Век искусственных элементов

В 1937 году в циклотроне Калифорнийского университета родились первые атомы элемента, никогда и никем ранее не обнаруженного в природе. Это событие открыло век искусственных элементов. Но в те дни оно привлекло к себе внимание лишь узкого круга ученых.

Авторы открытия — итальянцы Перье, Сегре и Каккьянуоти — работали в небольшом университетском городке Беркли, в Соединенных Штатах. В циклотроне в течение нескольких месяцев облучалась ядрами тяжелого водорода небольшая молибденовая пластинка. С ней было выполнено несколько тщательных опытов. Ученые надеялись обнаружить какой-нибудь новый радиоактивный изотоп. Их надежды оправдались. Счетчик зафиксировал распад неизвестных изотопов. Со всей возможной быстротой они были переведены в раствор и подвергнуты пристальному изучению. Скоро выяснилось, что изотопы принадлежат новому, не встречающемуся в природе элементу.

Рожденный в солнечной Калифорнии, первый искусственный элемент оказался настоящим южанином. Его атомы излучали горячее радиоактивное дыхание. Это было своеобразным предупреждением о грозных силах, скрытых внутри атомного ядра.

Новый элемент быстро распадался, и потребовалась действительно виртуозная техника, чтобы провести точные радиохимические опыты. По свойствам первый искусственный элемент напоминал рений и марганец. И так как он образовался при облучении атомов молибдена с зарядом ядра, равным 42 ядрам тяжелого водорода с одним положительным зарядом, не оставалось сомнений, что, наконец, получен элемент № 43 — неуловимый экамарганец Менделеева.

В ближайшие три года удалось получить три других не встречающихся в природе элемента: № 61 — в 1937, № 87 — в 1939 и № 85 — в 1940 году. В результате в периодической системе между водородом и ураном исчезли все свободные места.

Но этому краткому периоду успешных синтезов предшествовали почти 70 лет кропотливых исследований и разочарований, часто неожиданных.


«Эльдорадо» исчезнувших элементов

1869 год. Молодой Менделеев, только что открывший периодический закон, предсказывал, что химики скоро обнаружат в природных материалах новые элементы. Через несколько лет француз Буабодран, швед Нильсон и немец Винклер открыли экаалюминий, экабор и экакремний Менделеева. Еще каких-нибудь 12 лет — и в периодической таблице удачно разместились инертные газы, а к 1921 году нашло свое постоянное место редкоземельное семейство.

Периодическая система, раньше пестревшая белыми клетками неизвестных элементов, превратилась в строгий прямоугольник химических символов, логическая непрерывность которого отражала основной закон неорганической природы. Между тем в ней в 1925 году все еще можно было отыскать четыре свободных места.

Незанятые клетки таблицы привлекали к себе внимание химиков всех стран и континентов. Заявки на новые элементы следовали одна за другой. Каждый спешил обеспечить себе желанный приоритет. Но проходило несколько лет, и сообщения оказывались опровергнутыми. Постоянная смена кратковременных удач и неожиданных разочарований была как горячая пора золотой лихорадки в новеллах Джека Лондона.

В 1925 году немецкие химики Ида Таккэ, Вальтер Ноддак и Отто Берг сообщили, что обнаружены элементы № 43 и 75. Открытие было результатом долгих кропотливых поисков. После нескольких лет непрерывной работы удалось выделить из минерала колумбита элемент № 75 — рений и, казалось, обнаружить в платиновых рудах примеси элемента № 43 (мазурий). 5 сентября 1925 года Ида Таккэ прочла в Немецком химическом обществе в Нюрнберге первую лекцию о новых элементах.

В том же 1925 году чех Гейровский подозревает, что элементы № 43 и 75 содержатся в солях марганца.

В следующем году американец Смит Хопкинз опубликовывает результаты шестилетних поисков элемента № 61. Хопкинз считал, что ему удалось, наконец, обнаружить неуловимый редкоземельный элемент в виде примеси к чистейшим солям неодима и самария.

Одновременно об открытии шестьдесят первого элемента сообщил профессор Нью-Хемпширского университета Чарлз Джеймз.

Но права на этот элемент предъявил также Луиджи Ролла из Королевского университета во Флоренции. Выяснилось, что элемент № 61 обнаружен им еще в июне 1924 года и назван флоренцием, а сообщение об открытии уже два года хранилось во Флорентийской академии наук.

Тогда же чех Друце и англичанин Лоринг впервые упоминают об элементе № 87.

Между 1929 и 1932 годами американец Фрэд Элисон с помощью только что разработанного им магнитооптического анализа (метод впоследствии оказался неправильным в основе) «открывает» элемент № 87 (вирджиний) и 85 (алабамий) в литиевых и цезиевых минералах.

В 1931 году профессора Корнельского университета Джекоб Пэпиш и Юджин Вейнер как будто бы обнаруживают элемент № 87 в минерале самарките, а Густав Аортоваара из Хельсинкского университета — в финском полевом шпате.

Наконец, румын Хориа Холубей сообщает об открытии элемента № 87 — Молдавия — в минерале поллюците.

Но ни одно из этих сообщений никогда не было подтверждено. А затем оказалось, что даже самые тщательные поиски были заранее обречены на неудачу.

Объяснение пришло после работ немецкого физика Маттауха. Изучая устойчивость различных изотопов, он показал, что у элементов № 43 и 61 должны быть только неустойчивые радиоактивные изотопы.

К этому времени было твердо установлено: изотопы всех элементов с порядковыми номерами больше 83 неустойчивы. Поэтому в природе элементы № 85 и 87 могут существовать только, если время, за которое они полностью распадаются, больше возраста Земли. Или если они непрерывно образуются и в наши дни при распаде других радиоактивных элементов. Такие возможности можно было предусмотреть и для 43-го и 61-го элементов.

Безуспешные 70-летние поиски опровергали первую возможность. В продуктах распада известных радиоактивных элементов — урана, тория и актиния — не удалось обнаружить даже следов изотопов с порядковыми номерами 43, 61, 85 и 87. Если они и образуются при распаде урана, тория и актиноурана, то период их полураспада слишком мал. Эти изотопы, еще не успев накопиться в заметной концентрации, тут же исчезают, превращаясь в другие, более устойчивые. И обнаружить их в природных материалах обычными методами было бы почти невозможно.

Разочарование ученых, однако, было непродолжительным. Ровно через три года в физике и химии наступил век искусственных элементов.


Технеций, прометий, астат, франций…

Сразу же за технецием (№ 43) был синтезирован неуловимый элемент № 61. Его изотопы образовывались при бомбардировке ядрами водорода редкоземельного элемента № 60 — неодима. Ускоренные в циклотроне частицы с одним положительным зарядом, сливаясь с атомами неодима, дали новые ядра с зарядом 61.

Можно считать, что элемент № 87 известен еще с 1914 года. Тогда три венских химика: С. Мейер, Ф. Гесс и Ф. Панет, — обратили внимание, что чистый актиний распадается в двух направлениях. Хотя большая его часть испускает бета-частицы, некоторые атомы, меньше одного процента, выделяя альфа-частицы, переходят в неустойчивые радиоактивные изотопы с зарядом ядра 87 — актиний К. Но в то время трудно было поверить, что быстро распадающиеся изотопы могут представлять в периодической таблице самостоятельный элемент. Вскоре началась война, и о только что полученных изотопах надолго забыли.

В 1939 году — на этот раз в разгар второй мировой войны — парижанка Маргарита Перей повторила старые опыты. И теперь у нее не было сомнений, что актиний с зарядом 89, излучая ядра гелия с зарядом 2, переходит в новый элемент — № 87.

Почти одновременно в американском городке Беркли, где расположен Калифорнийский университет, под руководством Лоренса достраивался большой 60-дюймовый циклотрон. В нем скоро родились самые тяжелые элементы на Земле. А пока в циклотроне подвергся облучению ядрами гелия металлический висмут. Из мишени после быстрой химической обработки удалось выделить последний искусственный элемент с порядковым номером меньше девяноста двух — № 85.

В этом случае нельзя было исходить из элемента № 84 — полония. Полоний сам радиоактивен и присутствует на Земле в очень малой концентрации. Пришлось «пропустить» один номер и взять мишень из висмута (№ 83). И чтобы восполнить недостаток двух положительных зарядов, висмутовая мишень облучалась ядрами гелия, в результате возникали атомы нового элемента с порядковым номером 85.

Так за четыре года окончательно иссякло «золотое Эльдорадо» исчезнувших элементов.

Первое время никому не казалось странным, что у новых элементов нет химических названий. В те дни они еще не получались в больших количествах, не были известны их многие химические свойства, никто не видел даже самых простых принадлежащих им соединений. Все эти элементы казались мало похожими на хорошо изученные «классические» элементы периодической системы.

Но неудобство сразу почувствовалось, как только новые элементы перестали быть недоступными и свойства некоторых из них оказались подробно изучены. Первым обратил на это внимание в небольшой заметке в лондонском журнале «Природа» профессор Панет.

4 января 1947 года в «Природе» появилось ответное письмо Перье и Сегре. Они предлагали назвать элемент № 43 технецием. Одновременно была помещена записка Корсона и Мак-Кензи с предложением назвать элемент № 85 астатином, от греческого «астатос» — «неустойчивый». Теперь его переименовали в астат. Маргарита Перей решила дать элементу № 87 имя своей родины — франций.

Немного позднее элемент № 61 был назван прометием — в честь мифического титана Прометея, похитившего у богов огонь и подарившего его людям.

В наши дни в сравнительно большом количестве производится только технеций. Он образуется в атомных реакторах при распаде урана: 26 миллиграммов технеция на каждый грамм урана-235.

Технеций расположен в седьмой группе периодической системы между марганцем и рением. По химическим свойствам технеций больше напоминает рений. Как и рений, он осаждается из щелочных растворов сероводородом.

Буквально в последние годы установлено, что пертехнетаты — красивые, ярких оттенков кристаллические соединения технеция — могут предохранять железо от ржавления. Радиоактивный технеций помог понять сущность процессов коррозии и механизм защиты от нее. С помощью счетчика Гейгера можно следить за многообразными перемещениями атомов технеция, когда на металлической поверхности происходит сложная борьба между кислородом, влагой и ионами пертехнетата.

В противоположность искусственному синтезу технеция на Земле открытие больших количеств элемента № 43 в атмосфере некоторых звезд произвело настоящую сенсацию. Так как период полураспада наиболее долго живущего изотопа технеция всего 216 тысяч лет, а возраст звезд исчисляется буквально астрономическими цифрами, оставалось допустить, что элемент непрерывно рождается в звездах и в наши дни. Это, в свою очередь, приподнимало завесу над тайной происхождения химических элементов.

В атомных реакторах накапливается также другой искусственный элемент — прометий. Это редкоземельный трехвалентный металл. Он образует красивый хлорид желтого цвета и розовую азотнокислую соль. Его свойства очень похожи на свойства соседних редкоземельных элементов — неодима и самария.

В наши дни имя прометия связано с атомными батарейками, преобразующими энергию радиоактивного распада в электрический ток. Одна такая батарейка — величиной с маленькую пуговицу — может работать без «перезарядки» в течение 5 лет. Прометиевые батарейки — это изящные радиоприемники-клипсы, крошечные слуховые аппараты и миниатюрная электронная аппаратура космических ракет.

Сейчас считают, что технеций и прометий непрерывно образуются в природе при спонтанном делении урана. Но из-за малых периодов полураспада они не могут накопиться в заметных количествах — в одном грамме урана содержится одновременно только 0,000 000 000 000 000 01 (10–17) грамма прометия и еще меньше технеция. Обнаружить это количество с помощью обычных методов почти невозможно: оно успевает полностью распасться за время химического выделения.

Так же неуловимы два других элемента — астат и франций. Теоретически они должны содержаться в продуктах распада урана: на один миллиард частей урана несколько частей франция и еще меньшее количество астата. Поэтому свойства астата и франция изучены очень слабо.

Астат до его синтеза считался неизвестным галогеном (напоминающим йод). На самом деле оказалось, что он имеет металлические свойства и больше похож на полоний и висмут. Астат осаждается из кислых растворов сероводородом и может быть выделен электролитически. Вместе с тем, напоминая галогены, астат образует соединение HAt, похожее на такое же соединение йода HJ.


Элементы тяжелее урана

Второе рождение исчезнувших с поверхности Земли технеция, прометия, астата и франция прозвучало кратким вступлением к синтезу элементов тяжелее урана. Долгое время их безуспешно искали в природе.

Элемент № 93 считался сначала аналогом марганца и рения. Как бы в подтверждение Лоринг и Друце открыли новые линии в спектрах марганцевого минерала пиролюзита. В 1934 году О. Коблик «обнаружил» элемент № 93 в богемской урановой руде и назвал его богемием. В 1938–1939 годах Хулубей и Кошуа во Франции «открывают» элемент № 93 в минералах бетафите с Мадагаскара и бразильском монаците и дают ему имя секвания «в честь древней цивилизации, некогда процветавшей на берегах Сены».

Но эти сообщения были преждевременными. Скоро выяснилось, что периоды полураспада элементов тяжелее урана также должны быть во много раз меньше возраста Земли.

Летом 1934 года в журнале «Природа» появилась необычная заметка Энрико Ферми. Облучая нейтронами уран, ему удалось искусственно получить первый элемент тяжелее урана. Опыты Ферми были подтверждены ровно через год Ганом и Мейтнер. Они считали, что уран при облучении переходит в элементы № 93–96. 19 марта 1937 года Резерфорд с помощью счетчика Гейгера, подключенного к громкоговорителю, продемонстрировал в Британском королевском институте повышенную активность облученного нейтронами природного урана.

В 1939 году было установлено, что ядра урана, поглощая нейтроны, раскалываются на приблизительно равные половинки. Элементы № 93–96 оказались изотопами давно открытых и изученных лантана, церия, бария, стронция…

При делении ядра выделяется большое количество энергии и несколько свободных нейтронов. «Горячие» половинки уранового ядра разлетаются в противоположные стороны. Нейтроны поглощаются соседними ядрами, и те расщепляются, в свою очередь. Возникает лавина нейтронов, и процесс деления в критический момент перерастает во взрыв чудовищной силы…

Попытка получить трансурановые элементы ознаменовала начало атомного века. С этого времени сообщения о синтезе тех или иных трансурановых элементов — лишь фрагменты более общей истории развития власти человека над энергией атомного ядра.

Энрико Ферми — нобелевский лауреат, «отец атомного века» — в 1933 году был твердо уверен, что элементы тяжелее урана скоро удастся получить искусственно.

Учитывая место элементов № 93 и 94 в периодической системе, можно было ожидать, что они будут напоминать рений и осмий. Но строение электронных оболочек говорило о возможных отклонениях. Может быть, эти элементы встанут в начале новой группы, подобной редкоземельной? В 1941 году физик-теоретик Мария Гепперт-Майер доказала математически, что такая группа возможна.

Но главным образом интерес исследователей был направлен к процессу деления ядер урана как источнику огромных количеств энергии. Процесс деления особенно тщательно изучался американскими учеными.

В 1939 году несколько физиков Калифорнийского университета измеряли расстояния, на которые разлетаются осколки деления, стараясь определить их энергию. Эдуард Мак-Миллан обнаружил в тонком слое расщепляющегося урана новые тяжелые частицы. Это были изотопы элемента № 93, образовавшиеся при захвате медленных нейтронов ядрами урана.

В 1940 году существование нового элемента — нептуния — было доказано химически. По свойствам он больше напоминал уран, чем рений и марганец. Таким образом подтвердилось предположение о новой группе трансурановых элементов.

Почти в те же дни природный уран был подвергнут в циклотроне облучению ядрами тяжелого водорода. Образовавшийся нептуний, выделяя бета-частицы, распался до элемента № 94 — плутония. Затем в продуктах деления был обнаружен его изотоп плутоний-239, который расщеплялся медленными нейтронами так же легко, как уран-235.

18 августа 1942 года Кэнингэм и Вернер получили примерно 500 миллионных долей грамма чистых солей плутония. Из такого количества с трудом можно было бы изготовить булавочную головку. Но его оказалось достаточно, чтобы провести подробное исследование всех основных свойств нового элемента. К концу 1942 года, то есть через 18 месяцев со дня открытия, плутоний можно было уже считать одним из самых изученных химических элементов.


Новые шаги за уран

Синтез всех других трансурановых элементов связан с именем американского физика Гленна Сиборга. Это был тщательно продуманный и предельно точно подготовленный технический поход в неизвестную страну сверхтяжелых атомов.

В сложном лабиринте ядерных реакций «нитью Ариадны» служила аналогия свойств трансурановых элементов. Каждый из них в определенном валентном состоянии напоминает все более легкие и более тяжелые с той же валентностью. И систематические отклонения, нарастая с каждым элементом, образуют четкую последовательность физических и химических свойств.

И еще одно счастливое совпадение. Новая группа очень похожа на классическое редкоземельное семейство. Так, редкоземельные элементы вымываются растворителями с ионообменной смолы (например, с катионита) в строгом, никогда не нарушаемом порядке. Этот порядок сохраняется и у трансурановых элементов. В первых порциях растворителя — всегда самые тяжелые из них. В то же время ионообменный метод обладает высокой чувствительностью. С его помощью можно отделить друг от друга даже несколько атомов. Поэтому существование почти всех трансурановых элементов было доказано с помощью ионообменных смол.

Когда плутоний перестал быть дефицитным материалом, он тут же был использован для синтеза элементов № 95 и 96. Это произошло незадолго до окончания второй мировой войны. Плутониевую мишень подвергли продолжительному облучению альфа-частицами, и на ионообменной смоле из продуктов ядерной реакции был выделен новый элемент — № 95, названный в честь первых исследователей ядерных превращений Марии и Пьера Кюри кюрием.

Немного позднее Сиборг приготовил изотоп плутоний-241. Он, излучая электроны, превращался в элемент № 95 — америций. Первым заметное количество америция получил Кэнингэм. Препарат Кэнингэма был облучен нейтронами, и из него в 1945 году Вернер и Перлмен выделили чистый кюрий.

Через некоторое время америций и кюрий стали получать по нескольку миллиграммов одновременно, облучая нейтронами плутоний. Всего же для тщательного изучения свойств этих элементов потребовался промежуток в 5–6 лет.

Теперь кюриевые и америциевые мишени, в свою очередь, были использованы для синтеза элементов № 97 и 98. Он был проведен в 60-дюймовом циклотроне Калифорнийского университета в Беркли. Быстрые альфа-частицы, проникая в мишень, каждый раз давали изотопы с порядковым номером на две единицы больше, чем у исходного элемента. Оставалось только быстро выделить новые элементы из радиоактивных продуктов и, наконец, назвать их.

Когда имена всех планет в солнечной системе за Ураном были полностью «исчерпаны», на помощь пришла «генеалогия» редкоземельных аналогов. Элементы № 95, 96 и 97 похожи на европий, гадолиний, иттербий, названные так в честь континента Европы, первого исследователя редкоземельного семейства финна Гадолина и шведского городка Иттерби. Трансурановые элементы получили имена Америки, первых исследователей ядерных превращений супругов Кюри и университетского городка Беркли. Более оригинально эту систему удалось распространить и на элемент № 98. По свойствам он напоминает диспрозий — по-гречески «труднодоступный». Сиборг и Джиорсо быстро вышли из затруднительного положения. Они учли, что столетие тому назад было очень трудно достигнуть их родного штата, и назвали новый элемент его именем — калифорний.


Рождение в чреве дракона

В ноябре 1952 года в отдаленном районе Тихого океана на несколько километров над поверхностью воды поднялся гриб термоядерного взрыва. Соединенные Штаты проводили испытательную операцию «Майк». На огромной скорости сквозь облако взрыва прошли реактивные самолеты с укрепленными в специальных камерах бумажными фильтрами. Одновременно радиоактивные продукты были собраны на оказавшемся поблизости небольшом атолле. Материалы отправили для изучения в различные лаборатории США.

В Беркли группе Сиборга сразу же удалось обнаружить в них атомы нового элемента. Чтобы получить его в большом количестве, на атоллах недалеко от места взрыва были собраны сотни килограммов коралловых отложений. Под кодовым названием «дорогостоящая грязь» радиоактивные продукты поступили на дальнейшую обработку. «Грязь» действительно оказалась дорогостоящей. Из нее сразу же были выделены элементы № 99 и 100 — эйнштейний и фермий.

Гленн Сиборг считает, что эйнштейний — последний элемент, который удастся получить в заметном количестве. Период полураспада более тяжелых элементов слишком мал, и они мгновенно распадутся.


Под звон пожарного звонка

В 1955 году выполнен самый изящный и наиболее совершенный опыт в истории трансурановых элементов. В результате последний достоверно установленный элемент современной периодической таблицы был подтвержден всего на 17 атомах.

Сразу же возникли затруднения. Не было надежды выделить элемент № 101 на ионообменной смоле. Ожидался слишком небольшой период полураспада — меньше 10 минут. Сама мишень состояла из исчезающе малого количества калифорния — около 1 миллиарда атомов. При ее облучении в течение многих часов пучком альфа-частиц рассчитывали получить только один атом элемента № 101.

По-видимому, можно было рассчитывать только на подтверждение по энергии испускаемых альфа-частиц. Но на пути встало роковое сходство. Радиоактивный газ радон, присутствующий в почти незаметной концентрации в воздухе, распадаясь, выбрасывает альфа-частицы равной энергии.

Новая возможность появилась уже после того, как опыты были в разгаре. Оказалось, что элемент № 101 быстро превращается в фермий (№ 100), атомы которого способны к самопроизвольному делению. Радиоактивные осколки ионизируют частицы воздуха, и счетчик фиксирует резкий скачок ионизации.

Элемент № 101 был подтвержден одной памятной ночью после долгих безуспешных попыток, о которых лучше всего сможет рассказать непосредственный участник этого события — Гленн Сиборг:

«Атмосфера уныния царила в нашей лаборатории. При попытке синтезировать и идентифицировать элемент № 101 мы выполнили ряд весьма тщательных опытов, которые оказались неудачными. Наконец был поставлен последний опыт, на основе которого можно было лишь с большой натяжкой предвидеть возможность некоторой удачи. В лучшем случае изготовленная нами ничтожная проба могла содержать один или два атома ускользавшего из наших рук элемента № 101. Мы ожидали затаив дыхание показаний прибора, связанного с ионизационной камерой… Прошел час. Ночь уже была на исходе. Ожидание казалось бесконечным. И, наконец, перо самописца стремительно двинулось к середине шкалы и вернулось обратно, оставив позади тонко очерченную красную линию. Такой скачок ионизации ни разу не наблюдался при исследовании природных радиоактивных материалов… По-видимому, вероятным было считать, что этот скачок действительно является сигналом ожидаемого расщепления. Наблюдение продолжалось. Примерно через час перо зарегистрировало второй такой же скачок. Теперь мы были уверены, что присутствуем при распаде двух атомов элемента № 101 и можем вписать его в существующий список химических элементов».

Еще одна интересная деталь. Счетчик был присоединен к оглушительному пожарному звонку. Рождение каждого нового атома сто первого элемента сопровождалось мощным трезвоном и радостными возгласами.

Элементу № 101 присвоено имя Менделеева. Сейчас можно получать уже более 100 атомов менделеевия одновременно.


Самые последние

В 1957 году в печати появились сообщения о синтезе элемента № 102. Шведские исследователи назвали его нобелием. Правда, работы советских ученых во главе с Г. Н. Флеровым и американских физиков не подтвердили эти результаты: в их опытах были получены другие изотопы элемента № 102. Возможно, что для него примут другое название. На Второй Женевской конференции по мирному использованию атомной энергии предлагалось дать ему имя резерфордий, в честь Эрнеста Резерфорда. В 1961 году появилось сообщение о синтезе элемента № 103, названного лоуренсием (в честь создателя циклотрона Лоуренса).

Видимо, не за горами и синтез элемента № 104.

Загрузка...