в верховьях Камы на глубине 100 метров был найден желтоватый минерал, который оказался сильвинитом — хлористым калием. После революции Соликамское месторождение было исследовано под руководством академика Н. С. Курнакова. Оно оказалось калийным месторождением мирового значения.

В 1927 году в Соликамске заложили шахту, которая в 1930 году выдала первую партию сильвинита.

Совсем недавно начались разработки богатейшего месторождения калийных солей в Белоруссии. Запасы минерального сырья здесь велики: при самой интенсивной эксплуатации его хватит на сотни лет. В 1961 году Солигорский комбинат дал сырую калийную соль.

Лития в земной коре в 400 раз меньше натрия. Свое название он получил в знак того, что был найден в минерале, а не в золе растений, из которой в то время добывался его сородич калий. «Литеос» в переводе с греческого означает «камень». Впрочем, и некоторые растения содержат литий в сравнительно больших количествах. Так, в лютике, татарнике, василистнике его во много раз больше, чем в других растениях.

В земной коре цезия столько же, сколько и ртути (7·10–4%); рубидия в десять раз больше, чем цезия. Они содержатся во многих горных породах, в залежах калийных солей, в морской воде, в растениях и животных организмах. Их добывают из собственных минералов: лепидолитов и поллуцитов. Рубидий накапливают морские организмы; его много в хвое деревьев, в красном вине. Он концентрируется в красных кровяных тельцах — эритроцитах. Цезий накапливается в мышечных тканях.

Натрий и калий в относительно больших количествах содержатся в живом организме и играют в нем немаловажную, хотя и различную, роль.

В организме человека — всего около 175 граммов калия, причем во внеклеточной жидкости (плазме крови, лимфе, спинномозговой жидкости) его лишь 2 с небольшим грамма.

Натрий же, напротив, концентрируется во внеклеточной жидкости, где его количество в 28 раз больше калия; в тканях натрия в пять раз меньше, чем калия.

Взрослые животные организмы содержат калия несколько больше, чем натрия, а в тканях зародышей натрия больше; соотношение этих элементов в них приближается к соотношению в морской воде. Некоторые ученые рассматривают этот факт как непосредственное доказательство возникновения жизни в море. Калий участвует в синтезе гликогена и белка. При недостатке этого элемента в организме человек испытывает общую слабость, нарушается нормальная сердечная деятельность. Натрий, в свою очередь, необходим для регулирования кислотно-щелочного равновесия, для работы скелетной мускулатуры и нормальной пульсации сердца.


Любопытные профессии

Вспомните, как задыхались герои Жюля Верна в герметически закупоренном «Наутилусе», который оказался в ледяной ловушке. Сумей они убрать из воздуха лодки лишний углекислый газ и добавить кислорода, этого не случилось бы. В наше время проблема регенерации воздуха решена с помощью перекисных соединений натрия и калия. Смесь перекиси натрия с надперекисью калия, поглощая углекислый газ, с легкостью выделяет эквивалентное количество кислорода.

Na2O2 + K2O4 + 2CO2 = Na2CO3 + K2CO3 + 2O2.

Таким образом, воздух, выдыхаемый человеком, полностью регенерируется.

Оба эти вещества получают, сжигая металл в токе сухого кислорода. Продажный препарат перекиси натрия имеет желтоватую окраску, но очень чистый реактив бесцветен. Надперекись калия при обычных условиях — ярко-желтый пушистый кристаллический порошок. Оба соединения — очень сильные окислители. В прошлом перекись натрия была одним из сильнейших отбеливающих средств. Ее и сейчас добавляют в белильные и стиральные порошки.

Перекиси щелочных металлов употребляются в качестве твердых заменителей перекиси водорода для получения некоторых красителей, гидролиза крахмала, производства пороха, отбелки древесной массы на бумажных фабриках.

Производство перекисей является одним из крупных потребителей натрия и калия. Не уступает ему в этом отношении производство цианидов щелочных элементов.

Цианистые соли обладают способностью образовывать комплексные растворимые соединения золота и серебра. В 1844 году русский ученый П. Р. Багратион предложил использовать цианистый натрий для извлечения золота и серебра из их руд. На воздухе в растворе цианистого натрия эта реакция протекает так:

4Au + 8NaCN + 2H2O + O2 = 4NaAu(CN)2 + 4NaOH.

Цианистые соли очень ядовиты; их используют для борьбы с вредителями сельского хозяйства. Цианистый натрий применяется также для поверхностной закалки сталей и в производстве пластических масс, искусственных смол, лаков и красок. Обычно цианистый натрий получают обработкой расплавленного натрия сухим газообразным аммиаком при 300 °C с последующим действием угля при 800 °C. Суммарная реакция процесса такова:

2Na + 2NH3 + 2C = 2NaCN + 3H2.

В последнее время возрастает доля натрия в производстве стиральных порошков и синтетических моющих средств.

Немалое количество натрия идет на производство каучука. Основой каучука является дивинил, но он полимеризуется в каучук только при действии катализатора, а лучший из них — металлический натрий. Реакция идет тем быстрее, чем большей поверхностью обладает натрий, чем большие массы дивинила с ним соприкасаются. Поэтому тонкий слой натрия наносят на поверхность железного прута. Обычно на тонну каучука расходуется 3 килограмма натрия.

Но львиную долю металлического натрия забирает сейчас производство тетраэтилсвинца — отличного антидетонатора.


Самые важные соединения

Речь идет о гидроокисях щелочных металлов, или едких щелочах. Едкими их назвали потому, что они разрушают, разъедают живую ткань. Это сильные щелочи, они отнимают влагу у животной ткани и вступают в соединение с белком. Ткань набухает, а при длительном действии возникает ожог. Едкий натр в расплавленном состоянии разъедает стеклянную и фарфоровую посуду, а при доступе воздуха — даже платиновую. Все гидраты окисей щелочных металлов отлично растворяются в воде.

На практике едкий натр получают электролизом раствора поваренной соли; едкое кали — электролизом хлористого калия. В мире производят несколько миллионов тонн едкого натра. Он применяется во многих отраслях химической промышленности. Действием разбавленного раствора едкого натрия при 140 °C выделяют из растительных материалов целлюлозу — важнейшее сырье различных отраслей промышленности.

Большое количество щелочи потребляет мыловаренная промышленность. Мыло — это натриевые и калиевые соли жирных кислот.

Высшие сорта жидкого туалетного мыла, а также специальные жидкие медицинские мыла получают, используя едкое кали.

В больших количествах едкие щелочи употребляются в промышленности органических красителей, в текстильном производстве, для очистки минеральных масел и т. д.


О соде и стекле

Еще 5 тысяч лет тому назад египтяне выделывали стекло сплавлением чистого белого песка с содой и мелом. Соду древние египтяне добывали из содовых озер. В природе она образуется там, где есть залежи мирабилита Na2SO4. Особые виды бактерий восстанавливают мирабилит до сульфида натрия Na2S. При действии углекислого газа и воды последний превращается в соду. На дне содовых озер и на берегу образуется минерал соды — трона Na2CO3·NaHCO3·2H2O.

До конца XVIII века стекольные и мыловаренные заводы, текстильная промышленность Западной Европы работали на природной соде. Широко использовалась сода, добывавшаяся на средиземноморском побережье Испании сжиганием щелочьсодержащих растений.

В России XVIII века в больших количествах вырабатывался поташ K2CO3, который и применялся в стеклоделии. Для того чтобы получить пуд поташа, сжигали лес на площади 120 квадратных метров. В Москву доставляли также астраханскую и испанскую соду.

Техника получения растительной соды была в конце XVIII века весьма примитивна, и даже лучший сорт ее — испанская «барилла» — содержал всего 25–30 процентов основного продукта.

В середине XVIII века стеклоделам, мыловарам и текстильщикам стало не хватать соды…

В 1775 году Парижская академия наук объявила конкурс на способ производства соды из поваренной соли. Через 15 лет парижский нотариус получил конверт, в котором находилось описание производства искусственной соды из глауберовой соли Na2SO4. Автором патента оказался химик-любитель Леблан, домашний врач герцога Орлеанского. По его способу глауберова соль, получаемая действием серной кислоты на поваренную соль, сплавлялась с углем и углекислым кальцием при 1000 °C.

Сплав соды с сульфидом кальция выщелачивали, то есть действовали на него водой. Сода переходила в раствор.

По способу Леблана соду получали до семидесятых годов XIX века. Упали вполовину цены на ткани, оконные стекла и мыло. До Леблана оконные стекла во Франции считались роскошью. Но способ был далеко не идеальным: получалось много отходов, он требовал большого расхода топлива, аппаратура была слишком громоздкой, реакции шли в основном с твердыми веществами.

В 1861 году бельгийский промышленник Сольвэ предложил аммиачный способ получения соды. Он более дешев и прост, не страдает недостатками леблановского способа: в раствор поваренной соли вводятся аммиак и избыток углекислого газа. Образующийся бикарбонат аммония в результате обмена переходит в бикарбонат натрия:

NH4HCO3 + NaCl ↔ NaHCO3 + NH4Cl.

При нагревании бикарбонат натрия легко переходит в карбонат, соду.

2NaHCO3 = Na2CO3 + H2O + CO2.

Na2CO3 поступает в продажу в виде безводной, так называемой кальцинированной соды.

В настоящее время соду по способу Сольвэ получают в огромных количествах. В мире ежегодно производится несколько миллионов тонн этого продукта.

Аммиачный способ хорош, но и он не без недостатков. В нем не полностью используется хлористый натрий, происходят потери углекислого газа, аммиака и извести. В 1939 году советский ученый А. П. Белопольский разработал способ производства соды на базе мирабилита. Этот способ предусматривает комплексное использование сырья. В его основе лежит реакция:

Na2SO4 + 2NH3 + 2CO2 + 2H2O = 2NaHCO3 + (NH4)2SO4.

Получаются сразу два ценных продукта — сода и сернокислый аммоний. Способ Белопольского не нашел пока промышленного применения.

Пятая часть всей соды перерабатывается в едкий натр, около трети используется в производстве алюминия. Содой обрабатывают исходное сырье для получения окиси алюминия — бокситы.

Промежуточный продукт содового процесса — бикарбонат натрия — применяется в медицине и пищевой промышленности. Питьевая сода — так называют в быту это вещество — должна быть очень чистой, не содержать ядовитых примесей (мышьяка и др.).

Более трети всей получаемой соды потребляется стекольной промышленностью.

Загрузка...