Науку можно определить как знание или как метод. Научные знания — это совокупность фактической информации о материальном мире, накопленная посредством научного метода.
"Наука едва ли не целиком есть результат интеллектуальной любознательности".
Чтобы удовлетворить собственную любознательность, ученые должны постоянно ставить вопросы, касающиеся устройства окружающего нас мира, и находить верные ответы. В этом залог успеха науки.
"Сформулировать проблему часто бывает важнее, чем найти ее решение, которое нередко зависит от умения пользоваться математическим аппаратом и опыта экспериментатора. Умение ставить новые вопросы, видеть новые возможности, рассматривать старые проблемы под новым углом зрения требует творческого воображения и приводит к подлинным успехам в науке".
Научная работа может явиться продолжением уже сделанных наблюдений или может быть следствием некоего внутреннего "индуктивного" процесса, происходящего в умах ученых. Истинно научные утверждения, как подчеркивает современный гносеолог Карл Поппер, должны быть в принципе опровержимыми. Это означает, что данные должны быть доступны для проверки и воспроизведения другими исследователями. Поэтому очень важно, чтобы все научные исследования были полностью и ясно описаны, как это показано в разд. П.2.5. Если при повторных исследованиях в одинаковых условиях получены одинаковые результаты, то их можно признать достоверными. Знания, которые невозможно проверить таким образом, относятся к разряду "метафизических", а не научных.
Факты основываются на прямых или косвенных наблюдениях, выполненных с помощью органов чувств или приборов, таких, как свето- или радиотелескопы, световые и электронные микроскопы, осциллографы, действующих как усилители наших чувств. Все факты, относящиеся к конкретной проблеме, называются данными. Наблюдения могут быть качественными (т. е. описывать цвет, форму, вкус, внешний вид и т. д.) или количественными. Количественные наблюдения являются более точными. Они включают измерение величины или количества, наглядным выражением которых могут служить качественные признаки.
В результате наблюдений получают так называемый "сырой материал", на основе которого формулируется гипотеза (рис. П.2.1). Гипотеза — это основанное на наблюдениях предположение, с помощью которого можно дать убедительное объяснение наблюдаемых явлений. Эйнштейн подчеркивал, что гипотеза выполняет две функции:
Рис. П.2.1. Схематичное изображение научного метода
1) Она должна объяснять все наблюдаемые явления, относящиеся к данной проблеме.
2) Она должна вести к предсказанию новых знаний. Новые наблюдения (факты, данные), подтверждающие гипотезу, будут способствовать ее упрочению, тогда как наблюдения, противоречащие гипотезе, должны привести к ее изменению или даже к отказу от нее.
Для того чтобы оценить обоснованность гипотезы, необходимо запланировать серию экспериментов с целью получения новых результатов, подтверждающих или противоречащих гипотезе. В большинстве гипотез обсуждается ряд факторов, которые могли бы повлиять на результаты научных наблюдений; эти факторы называются переменными. Гипотезы можно объективно проверить в серии экспериментов, в ходе которых поочередно исключается по одной из предполагаемых переменных, влияющих на результаты научных наблюдений. Указанная серия экспериментов называется контрольной. Этим обеспечивается то, что в каждом конкретном случае проверяется влияние только одной переменной.
Наиболее удачная гипотеза становится рабочей гипотезой, и если она способна устоять при попытках ее опровержения и по-прежнему удачно предсказывает ранее необъясненные факты и взаимосвязи, то она может стать теорией.
Общее направление научного исследования состоит в достижении более высоких уровней предсказуемости (вероятности). Если теорию не способны изменить никакие факты, а встречающиеся от нее отклонения регулярны и предсказуемы, то ее можно возвести в ранг закона.
По мере увеличения совокупности знаний и совершенствования методов исследования гипотезы и даже прочно укоренившиеся теории могут оспариваться, видоизменяться и даже отвергаться. Научные знания по своей природе динамичны и рождаются в процессе полемики, а достоверность научных методов постоянно подвергается сомнению.
1. Документировать результаты работы для использования их в дальнейшем.
2. Дополнить визуальное наблюдение и дать возможность увидеть исследуемый объект более полно и точно.
3. Способствовать запоминанию, зарисовывая то, что вы видите.
1. Необходимо пользоваться тетрадью или бумагой для рисования соответствующей толщины и качества. С нее должны хорошо стираться карандашные линии.
2. Карандаши должны быть острыми, твердости НВ, не цветными.
3. Рисунок должен быть:
а) достаточно крупным — чем больше элементов составляют исследуемый объект, тем крупнее должен быть рисунок;
б) простым — включать очертания структуры и других важных деталей, чтобы показать расположение и связь отдельных элементов;
в) тщательно выполненным — если объект имеет несколько сходных частей, необходимо точно вырисовывать их мелкие детали;
г) нарисован тонкими и отчетливыми линиями — каждую линию необходимо продумать и затем нарисовать без отрыва карандаша от бумаги; не штриховать и не раскрашивать;
д) надписи должны быть по возможности полными, идущие от них линии не должны пересекаться; оставляйте вокруг рисунка место для надписей.
4. Делать при необходимости два рисунка: а) схематичный рисунок, показывающий основные черты, и б) только детали мелких частей. Например, при малом увеличении нарисовать план поперечного сечения растения и при большом увеличении — детальное строение клеток (крупно нарисованную часть рисунка обводят на плане клином или квадратом).
5. Рисовать следует только то, что вы действительно видите, а не то, что вам кажется, что вы видите, и, конечно же, не копировать рисунок из книги.
6. Каждый рисунок должен иметь название, указание об увеличении и о проекции образца (например, ПС, ПрС и т. д.) и объяснительную записку (рис. П.2.2).
Рис. П.2.2. Виды сечений в биологических рисунках: А — поперечные сечения; Б — продольные сечения
7. При зарисовке приборов необходимо нарисовать вертикальный разрез и на нем ясно показать трубки и клапаны, через которые из сосудов могут выходить газы.
Ручная лупа представляет собой вставленную в оправу двояковыпуклую линзу. Лупа может быть небольшой (карманная лупа) или намного большего размера, например лупа, используемая при анатомировании (лупа на штативе). Ручную лупу надо держать близко к глазу, а объект приближать к лупе до тех пор, пока не будет получено четкое увеличенное изображение. Нарисовав исследуемый объект, необходимо вычислить, во сколько раз он увеличен на рисунке.
Например: 6/2 = 3.
Это можно записать как × 3.
В микроскопе для получения увеличенного изображения очень мелких объектов используется увеличительная способность выпуклых линз. На рис. П.2.3 изображен микроскоп с указанием деталей его строения. Микроскоп-дорогой прибор, поэтому необходимо обращаться с ним осторожно и не пренебрегать следующими правилами:
Рис. П.2.3. Современный световой микроскоп
1. Храните микроскоп в ящике (или под колпаком), чтобы предохранить его от пыли.
2. Вынимайте его из ящика двумя руками и ставьте на место мягко, чтобы избежать сотрясения.
3. Линзы должны быть чистыми, для этого их необходимо протирать кусочком ткани.
4. Микроскоп всегда необходимо фокусировать, перемещая трубу вверх от препарата. В противном случае очень легко повредить препарат.
5. Держите открытыми оба глаза и смотрите ими по очереди.
1. Поставьте микроскоп на стол и сядьте в удобной позе. Исследуемый объект на предметном столике микроскопа должен быть освещен. Для этого пользуются специальным осветителем, светом из окна или от настольной лампы. В двух последних случаях используют вогнутую поверхность находящегося под предметным столиком зеркала. С помощью зеркала свет направляют через отверстие в предметном столике. Если имеется подходящий конденсор, то для направления света через него используют плоскую поверхность зеркала.
2. С помощью винта грубой настройки поднимите вверх тубус микроскопа и поворачивайте револьверную головку до тех пор, пока объектив с малым увеличением (× 10 или 16 мм) не попадет в паз тубуса (при этом раздается щелчок).
3. Положите препарат, который вы собираетесь рассматривать, на предметный столик микроскопа так, чтобы находящийся под покровным стеклом исследуемый материал находился над серединой отверстия в предметном столике.
4. Глядя на предметный столик и препарат сбоку, опускайте тубус с помощью винта грубой настройки до тех пор, пока объектив с малым увеличением не окажется примерно в 5 мм от препарата.
5. Глядя в микроскоп, поворачивайте винт грубой настройки до тех пор, пока объект не попадет в фокус.
1. При работе с объективом большого увеличения для создания достаточного освещения необходим искусственный свет. Для этого используют настольную лампу или специальный осветитель для микроскопа с матовой лампочкой. При работе с лампой накаливания необходимо между ней и микроскопом поместить лист бумаги. Поверните зеркало плоской поверхностью вверх так, чтобы свет, отражаясь, попадал в микроскоп.
2. Сфокусируйте конденсор, не убирая препарата с предметного столика. Поднимите конденсор так, чтобы расстояние между ним и предметным столиком было не более 5 мм. Глядя в микроскоп, поворачивайте винт грубой настройки до тех пор, пока объект не попадет в фокус. Теперь наводите фокус конденсора до тех пор, пока изображение лампы не наложится точно на препарат. Поместите конденсор несколько вне фокуса так, чтобы изображение лампы исчезло. Теперь освещение должно быть оптимальным. В конденсор вмонтирована диафрагма. Ею регулируют величину отверстия, через которое проходит свет. Это отверстие должно быть открыто как можно шире. Таким образом достигается максимальная четкость изображения (см. рис. П.2.3).
3. Поворачивайте револьверную головку до тех пор, пока объектив большого увеличения (× 40 или 4 мм) не попадет в паз. Если на малом увеличении фокус уже был установлен, то при повороте револьверной головки объектив большого увеличения автоматически установится приблизительно в фокусе. Фокусирование всегда производите движением объектива вверх с помощью винта тонкой настройки.
4. Если при движении объектива с линзами большого увеличения фокус не устанавливается, сделайте следующее: глядя на предметный столик сбоку, опускайте тубус микроскопа до тех пор, пока линза почти не коснется препарата. Следите за отражением линзы объектива на препарате и добивайтесь того, чтобы линза почти коснулась своего отражения.
5. Глядя в микроскоп и поворачивая винт тонкой настройки, медленно поднимайте объектив до тех пор, пока изображение не попадет в фокус.
Увеличение объекта под микроскопом происходит с помощью окуляра и линзы объектива (табл. П.2.1).
Таблица П.2.1. Увеличение микроскопа
Для того чтобы получить более сильное увеличение, чем при работе с обычным объективом большого увеличения, необходимо использовать масляно-иммерсионную линзу. Способность линзы собирать свет в значительной степени усиливается, если между линзой объектива и покровным стеклом поместить жидкость. Жидкость должна иметь тот же коэффициент преломления, что и сама линза. Поэтому в качестве жидкости обычно используют кедровое масло.
1. Положите препарат на предметный столик и сфокусируйте изображение так же, как при работе с обычным большим увеличением. Вместо объектива с линзой большого увеличения установите объектив с масляно-иммерсионной линзой.
2. Капните каплю кедрового масла на покровное стекло непосредственно над исследуемым объектом.
3. Снова сфокусируйте изображение теперь уже под малым увеличением, затем поворотом револьверной головки установите объектив с масляно-иммерсионной линзой так, чтобы его кончик касался капли масла.
4. Глядя в микроскоп, очень осторожно сфокусируйте линзу с помощью винта тонкой настройки. Помните, что фокусная плоскость линзы находится всего в 1 мм от поверхности покровного стекла.
5. Кончив работу, сотрите с линзы масло мягкой тряпочкой.
Биологические объекты можно исследовать как живыми, так и фиксированными. В последнем случае материал для более детального изучения можно разделить на части и обработать рядом различных красителей, для того чтобы выявить и идентифицировать различные структуры. Из исследуемого объекта можно приготовить временные или постоянные препараты.
1. Фиксация. Это сохранение материала в состоянии, близком к естественному. Для фиксации необходимо быстро умертвить ткани. Это лучше достигается при работе с небольшими кусочками живого материала. Используемое для этого вещество называется фиксатором. Быстрой фиксацией обеспечивается сохранение изначальной структуры объекта, причем ткани уплотняются настолько, что с них можно готовить тонкие срезы.
2. Обезвоживание. Обезвоживание проводится при подготовке материала к заливке (см. ниже п. 4) или для заключения его в соответствующую среду (см. ниже п. 7), которая не смешивается с водой. Воду необходимо удалить также потому, что иначе со временем препарат будет разрушен бактериями. Для того чтобы сохранить ультраструктуру, обезвоживание надо проводить постепенно, обрабатывая материал рядом водных растворов этанола или пропанона (ацетона) со все возрастающей концентрацией, и закончить обработку "абсолютным" (чистым) этанолом или пропаноном.
3. Просветление. Некоторые из общеупотребимых сред для заливки и заключения не смешиваются со спиртом. Поэтому его надо постепенно замещать средой (просветляющее вещество), с которой заливочная среда смешивается, например ксилолом. Это приводит также к тому, что материал становится прозрачным.
4. Заливка. Для того чтобы с помощью микротома получить очень тонкий срез, необходимо, чтобы материал был залит в определенную среду. При приготовлении препаратов для световой микроскопии объекты заливают в парафин, которому затем дают застыть. При приготовлении препаратов для электронной микроскопии необходимо использовать более твердые вещества (пластмассы или смолы), потому что необходимые в этом случае более тонкие срезы требуют для своего приготовления более плотные вещества.
5. Изготовление срезов. Как правило, толщина кусочков материала слишком велика, чтобы сквозь них могло пройти достаточное для исследования под микроскопом количество света. Обычно приходится срезать очень тонкий слой исследуемого материала, т. е. готовить срезы. Срезы можно делать бритвой или на микротоме. Вручную срезы готовятся с помощью остро отточенной бритвы. Для работы на обычном микроскопе толщина среза должна равняться 8-12 мкм. Ткань следует закрепить между двумя кусочками сердцевины бузины. Бритву смачивают жидкостью, в которой хранилась ткань; срез делают через бузину и ткань, причем бритву держат горизонтально и двигают ее к себе медленным скользящим движением, направленным чуть вкось. Быстро сделав несколько срезов, следует выбрать из них самый тонкий, содержащий характерные ткани.
Срез с ткани, залитой в ту или иную среду, можно сделать на микротоме. Для светового микроскопа срезы толщиной в несколько микрометров можно сделать с залитой в парафин ткани с помощью специального стального ножа. На ультратоме изготавливают чрезвычайно тонкие срезы (20-100 нм) для электронного микроскопа. Для этого необходим алмазный или стеклянный нож.
Срезы для светового микроскопа можно приготовить, не заливая материал в среду; для этого используют замораживающий микротом. В процессе приготовления замороженного среза образец сохраняется в замороженном и, следовательно, в твердом состоянии.
6. Окрашивание. Как правило, биологические структуры на препаратах прозрачны, поэтому для получения контраста между ними приходится прибегать к различным средствам. Самым распространенным является окрашивание. Некоторые красители, используемые в световой микроскопии, перечислены в табл. П.2.2.
Таблица П.2.2. Красители, применяемые для окраски растительных и животных тканей
Определенные красители при использовании их в низких концентрациях не токсичны для живых тканей и поэтому могут применяться для окрашивания живых организмов. Они называются прижизненными (витальными) красителями. К ним относятся такие, как метиленовый синий и нейтральный красный.
При окрашивании парафиновых срезов парафин удаляют с помощью растворителя, а срез частично обводняют перед окрашиванием.
7. Заключение. Полностью окрашенные срезы заключают на предметном стекле в специальную среду, например в канадский бальзам или эупарол, которая не пропускает воздух и способна неограниченно долго сохранять срез. Заключенный в среду срез покрывают покровным стеклом. Последовательность описанных выше действий является типичной при приготовлении тонких срезов для постоянных препаратов. Однако часто в порядок действий вносят два следующих изменения:
а) если срез сырого материала готовится вручную, то сначала делают срез, а потом фиксируют его;
б) окрашивать можно после фиксации или же в процессе обезвоживания на какой-либо ее стадии.
Например, красителем, растворенным в 50% этаноле, можно окрасить срез после его дегидратации в 50% этаноле.
Описанная процедура приготовления препаратов в основном сходна как для светового, так и для электронного микроскопов, хотя существуют некоторые различия в деталях (они отмечены в табл. П.2.3).
Таблица П.2.3. Различия в подготовке материалов для светового и электронного микроскопов
Временные препараты для светового микроскопа в отличие от постоянных можно сделать сравнительно быстро. Они готовятся для проведения быстрых предварительных исследований. Для этого материал фиксируют, окрашивают и заключают в среду. Срезы можно приготовить до фиксации или мацерации (древесину, например, мацерируют). Срез свежего материала можно сделать вручную с помощью бритвы непосредственно в 70% спирте, который служит фиксатором. Для окрашивания и заключения можно использовать ряд временных красителей; некоторые из них, пригодные для окрашивания растительного материала, приведены в табл. П.2.2. Каждый срез следует помещать на чистое предметное стекло (предварительно протертое спиртом) и капнуть несколько капель красителя. При окрашивании флороглюцинолом добавляется также одна капля концентрированной соляной кислоты. Затем препарат покрывают тонким покровным стеклом, чтобы предотвратить попадание воздуха и пыли и предохранить от загрязнения объектив большого увеличения (рис. П.2.4). Если образец начнет подсыхать или если заранее известно, что потребуется длительное изучение (более 10 мин), то после окрашивания препарат следует заключить в глицерин.
Рис. П.2.4. Заключение образца и наложение покровного стекла на предметное
Разрешающая способность светового микроскопа ограничена длиной световых волн. Максимально возможное разрешение равно половине длины волны используемого света. Получить изображение объекта размером меньше, чем эта величина, невозможно. Средняя длина волны видимого света составляет примерно 550 нм, поэтому в конце XIX в. могли получить разрешение примерно в 200 нм. Незначительное увеличение разрешающей способности было достигнуто благодаря использованию специально сконструированного микроскопа с ультрафиолетовым светом (длина волны которого составляет 250 нм), обеспечивающим разрешение примерно в 100 нм. Однако многие клеточные структуры имеют меньший размер. Эта проблема была решена в тридцатые — сороковые годы, когда создание электронного микроскопа произвело революцию в биологической науке. Вместо светового излучения в электронном микроскопе используют пучок электронов, у которых длина волны значительно меньше и, следовательно, с намного большей разрешающей способностью. Длина волны электронов зависит от напряжения, подаваемого для генерации электронного пучка, но практически можно получить разрешение приблизительно в 0,5 нм, т. е. примерно в 500 раз больше, чем в световом микроскопе. Создаваемое увеличение достаточно, чтобы различить крупные молекулы. Лимитирующим фактором в достижении большего увеличения стало (и остается до сих пор) не усиление разрешающей способности микроскопа, а методы подготовки материала для исследования.
В сущности принцип действия электронного микроскопа такой же, как и светового микроскопа, в котором пучок световых лучей направляется линзой конденсора через образец, а полученное изображение затем, увеличивается с помощью линз. В табл. П.2.4 суммированы некоторые сходства и различия между этими микроскопами. Запомните также, что принципы подготовки материала для электронной и световой микроскопии примерно одинаковы, хотя имеются и важные различия (табл. П.2.3).
Таблица П.2.4. Сравнение светового и электронного микроскопов
Оператор сидит у пульта управления лицом к колонне, по которой проходит пучок электронов (рис. П.2.5). Электронный микроскоп перевернут "вверх дном" по сравнению со световым микроскопом. Здесь источник электронов находится в верхней части колонны, а сам образец — внизу (рис. П.2.6). На вольфрамовую нить накала, находящуюся в верхней части колонны, подается высокое напряжение (например 50000 В), и нить накала излучает поток электронов. Чтобы сфокусировать эти электроны (изменить их траекторию), необходимы уже не стеклянные линзы, а электромагниты. Внутри колонны создается глубокий вакуум, чтобы сократить до минимума рассеивание электронов из-за столкновения с частицами воздуха и происходящее в результате этого нагревание. В трансмиссионном (просвечивающем) электронном микроскопе электроны проходят через образец, поэтому для изучения можно использовать только очень тонкие срезы или частицы, так как электроны легко рассеиваются или поглощаются исследуемым объектом. Части образца с относительно высокой молекулярной массой в наибольшей степени вызывают рассеивание электронов, поэтому при окрашивании образца с целью увеличения контраста используются тяжелые металлы, такие, как свинец или уран. Образец обычно удерживается на маленькой медной сетке (примерно 2 мм в диаметре), которую иногда для большей прочности покрывают тонкой пластмассовой пленкой. Пройдя через образец, электроны собираются и фокусируются добавочными электромагнитными линзами. Электроны невидимы для человеческого глаза, поэтому они направляются или на флуоресцентный экран, который воспроизводит видимое изображение, или же непосредственно на фотопленку, чтобы получить постоянный фотоснимок (электронную микрофотографию).
Рис. П.2.5. Современный трансмиссионный электронный микроскоп
Рис. П.2.6. Траектория пучка электронов в трансмиссионном электронном микроскопе
Для подготовки материала к исследованию используют различные приемы (они описаны ниже), но в любом случае материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме, быстро нагревается и начинает разрушаться под действием пучка электронов. Фотографировать необходимо для регистрации информации в том случае, если требуется длительное изучение образца.
1. Окрашивание ультратонких срезов тяжелыми металлами. Срезы готовятся на ультратоме и окрашиваются соединениями тяжелых металлов, такими, как нитрат свинца, уранилацетат или осмиевая кислота. Окрашенные участки становятся малопроницаемыми для электронов, и, таким образом, на микрофотографиях они выглядят темными.
2. Негативное контрастирование. При негативном контрастировании окрашивается фон, тогда как сам образец остается неокрашенным. Этот метод особенно удобен при изучении деталей строения поверхности мелких частиц, таких, как рибосомы, вирусы и фрагменты изолированных органелл и мембран, так как краситель проникает между деталями поверхностного строения.
3. Напыление. Образец бомбардируется атомами тяжелых металлов, например золотом или платиной, в определенном направлении или под определенным углом. Поверхность образца покрывается слоем металла, непроницаемого для электронов. Закрытые площади, в том числе "тень" за образцом, не покрываются металлом и остаются относительно прозрачными для электронов. Они дают белый цвет (пропускают электроны, которые равнозначны свету). Так как человеческий глаз лучше воспринимает и интерпретирует темные отпечатки, обычно печатают негативы фотографий. Напыление используют также, чтобы выявить структуру поверхности мелких частиц, например вирусов.
4. Замораживание — скалывание и замораживание — травление. Фрагмент ткани быстро замораживается при очень низкой температуре и затем разламывается с помощью очень острого металлического лезвия. Ткань трескается вдоль слабо соединенных плоскостей, которыми часто являются мембраны (рис. П.2.7). Образец выдерживают на холоде в глубоком вакууме; в этих условиях лед возгоняется, оставляя сколотую поверхность.
Рис. П.2.7. А. Схематическое изображение метода замораживания — скалывания. Б. Обнажение клеточных мембран в процессе скалывания
Реплика этой поверхности создается откладывающимся на ней слоем углерода. На эту реплику из углерода напыляется тяжелый металл, а ткани под репликой разрушаются, как правило, действием сильной кислоты при нормальном атмосферном давлении. Этот метод очень удобен при изучении структуры мембраны (см. рис. 7.15 и 9.13). Его преимущество состоит в том, что живые ткани быстро умерщвляются, не подвергаясь химической обработке, которая может повлиять на их структуру. Вполне вероятно, что такие клетки сохраняют свою прижизненную форму; тем самым подтверждаются данные, полученные с помощью общепринятых гистологических методик.
Сравнительно недавно был введен в употребление новый тип микроскопа — сканирующий электронный микроскоп. В нем очень точно сфокусированный пучок электронов двигается взад и вперед по поверхности образца, а отраженные от его поверхности электроны собираются и формируют изображение, наподобие того, которое возникает на экране телевизора. Преимущество этого метода заключается в том, что детали строения поверхности видны с большей глубиной резкости, что создает эффект трехмерности (см. рис. 9.8 и 14.13). Разрешающая способность ниже, чем у трансмиссионного электронного микроскопа (5-20 нм), но при этом можно работать с образцами большего размера.
Электронные микроскопы высокого напряжения (500000-1000000 В) стали использовать в биологии совсем недавно. Большее ускорение электронов позволяет им проходить через сравнительно толстые срезы (1-5 мкм), при этом получают трехмерное изображение структур при высоком разрешении, что облегчает изучение объекта. Сейчас внедряются методы, позволяющие быстро исследовать живые образцы, что в будущем должно дать весьма важную информацию.
Прежде чем начать любое экспериментальное исследование, необходимо ясно представить себе цель эксперимента. Цель может состоять в проверке гипотезы, такой, например, как "Для прорастания семян необходимо наличие воды, кислорода и оптимальной температуры", или в проведении более широкого исследования, например: "Как влияет свет на поведение мокрицы?". В обоих случаях план эксперимента необходимо составить таким образом, чтобы он был выполнимым, а полученные данные были достоверными и могли успешно использоваться для того, чтобы прийти к тем или иным выводам.
Сообщение об эксперименте или его описание должно проводиться в строгой логической последовательности.
1. Название. В названии должна быть ясно сформулирована суть исследуемой проблемы. Например: "Эксперимент по изучению влияния рН на активность фермента". В названии необходимо развернуто сформулировать замысел, который конкретизируется при изложении гипотезы или цели.
2. Гипотеза или цель. Это изложение проблемы или постановка вопроса. Оно может включать перечисление исследуемых переменных и предсказание возможных результатов исследования. Например: "Изучить влияние растворов с рН от 2 до 10 на скорость переваривания белка альбумина ферментом пепсином и определить оптимум рН для этой реакции".
3. Методика или процедура. Это перечень действий, производимых во время выполнения эксперимента. Он должен быть кратким, точным и приводиться в том же порядке, в котором установлены приборы и производятся действия во время эксперимента. Метод нужно описывать в прошедшем времени и не от первого лица. Пользуясь этим описанием, другие исследователи должны быть в состоянии повторить эксперимент.
4. Результаты и наблюдения. Они могут быть качественными или количественными и должны быть представлены как можно яснее в соответствующей форме или формах. Например, в виде словесного описания, таблиц с данными, графиков, гистограмм, карт, диаграмм распределения и т. д. Если при повторных измерениях одной переменной получено несколько числовых значений, то необходимо подсчитать и записать среднее значение этой переменной.
5. Обсуждение. Оно должно быть кратким и проводиться в форме ответов на возможные сформулированные в гипотезе вопросы или же в форме подтверждения цели. Обсуждение не должно быть словесным повторением результатов. В нем нужно попытаться связать теоретические знания об исследуемых переменных с полученными результатами.
Заключение можно делать в том случае, если было получено убедительное подтверждение исходной идеи. Например, в качестве заключения на приведенную в п. 2 тему исследования можно привести следующее утверждение: "Между величиной рН и активностью фермента существует определенная зависимость, оптимальное значение рН равно х". Обсуждение результатов этого же эксперимента должно включать такие теоретические вопросы, как природа реакции и возможные химические и физические аспекты влияния рН на трехмерную структуру молекул фермента.
После проведения качественных и количественных исследований получают определенные результаты в виде описательных и численных данных. Чтобы получить максимальное количество информации, необходимо тщательно спланировать исследование, а полученные данные всесторонне обработать и внимательно проанализировать.
Таблицы относятся к наиболее простому способу представления данных. Они состоят из колонок со значениями двух или более связанных переменных. С помощью этого метода трудно получить прямое и ясное указание на связь между переменными, но он часто является первым этапом регистрации информации и служит основой для выбора последующей формы графического представления данных.
График — это двумерное изображение зависимости между двумя или более переменными. График самой простой формы строится на двух осях. По вертикальной оси (оси у) откладываются значения, называемые ординатами, которые показывают величину зависимой переменной, т. е. функции. Это — "неизвестное количество", иными словами переменная, значения которой не выбираются экспериментатором. Горизонтальная ось х несет значения, называемые абсциссами, которые показывают величину независимой переменной. Это — "известное количество", т. е. переменная, значения которой выбираются экспериментатором.
График строится следующим образом:
1. Масштаб и интервалы на каждой оси должны выбираться в соответствии с величинами переменных, значения которых откладываются на графике таким образом, чтобы максимально использовать место на бумаге.
2. Каждая ось должна начинаться с 0, но если все значения одной переменной расположены близко друг к другу, например между 6,12 и 6,68 лежит десять точек, то, чтобы разместить эти точки, потребуется крупный масштаб. В этом случае ось также начинают с 0, но сразу после нуля на оси делается отметка о разрыве в виде знака -//-.
3. На каждой оси необходимо отметить название и размерность переменной, например "Температура,°С". Ось должна быть разделена на равные интервалы, например от 0 до 60 на 12 интервалов по 5 единиц в каждом.
4. Точки, отмеченные на графике, называются координатами. Они представляют соответствующие значения двух переменных, например когда х=а, а у=b.
5. Точки, нанесенные на основе фактических данных, необходимо отмечать кружком, крестиком или точкой в кружке, а не просто точкой.
6. Отмеченными на графике точками регистрируются фактические наблюдения. Точки могут соединяться серией прямых отрезков, начерченных по линейке, плавной кривой или в некоторых случаях кривой регрессии (линия наибольшего соответствия) (разд. П.2.8.3). Такие графики называются линейными. Точки лучше соединять прямыми отрезками или плавной кривой, а не кривой регрессии.
7. Графику необходимо дать развернутое название, например: "График, показывающий связь между...".
8. Фактические данные представлены только точками, нанесенными на график, оценки же других значений можно получить, измерив координаты любой точки, лежащей на линии. Этот метод называется интерполяцией. Сходным образом, продолжив линию, можно определить координаты крайних точек графика. Этот метод известен как экстраполяция. В обоих случаях необходимо подчеркнуть, что полученные значения являются приблизительными.
По графикам, на оси х которых откладывается время, можно подсчитать крутизну кривой или градиент любой точки. Эта величина соответствует скорости изменения исследуемой переменной. Например, на графике, показанном на рис. П.2.8, скорость роста подсчитывают путем проведения касательной к кривой в требуемой точке и построения треугольника, в котором эта касательная является гипотенузой (рис. П.2.9). Затем значение отрезка у делят на значение отрезка х и получают скорость изменения в единицах, отложенных по осям графика.
Рис. П.2.8. А. Два ряда данных: средняя высота проростков овса и продолжительность их роста. Б. График зависимости между средней высотой проростков овса и продолжительностью роста
Рис. П.2.9. Метод определения скорости изменения в данной точке, например, на седьмой день
Существует множество отношений между переменными, при которых каждое значение зависимой переменной, соответствующее значению независимой переменной, представляет собой число событий, приходящихся на данное значение независимой переменной, т. е. ее частоту. Такие отношения можно описать функцией распределения частот, или просто распределением, например, дождевых червей по длине тела в популяции.
Если независимая переменная может принимать любые значения в пределах данного ряда, то распределение частот можно представить в виде обычного графика, как это описано выше. Такие графики называются кривыми распределения и в зависимости от рода данных могут иметь одну из форм, описанных ниже. Если данные представляют собой численность организмов в пределах определенного интервала, как показано на рис. П.2.10, А, то распределение называется непрерывным, а все пространство под кривой составляет общую частоту событий.
Рис. П.2.10. А. Представленная в виде таблицы численность 18-летних мужчин в каждом классе массы по 2 кг. Б. Графическое изображение данных из табл. А. дает кривую нормального распределения
1. Кривая нормального распределения. В этом случае распределение частот симметрично относительно центрального значения, а рассматриваемые переменные относятся к физическим параметрам, таким, как рост или масса биологического объекта. Этот тип распределения показан на рис. П.2.10.
2. Положительный уклон. Кривая распределения в этом случае несимметрична. Наибольшие частоты независимой переменной приходятся на ее более низкие значения, а по направлению к более высоким значениям кривая начинает "хвостить" (рис. П.2.11, А). В качестве примера такого распределения можно привести распределение числа детей, приходящихся на одну семью, размеров кладки у птиц, плотности фитопланктона с увеличением глубины.
Рис. П.2.11. А. Распределение с положительным уклоном. Б. Распределение с отрицательным уклоном
3. Отрицательный уклон. В этом случае наибольшие частоты независимой переменной приходятся на ее более высокие значения, а по направлению к более низким значениям кривая начинает "хвостить" (рис. П.2.11, Б). Эта форма распределения встречается реже, чем предыдущая; она характерна для распределения некоторых форм смещения. Например, распределение оптимальных температур ферментативных реакций и выработка стимулирующих гормонов щитовидной железы в ответ на действие тироксина.
4. Бимодальное распределение. В этом случае наблюдаются два максимума (или два пика), что обычно указывает на присутствие двух популяций, для каждой из которых характерно неполное нормальное распределение.
5. Совокупное распределение частот. Данные, представленные на рис. П.2.10, можно также представить, как на рис. П.2.12. Здесь показано совокупное число организмов, находящихся ниже определенного произвольно выбранного класса границ. Если эти данные изобразить графически, то получится кривая совокупного распределения частот.
Рис. П.2.12. Таблица (А ) и график (Б), построенные на основе рис. П.2.10, А, представляющие совокупную частоту распределения массы среди 18-летних мужчин
Если независимая переменная принимает дискретные значения, например целые числа 3 и 5 (как число лепестков у двудольных), или ею представлены физические признаки, такие, например, как группы крови, которые характеризуются дискретными значениями, то распределение не будет непрерывным. В этом случае нельзя начертить непрерывную кривую, поэтому используются другие, описанные ниже формы графического изображения данных.
1. Диаграмма в виде вертикальных столбцов. Она показывает частоту, с которой определенные признаки встречаются внутри популяции. Например, частота групп крови у человека (см. рис. П.2.13, А).
Рис. П.2.13. Способы представления данных. А. Диаграмма с вертикальным расположением столбцов, показывающая фенотипы по группам крови в популяции. Б. Гистограмма, показывающая частоту различного систолического кровяного давления у женщин в возрасте от 30 до 39 лет. В. Диаграмма с горизонтальным расположением столбцов, показывающая содержание энергии в пище (при трехразовом питании)
2. Гистограмма. Она строится на непрерывных значениях независимой переменной, сгруппированных в классы равной ширины. Когда классы равной ширины выбраны, например 0-5, 5-10, 10-15 и т. д., границы интервалов обычно проходят по числам меньшим, чем указанные целые значения, т. е. 0-4,99; 5-9,99; 10-14,99 и т. д. В форме гистограммы удобно представлять данные, характеризующие наибольшие выборки. Внешне гистограммы похожи на диаграммы в виде вертикальных столбцов (рис. П.2.13, Б).
3. Диаграмма в виде горизонтальных столбцов. Это видоизмененная форма гистограммы. Она обычно используется для того, чтобы показать отношения между непрерывной зависимой переменной, например содержанием энергии, и нечисловой независимой переменной, например различными видами пищи (рис. П.2.13, В). Видоизмененная форма горизонтальной диаграммы используется для представления экологических данных; она называется диаграммой присутствия-отсутствия (см. рис. 13.21).
4. Кайт-диаграмма. Это особый тип горизонтальной диаграммы, который дает предельно ясное наглядное изображение изменения частот неисчисляемых переменных непрерывно распределенных в пределах определенной площади. Кайт-диаграмма строится путем нанесения частот каждой переменной в виде параллельных отрезков, перпендикулярных оси х (см. рис. П.2.14, А).
Рис. П.2.14. Способы построения кайт-диаграммы (от англ. kite-бумажный змей)
После того как все частоты нанесены вдоль оси х, соседние концы отрезков соединяются прямыми линиями как при построении линейного графика (см. рис. П.2.14, Б). Заключенную внутрь фигуры площадь обычно заштриховывают, чтобы получить более наглядное изображение. О применении кайт-диаграмм распределения рассказано в разд. 13.4.3.
Каждый из описанных выше способов представления данных используется при решении различных биологических задач. Все перечисленные способы изложены в различных главах этой книги. Каждый метод имеет свои достоинства. При выборе того или иного метода следует руководствоваться тем, как можно наиболее точно и рационально продемонстрировать связи и характер отношений между переменными.
После того как данные записаны в виде ряда характеризующих переменные значений, например, таких, как рост или частота сокращений сердца, полезно подсчитать их среднее значение и разброс значений. Оценки среднего значения называются характеристиками расположения относительно центра. Они включают среднее, медиану и моду. Оценки разброса величин называются мерой рассеяния, они включают дисперсию и стандартное отклонение.
Это "средняя величина" группы значений, которую получают путем сложения всех значений и деления суммы на число сложенных значений. Например, среднее () для значений x1, x2, х3, х4 ... хn подсчитывается следующим образом:
или
где ∑ — сумма или общее количество, х — отдельное значение и n — число отдельных значений.
Если одно и то же значение х встречается более чем один раз, среднее () можно подсчитать, используя выражение:
∑ƒ сумма частоты встречаемости х, или проще — n.
Она представляет собой среднее, или центральное, значение группы переменных. Например, если пять значений х расположены в следующей последовательности: x1, x2, х3, х4 и х5, то значение медианы будет равно х3, так как равное число значений расположено до и после х3. Если число значений четное, например от x1 до х6, то медиана будет равняться среднему из двух срединных значений
Это значение переменной, встречающееся наиболее часто. Например, если число детей в десяти семьях соответственно равно 1, 1, 1, 2, 2, 2, 2, 3, 4, то мода равна 2.
Каждое из трех значений, описанных выше, имеет свои преимущества и недостатки и применяется при решении определенных задач. Проиллюстрировать применение среднего или моды можно на примере с различным числом детей в семьях. Среднее число детей в семье составляет 2,4, но так как ребенок — величина дискретная, естественно описывать число детей в семье в целых числах, т. е. с помощью моды, которая равна 2.
В случае нормального распределения значения среднего, медианы и моды совпадают (рис. П.2.15, А). В случае того или иного уклона частоты распределения их значений не совпадают (рис. П.2.15, Б).
Рис. П.2.15. Положение среднего, медианы и моды при нормальном распределении (А) и при распределении с уклоном (Б)
Для того чтобы оценить, в какой мере значения признака отклоняются от среднего, вычисляют среднее и дисперсию. Для нормального распределения это проиллюстрировано двумя кривыми на рис. П.2.16. При статистическом анализе данных очень информативной является оценка среднего квадратичного или стандартного отклонения; по этим показателям можно предсказать и распределение значений вокруг среднего, и ответить на вопрос, достоверна ли разница между двумя группами данных.
Рис. П.2.16. Две кривые нормального распределения, демонстрирующие распределение двух совокупностей данных (возможно, характеризующих популяцию) с одинаковой общей частотой (т. е. площади под кривыми равны). Кривая А построена по ограниченному ряду значений, сгруппированных вокруг среднего. Кривая Б построена по широкому ряду значений, не сгруппированных вокруг среднего
Стандартное отклонение (s) совокупности данных служит мерой отличия этих данных от среднего арифметического. Для его подсчета используют выражение:
где ∑ — сумма, ƒ — частота, х — отдельные значения и — среднее. Например, в выборке из десяти раковин блюдечка (Patella vulgaris), отобранных на скалистом берегу, эти раковины имеют следующие максимальные значения диаметров в миллиметрах: 36, 34, 41, 39, 37, 43, 36, 37, 41, 39. Чтобы определить среднее максимальное значение диаметра и стандартное отклонение, необходимо вычислить ƒ, ƒx2 и х-2, как это показано в следующей таблице:
Таблица
Следовательно, =38,3; х-2=1466,9,
Так как
Следовательно, s = 2,65.
В этой популяции имеющих общее происхождение блюдечек среднее максимальное значение диаметра раковины равно 38,3 мм, а стандартное отклонение равно 2,7 мм (округлили до одной десятой). Если эти значения применить к более крупной популяции блюдечек общего происхождения, то на основе статистики можно предположить, что приблизительно 68% популяции будет иметь диаметр раковины 38,3 мм плюс-минус одно стандартное отклонение (2,7 мм), т. е. размеры раковин будут лежать в интервале от 35,6 до 41,0 мм; приблизительно 95% популяции будут иметь диаметр раковины 38,3 мм плюс-минус два стандартных отклонения (5,4 мм), т. е. диаметры будут лежать в интервале 32,9-43,7 мм, а практически 100% будут лежать в интервале плюс-минус три стандартных отклонения от 38,3 мм.
По величине стандартного отклонения можно судить о разбросе данных. Если стандартное отклонение мало, то, следовательно, разброс (отклонение от среднего) невелик и популяция в значительной степени однородна, как это показано на рис. П.2.16, А С увеличением стандартного отклонения увеличивается степень изменчивости внутри популяции, как показано на рис. П.2.16,2?.
Дисперсия — это квадрат стандартного отклонения. Дисперсия совокупности значений подсчитывается по следующей формуле:
Дисперсия
где ƒ — число значений в совокупности.
Дисперсию обычно подсчитывают в экологических исследованиях, включающих изучение питания, размножения и поведения, поскольку она служит показателем распределения организмов внутри популяции. Распределение может быть:
а) случайным;
б) групповым;
в) регулярным.
Для того чтобы определить тип распределения организмов внутри популяции, исследуемую площадь делят на квадраты равного размера (см. разд. 13.2) и подсчитывают число организмов этой популяции в каждом квадрате. Исходя из этих данных, подсчитывают значение дисперсии по следующей формуле:
где ƒ — число квадратов, содержащих х организмов. Используя выражение:
Можно выделить три типа распределения (рис. П.2.17).
Рис. П.2.17. Типы распределения
Данные всегда необходимо представлять таким образом, чтобы можно было выявить связи между двумя или более их совокупностями. Проще всего это сделать с помощью графика или диаграммы, показывающих связь между переменными. Но это целесообразно только в том случае, если одна из переменных (независимая переменная) находится под контролем экспериментатора, как, например, в случае, приведенном на рис. П.2.8.
В других случаях, когда обе переменные являются независимыми, составляют таблицу, в которой значение одной помещают под соответствующим значением другой, как, например, в случае данных о росте и массе 20 студентов шестого курса, приведенных на рис. П.2.18, А. На основе этих данных вычерчивают график (рис. П.2.18, Б), который называется диаграммой рассеяния. По внешнему виду графика видно, что эти две переменные связаны между собой некоторым образом, но эту связь невозможно описать более точно до тех пор, пока они не будут представлены в виде прямой линии, проходящей через точки графика.
Рис. П.2.18. Данные о массе и соответствующем росте 20- и 16-летних студентов мужского пола представлены в виде таблицы (А) и диаграммы рассеяния (Б). Построена кривая регрессии
Эта линия называется "линией наибольшего соответствия", или линией регрессии. Мера приближения точек к линии указывает на степень корреляции между двумя переменными. Линия наибольшего соответствия должна проходить через точку, соответствующую среднему значению массы и роста (=65,7 кг, =165,8 см), а число точек над и под линией должно быть приблизительно одинаковым. По этой линии можно подсчитать рост, соответствующий определенной массе.
Описанную выше связь между двумя переменными х и у можно обозначить термином корреляция. Между х и у могут существовать различные степени корреляции, как это показано на диаграммах рассеяния на рис. П.2.19.
Рис. П.2.19. Типы корреляции; А — положительная корреляция; Б — отрицательная корреляция; В-корреляция отсутствует
С помощью диаграммы рассеяния нельзя точно продемонстрировать значимость между совокупностями данных, так как этот способ субъективен. Значимость корреляции можно представить с помощью статистического критерия, называемого коэффициентом корреляции. Его величина может изменяться от -1 до +1; -1 означает полностью отрицательную корреляцию, например отрицательную корреляцию между давлением кислорода в атмосфере и скоростью открывания дыхалец у насекомых; 0 означает отсутствие корреляции, например отсутствие корреляции между размерами плодов томатов и числом семян; +1 означает полностью положительную корреляцию, например положительную корреляцию между возрастом и длиной тела у саранчи.