Глава 3. Разнообразие жизни на Земле: грибы и растения

В гл. 2 мы говорили, что все клеточные организмы делятся на две естественные группы — прокариоты и эукариоты. Прокариоты были рассмотрены в гл. 2, а эукариотам будут посвящены настоящая глава и гл. 4. Все эукариоты имеют ряд важных общих особенностей, которые перечислены в табл. 2.1; одна из них — это наличие в клетке оформленного ядра.

Имеются данные о том, что ключевым событием в эволюции эукариот было проникновение аэробных прокариот в клетку примитивного предшественника; позднее из этих прокариот возникли митохондрии (теория эндосимбиоза — см. разд. 9.3.1). Полагают, что другим важным событием было последующее внедрение в клетку фотосинтезирующих прокариот (сине-зеленых водорослей), которые затем превратились в хлоропласты. Считается, что организмы, которые пошли по такому пути эволюции, стали впоследствии растениями. Термину "растение" можно дать такое определение: растения — это фотосинтезирующие эукариоты или автотрофные эукариоты. Автотрофность в данном случае означает, что в качестве источника углерода эти организмы используют двуокись углерода. У всех других эукариот нет хлоропластов, поэтому они не способны к фотосинтезу и являются гетеротрофами (т. е. используют готовые органические соединения углерода). Считают, что самыми первыми эукариотами были водоросли, грибы, слизевики и простейшие. Водоросли — это примитивные растения, а простейшие — примитивные животные. Грибам и слизевикам присущи признаки и растений, и животных. Предшественниками, от которых, вероятно, произошли все эти группы эукариот, скорее всего, были различные жгутиковые, т. е. простые одноклеточные организмы, передвигающиеся за счет биения жгутиков. Жгутиковым тоже свойственны признаки и растений, и животных. Эволюционные связи между этими примитивными группами организмов до сих пор не выяснены. Этот вопрос мы рассмотрим с различных точек зрения и в этой главе (см. водоросли), и в начале гл. 4.

Два возможных пути разделения эукариот на отдельные царства схематично изображены на рис. 3.1.

Рис. 3.1. Царства эукариот. А. Современная схема. Б. Традиционная схема


Традиционно было принято различать только два царства — царство растений и царство животных (рис. 3.1, Б). Растения отличали от животных по ряду свойств, перечисленных в табл. 3.1. Однако затем возник целый ряд трудностей, связанных с систематическим положением слизевиков и грибов. Слизевики можно было отнести к животным, потому что они способны передвигаться, а грибы — к растениям, потому что у них есть клеточные стенки и они не способны к передвижению. Однако в свете последних данных и новых представлений более приемлемым кажется, что и слизевики, и грибы, и растения, и животные настолько далеки друг от друга, что их всех можно выделить в разные царства. Поскольку классификация на рис. 3.1, А отражает более современные взгляды, мы рекомендуем пользоваться именно этой схемой.

Таблица 3.1. Различия между растениями и животными

Царство грибов

Грибы — это одна из самых больших и процветающих групп организмов; к ней относится около 80000 описанных видов. Размеры грибов колеблются от одноклеточных дрожжей до больших "поганок", дождевиков и зловонных рожков. Грибы занимают самые разные местообитания как в воде, так и на суше. Кроме того, грибы имеют важное значение и в связи с той ролью, которую они играют в биосфере, и с связи с тем, что они используются людьми для медицинских и хозяйственных целей.

К грибам относятся бесчисленные плесени, растущие на сыром органическом материале (хлебе, коже, разлагающейся растительности или дохлой рыбе), одноклеточные дрожжи, которые в изобилии появляются на сахаристой поверхности спелых фруктов, и многие паразиты растений. Последние вызывают такие опасные заболевания посевов, как мучнистая роса, головня и ржавчина. Некоторые грибы паразитируют на животных, но в этом отношении они гораздо менее опасны, чем бактерии.

Изучением грибов занимается наука микология (от греч. Mykes — гриб). Это — одно из направлений микробиологии, так как большая часть методик, применяемых при исследовании грибов, например способы стерилизации, выращивания и т. п., практически не отличаются от методик, используемых при изучении бактерий.

3.1. Грибы (Fungi)

3.1.1. Основные свойства и систематика грибов

Грибы — это эукариоты, утратившие хлорофилл, и, следовательно они являются такими же гетеротрофами, как животные. Вместе с тем у них имеется жесткая клеточная стенка, и они не способны передвигаться, как и растения. В силу сложившихся традиций грибы всегда относили к растениям[7], но в более современных системах, например в классификации, которая приведена на рис. 3.1, их выделяют в отдельное царство. Систематика и основные признаки грибов представлены на рис. 3.2 и в табл. 3.2. Две самые большие и наиболее высокоорганизованные группы — это Ascomycota и Basidiomycota.

Рис. 3.2. Систематика грибов. А. Современная схема. Б. Традиционная схема. Обратите внимание, что на схеме А для обозначения отдела применяется суффикс — mycota, который сравним с суффиксом — phyta в царстве растений. На схеме Б — mycota заменено на — mycetes


Таблица 3.2. Систематика и основные признаки грибов

Царство Fungi

Общая характеристика

Питание гетеротрофное, так как у них нет хлорофилла, и поэтому они не способны к фотосинтезу. Грибы могут быть паразитами, сапрофитами или симбионтами.

Жесткая клеточная стенка содержит хитин, формирующий фибриллы; исключение составляют Oomycota, у которых обнаружена целлюлоза.

Тело обычно представлено мицелием, т. е. состоит из сети трубчатых нитей, которые называются гифами.

Если запасают углеводы, то, как правило, в виде гликогена, а не в виде крахмала.

Размножаются спорами.

Неподвижны.

Таблица 3.2. Систематика и основные признаки грибов


Отдел Chytridiomycota

Небольшая группа микроскопических (чаще всего одноклеточных) грибов. Пример: Synchytrium endobioticum — паразит, вызывающий рак картофеля.

Отдел Deuteromycota (Fungi Imperfecti)

Грибы, у которых никогда не наблюдается половое размножение и систематика которых до сих пор не выяснена. Пример: Trichophyton, вызывающий грибковые заболевания ног и стригущий лишай.

Обратите внимание, что названия отделов имеют окончание — mycota.

3.1. Составьте таблицу различий между грибами и содержащими хлорофилл растительными клетками; пользуясь теми сведениями о царстве грибов, которые приведены в табл. 3.2.

Строение

Строение тела грибов уникально. Оно состоит из массы тонких ветвящихся трубчатых нитей, которые называются гифами (в единственном числе — гифа), а вся эта масса гиф называется мицелием. Каждая гифа окружена тонкой жесткой стенкой, основным компонентом которой является хитин — азотсодержащий полисахарид. Хитин является также структурным компонентом наружного скелета членистоногих (разд. 5.2.4). В некоторых случаях клеточная стенка содержит целлюлозу. Гифы не имеют клеточного строения. Протоплазма гиф либо совсем не разделена, либо разделяется поперечными перегородками, которые называют септами. Такие септы делят содержимое гиф на отдельные отсеки (компартменты), внешне похожие на клетки. В отличие от нормальных клеточных стенок образование септ не связано с делениями ядер. В центре септы, как правило, остается небольшое отверстие (пора), через которое протоплазма может перетекать из одного компартмента в другой. В каждом компартменте может находиться одно, два или несколько ядер, которые располагаются вдоль гифы на более или менее одинаковых расстояниях друг от друга. Гифы, не имеющие перегородок, называются нечленистыми (несептированными, асептированными) или ценоцитными. Последний термин применяют к любой массе протоплазмы, в которой находится много ядер, но которая не разделена на отдельные клетки. Гифы, имеющие перегородки, называются членистыми или септированными. В цитоплазме гиф располагаются митохондрии, аппарат Гольджи, эндоплазматический ретикулум, рибосомы, вакуоли и другие органеллы, обычные для эукариот. В старых участках мицелия вакуоли крупнее, а цитоплазма занимает лишь небольшое место на периферии. Время от времени гифы агрегируют с образованием более плотных структур, как, например, плодовые тела Basidiomycota.

Питание

Грибы — гетеротрофы, т. е. им нужны органические источники углерода. Помимо этого им необходимы источник азота (обычно органический, такой, как аминокислоты), неорганические ионы (например, К+ и Mg2+), микроэлементы (например, Fe, Zn и Сu) и органические факторы роста (такие, как витамины). В каждом случае необходим строго определенный набор питательных веществ, поэтому столь различны те субстраты, на которых можно найти грибы. Некоторым грибам, особенно облигатным паразитам, требуется большой набор уже готовых компонентов. Другие могут синтезировать почти все необходимые им вещества, нуждаясь только в каком-либо источнике углеводов и минеральных солях. Третьи могут удовлетворять большую часть своих потребностей, синтезируя нужные им вещества, но им необходимы определенные аминокислоты или витамины. Грибы поглощают питательные вещества, всасывая их всей поверхностью путем диффузии. Это отличает их от животных, которые, как правило, сначала проглатывают пищу, а затем уже переваривают ее внутри своего тела, и лишь потом начинается всасывание питательных веществ. Пищеварение у грибов внешнее, осуществляемое внеклеточными ферментами.

По типу питания грибы бывают сапрофитами, паразитами и симбионтами. В этом отношении они очень похожи на бактерий, а определение всем этим трем терминам было дано в разд. 2.2.5.

Сапрофиты. Сапрофитные грибы вырабатывают самые разнообразные ферменты. Если гриб способен секретировать пищеварительные ферменты трех основных классов, а именно карбогидразы, липазы и протеазы, он может использовать самые разные субстраты, и его можно назвать поистине вездесущим, например какой-либо из видов Penicillium, который образует зеленую или голубую плесень на таких субстратах, как почва, сырая кожа, хлеб или гниющие фрукты.

Для гиф сапрофитных грибов обычно характерен хемотропизм, т. е. они растут направленно в ту сторону, где находятся вещества, диффундирующие из субстрата (разд. 15.1.1).

Грибы-сапрофиты обычно образуют большое количество легких устойчивых спор. Это позволяет им легко распространяться на другие продукты. Примерами таких грибов могут служить Мисоr, Penicillium или Agaricus.

Сапрофитные грибы и бактерии образуют вместе группу так называемых редуцентов, без которых немыслимы круговороты элементов в природе. Особенно важны те немногие грибы, которые секретируют целлюлазу — фермент, расщепляющий целлюлозу. Целлюлоза представляет собой важнейший структурный компонент клеточных стенок растений. Гниение древесины и других растительных остатков отчасти достигается и за счет деятельности редуцентов, секретирующих целлюлазу.

Некоторые грибы-сапрофиты имеют важное хозяйственное значение; к числу таких грибов относятся, например, дрожжи Saccharomyces или Penicillium (разд. 3.1.6).

Паразиты. Грибы-паразиты могут быть факультативными или облигатными (разд. 2.2.5); чаще они паразитируют на растениях, чем на животных. Облигатные паразиты, как правило, не вызывают гибели своих хозяев, тогда как факультативные паразиты делают это часто и потом живут сапрофитно на мертвых остатках. К облигатным паразитам относятся настоящие мучнисторосные, ложные мучнисторосные, ржавчинные и головневые грибы. Все они, как правило, ограничены узким кругом хозяев, от которых им нужен специфический набор питательных веществ. Факультативные паразиты обычно менее специализированы. Они растут и развиваются на самых разных субстратах и разных хозяевах. Некоторые из них, например Phytophthora infestans (картофельная гниль), имеют вполне определенный круг хозяев.

Если хозяином служит растение, то гифы гриба проникают через устьица, или прямо сквозь кутикулу и эпидермис, или же через раны. Попав внутрь растения, гифы обычно ветвятся, распространяясь между клетками; иногда они выделяют пектиназы, которые переваривают ткань растения, и таким образом прокладывают себе дорогу через срединную пластинку. Заболевание может быть системным, т. е. захватывать все ткани хозяина, или же может ограничиваться небольшой частью растения.

Факультативные паразиты обычно продуцируют достаточно пектиназ, чтобы вызвать "мягкую гниль" пораженной ткани и превратить ее в "кашу". Затем с помощью целлюлазы, переваривающей клеточные стенки, они инвазируют отдельные клетки и убивают их. Содержимое клетки поглощается сразу же или после дальнейшего переваривания грибными ферментами. Облигатные паразиты для проникновения в клетки растений-хозяев и высасывания из них питательных веществ образуют специальные выросты, которые называются гаусториями. Гаустория — это видоизмененный вырост гифы, обладающий большой поверхностью. Такой вырост проникает в живую клетку, не разрушая плазматической мембраны и не убивая саму клетку (рис. 3.3). Благоденствие паразита зависит от продолжительности жизни хозяина. У факультативных паразитов гаустории образуются редко.

Рис. 3.3. Электронная микрофотография Albugo Candida, инфицирующего Cardamine hirsuta. Этот облигатный паразит вызывает 'белую' ржавчину у многих сельскохозяйственных и декоративных растений. Как и Phytophthora, он относится к отделу Oomycota. × 16575


Жизненный цикл у паразитических грибов иногда бывает очень сложным. Это особенно относится к таким облигатным паразитам, как ржавчинные грибы, жизненный цикл которых состоит из нескольких стадий и при этом еще включает более одного хозяина. У облигатных паразитов в результате полового размножения образуются устойчивые споры, что обычно совпадает со смертью хозяина. Такие споры могут зимовать. Некоторые особенности паразитов мы разберем на примере Phytophthora infestarts в следующем разделе.

Симбиоз. Грибы участвуют в создании двух очень важных типов симбиотического союза, а именно лишайников и микоризы. Лишайник — это симбиотическая ассоциация гриба и водоросли. Гриб в этом случае обычно либо сумчатый, либо базидиальный, а водоросль — либо зеленая, либо сине-зеленая. Лишайники, как правило, поселяются на обнаженных скалах или на стволах деревьев; в сырых лесах они еще и свешиваются с деревьев. Полагают, что водоросль снабжает гриб органическими продуктами фотосинтеза, а гриб поглощает воду и минеральные соли. Кроме того, гриб запасает воду, что позволяет некоторым лишайникам расти в таких сухих условиях, где не могут существовать никакие другие растения.

Тело лишайника невелико и не похоже ни на одного из партнеров, настолько далеко зашел этот союз. Лишайники растут очень медленно и очень чувствительны к загрязнению окружающей среды, особенно к сернистому газу, этому столь распространенному отходу промышленного производства. Поэтому лишайники представляют собой идеальное средство для контроля за загрязнением среды, так как их численность и видовое разнообразие резко возрастают с увеличением расстояния от источника загрязнения.

Микориза — это симбиотическая ассоциация гриба с корнями растений. Вероятно, большинство наземных растений способно вступать в такого рода связь с почвенными грибами. Гриб образует чехол вокруг центральной части корня (эктотрофная микориза) или же проникает в ткани растения-хозяина (эндотрофная микориза). Микориза первого типа встречается главным образом у таких лесных деревьев, как хвойные, бук и дуб, и образуется при участии грибов, относящихся к отделу Basidiomycota. Их "плодовые тела" (то, что мы зовем грибами) обычно можно видеть вблизи деревьев. Гриб получает от дерева углеводы и витамины и в свою очередь расщепляет до аминокислот белки почвенного гумуса; часть аминокислот при этом поглощается и используется деревом. Кроме того, гриб обеспечивает дерево большей поверхностью всасывания, что особенно важно, когда дерево растет на бедной почве с недостатком азота.

Эндотрофная микориза встречается у самых разнообразных растений, но о ее роли в симбиозе известно очень мало.

3.1.2. Отдел Oomycota

Основные признаки Oomycota приведены в табл. 3.2. К этому отделу относится целый ряд патогенных грибов, и в том числе возбудители ложной мучнистой росы — милдью. Рассмотрим в качестве примера один из таких грибов-паразитов — Phytophthora infestans.

Phytophthora infestans — патогенный гриб, имеющий важное хозяйственное значение, так как он паразитирует на картофеле и опустошает поля, вызывая очень опасное заболевание, известное под названием "картофельная гниль". По своему строению и способу инфицирования фитофтора очень похожа на Peronospora — еще одного представителя Oomycota, который является возбудителем довольно распространенного, хотя и менее опасного заболевания желтофиоли, капусты и многих других растений из семейства крестоцветных.

Явные признаки гнили на листьях проявляются обычно в августе, хотя, как правило, заражение происходит еще весной, когда гриб проникает в листья растений, выросших из клубней, в которых перезимовал мицелий.

Мицелий, состоящий из разветвленных нечленистых гиф, ветвится в межклеточном пространстве внутри листьев, образуя разветвленные гаустории, которые проникают в клетки мезофилла и высасывают из них питательные вещества (рис. 3.3 и 3.4). При избытке влаги и тепла на мицелии возникают длинные тонкие структуры, которые называют спорангиеносцами. Спорангиеносцы, проникая через устьица или раны, свешиваются с нижней поверхности листьев. Они ветвятся и дают начало спорангиям (рис. 3.4). При теплой погоде спорангии ведут себя как споры, т. е. переносятся ветром или вместе с брызгами от капель дождя на другие растения, распространяя таким образом инфекцию. Затем из спорангия вырастает гифа, которая проникает через устьица, чечевички или повреждения внутрь ткани растения. В холодных условиях содержимое спорангия делится с образованием подвижных зооспор (этот признак характерен для примитивных организмов), которые высвобождаются из спорангия и плавают в тонком слое жидкости, адсорбированной на поверхности листа. Зооспоры могут инцистироваться и в таком состоянии дожидаться, пока условия не станут более благоприятными для роста гиф; тогда-то и начинается новое заражение растений.

Рис. 3.4. Phytophthora infestans, растущая в листе больного картофеля; на нижней поверхности листа видны свешивающиеся спорангиеносцы


У больных растений на отдельных листьях видны небольшие мертвые ("гнилые") зоны коричневого цвета. Если присмотреться повнимательнее, то на нижней поверхности зараженных листьев вокруг мертвой зоны можно разглядеть бахрому из белых спорангиеносцев. При теплой сырой погоде зоны некроза быстро распространяются по всей поверхности листа и переходят на стебель. Некоторые спорангии падают на землю и заражают клубни картофеля, при этом инфекция распространяется очень быстро и вызывает своего рода сухую гниль, при которой ткань клубня приобретает ржаво-коричневую окраску, неравномерно распространяющуюся от периферии к центру клубня.

Сначала корневая шейка, а затем и все остальные части растения превращаются в гнилую жижу, так как зоны некроза вторично инфицируются сапрофитными бактериями — редуцентами. Таким образом, Phytophthora совсем убивает растение, и это отличает ее от ближайшего родственника — Peronospora, являющейся облигатным паразитом. В этом отношении Phytophthora не похожа на типичного облигатного паразита, и иногда ее относят к факультативным паразитам, хотя, по-видимому, здесь и не стоит особо останавливаться на таких нюансах.

Фитофтора, как правило, зимует в состоянии спящего мицелия внутри слегка инфицированных клубней картофеля. Считается, что в отличие от Peronospora этот гриб редко размножается половым путем, если, конечно, не говорить о тех местах (Мексике, Центральной и Южной Америке) откуда произошел картофель. Половое размножение гриба можно индуцировать в лабораторных условиях. Как и Peronospora, фитофтора образует устойчивые покоящиеся споры. Толстостенная ооспора образуется в результате слияния антеридия и оогония. Она может перезимовать в почве, а на следующий год вызвать новую инфекцию.

В прошлом эпидемии[8], вызываемые Phytophthora, приводили к очень серьезным последствиям. Полагают, что эту болезнь случайно завезли в Европу из Америки в конце 30-х годов прошлого века. В результате по Европе прокатилась целая война эпифитотий, которые в 1845 г. и последующие годы полностью уничтожили посевы картофеля в Ирландии. Наступил голод, который привел к гибели многих людей, оказавшихся жертвами не только самой болезни картофеля, но и сложных политических и экономических факторов. В результате многие ирландские семьи были вынуждены эмигрировать в Северную Америку.

Этот гриб интересен для нас еще и потому, что в 1845 г. Беркли (Berkeley) впервые четко показал микробную природу фитофтороза. Беркли продемонстрировал, что гриб, связанный с картофельной гнилью, сам вызывает болезнь, а не является побочным продуктом разложения.

Выяснение жизненного цикла возбудителя картофельной гнили привело к разработке методов борьбы с этой болезнью. Ниже перечислены эти методы.

1. Надо тщательно следить за тем, чтобы не был высажен ни один зараженный клубень.

2. Поскольку гриб может сохраняться в почве почти целый год, не следует сажать картофель там, где было обнаружено это заболевание в прошлом году. В этом случае помогают правильные севообороты.

3. Все больные части зараженных растений следует уничтожить еще до выкапывания клубней, например сжечь их или опрыскать едким раствором, таким, как серная кислота. Это необходимо делать потому, что гнилая ботва (т. е. стебли) и надземные части могут заразить и клубни.

4. Так как этот гриб может зимовать в не выкопанных клубнях, нужно тщательно следить, чтобы на зараженных полях были выкопаны все клубни.

5. Гриб можно обработать медьсодержащими фунгицидами, например бордоской жидкостью. Опрыскивание следует проводить в строго определенное время, чтобы успеть предупредить заболевание, так как пораженные растения уже ничто не спасет. Растения обычно опрыскивают через каждые две недели, начиная с того момента, когда они вырастут на несколько сантиметров, и до тех пор, пока полностью не созреют клубни. Отобранный "семенной" картофель можно простерилизовать снаружи, погрузив клубни в разбавленный раствор хлорида ртути (II).

6. Постоянное наблюдение за метеорологическими условиями и раннее оповещение фермеров могут помочь определить, когда же надо опрыскивать посевы.

7. Одно время проводили селекцию на устойчивость картофеля к гнили. Как известно, дикий картофель Solanum demissum обладает высокой устойчивостью к фитофторе, поэтому его использовали в опытах по селекции. Самое большое препятствие для получения нужного иммунитета заключается в том, что существует много штаммов гриба, поэтому до сих пор не удалось вывести ни одного сорта картофеля, который был бы устойчив ко всем этим штаммам. По мере введения в культуру новых сортов картофеля появляются и новые штаммы грибов. Эта проблема давно знакома фитопатологам; она лишний раз напоминает нам о необходимости сохранения генофонда диких предков наших современных сельскохозяйственных культур как источника генов устойчивости к различного рода заболеваниям.

3.1.3. Отдел Zygomycota

Основные признаки Zygomycota приведены в табл. 3.2. Как и Oomycota, это немногочисленная группа грибов, которую принято считать менее высокоорганизованной, чем два основных отдела Ascomycota и Basidiomycota.

В качестве примера приведем Rhizopus. Это обыкновенный сапрофит, похожий по внешнему виду и строению на Мисоr, но гораздо более распространенный. И Rhizopus, и Мисоr называют головчатыми плесенями по причине, о которой вы узнаете позднее (см. особенности бесполого размножения). Один из самых обычных видов Rhizopus stolonifer обыкновенная хлебная плесень. Он растет также на яблоках и других фруктах, вызывая мягкую гниль в хранилищах.

Строение

Строение мицелия и индивидуальной гифы изображено на рис. 3.5. Мицелий обильно ветвится и не имеет септ. В отличие от Мисоr такой мицелий образует воздушные столоны, которые изгибаются дугой над поверхностью среды, снова касаются ее и образуют гифы, которые называются ризоидами. В этих точках и развиваются спорангиеносцы.

Рис. 3.5. А. Микрофотография части мицелия Mucor hiemalis, полученная с помощью сканирующего электронного микроскопа. Хорошо видны спорангии, × 85


Рис. 3.5. Б. Схематическое изображение мицелия Rhizopus stolonifer в том виде, как он выглядит в световом микроскопе при малом увеличении. В. Продольный срез гифы, изображенной так, как она выглядит в световом микроскопе при большом увеличении. Цитоплазма имеет зернистый вид, и поэтому трудно различить митохондрии, пузырьки, запасные гранулы и т. д. Г. Ультраструктура того же среза, наблюдаемая с помощью электронного микроскопа

Жизненный цикл

Жизненный цикл Rhizopus stolonifer схематически представлен на рис. 3.6.

Рис. 3.6. Схематическое изображение жизненного цикла Rhizopus stolonifer

Бесполое размножение

После двух-трех дней культивирования Rhizopus образует вертикально растущие гифы, которые называются спорангиеносцами. Они обладают отрицательным геотропизмом. Кончик каждого спорангиеносца набухает и превращается в спорангий. Спорангий отделяется (рис. 3.7) от спорангиеносца выпуклой поперечной перегородкой, которая называется колонкой. Протоплазма спорангия делится на части, затем вокруг каждой такой части появляется своя клеточная стенка и образуется спора, содержащая несколько ядер. По внешнему виду спорангиеносцы и спорангии похожи на подушечку, утыканную булавками. Поэтому Rhizopus и другие близкие к нему грибы, например Мисоr, называют головчатыми плесенями или черными плесенями. По мере созревания спорангий чернеет и высыхает; в конце концов стенка спорангия лопается и из него высыпается масса сухих мелких, как пыль, спор. Колонка расплющивается, как это видно на рис. 3.7, и получается широкая стартовая площадка, с которой легко сдуваются и разлетаются споры. В дождливую погоду спорангии не высыхают и не растрескиваются, что препятствует выбросу спор в неблагоприятных условиях. Попав на подходящий субстрат, гаплоидные споры прорастают, и образуется новый мицелий.

Рис. 3.7. Бесполое размножение Rhizopus stolonifer. Показаны созревание и последующее вскрытие спорангия


3.2. Для чего нужны спорангиеносцы?

Половое размножение

Многие грибы существуют в виде двух штаммов, различающихся по поведению в процессе полового размножения. Половое размножение возможно только между разными штаммами, даже если у обоих этих штаммов образуются и мужские, и женские репродуктивные органы. Такие автостерильные грибы называются гетероталличными, а такие штаммы обычно обозначают как (+) — и (-) — штаммы (ни в коем случае их нельзя называть мужскими и женскими). Штаммы не отличаются друг от друга по строению, между ними существуют лишь небольшие физиологические различия. Грибы, у которых имеется только один такой штамм и которые поэтому автофертильны, называются гомоталличными. Преимущество гетероталлизма заключается в перекрестном оплодотворении, что обеспечивает возникновение большей изменчивости.

Rhizopus stolonifer — гетероталличный гриб. Все стадии полового размножения схематично изображены на рис. 3.8. Исходные события вызываются диффузией гормонов от штамма к штамму. Такие гормоны стимулируют рост длинных гиф, соединяющих отдельные колонии. Эти гифы, по-видимому, выделяют какие-то летучие химические вещества, которые служат сигналом для привлечения штамма противоположного "пола", т. е. наблюдается своего рода хемотропизм.

Рис. 3.8. Половое размножение Rhizopus stolonifer. + и — обозначают противоположные типы спаривания. Последовательность происходящих событий: 1 — гифы штаммов, противоположных по типу спаривания, привлекаются друг к другу химическими аттрактантами; 2 — на гифах образуются короткие выросты, которые соприкасаются своими концами; 3 — на конце каждого выроста поперечной стенкой отсекается многоядерный сегмент — гаметангий; 4 — стенка между гаметангиями исчезает, (+) — ядра сливаются попарно с (-) — ядрами, и внутри зигоспоры образуется много диплоидных ядер; 5 — зигоспора растет, образуя толстую черную, усеянную бугорками стенку и накапливая запасы питательных веществ, например липидов; 6 — зигоспора — это покоящаяся спора, которая прорастает, если наступят подходящие условия (тогда тотчас же образуется спорангий); 7 — из спорангия высвобождаются споры (либо все +, либо все -) (см. в тексте); 8 — споры прорастают и дают начало новому мицелию


Типичных гамет не образуется, и оплодотворение сводится к попарному слиянию ядер, как это изображено на рис. 3.8. Поскольку гаметангии не отличаются друг от друга по размеру, такой процесс полового размножения получил название изогамия.

После слияния ядер образуется зигоспора, в которой находится множество диплоидных ядер. Полагают, что все эти ядра, кроме одного, дегенерируют. Оставшееся ядро претерпевает мейотическое деление с образованием четырех гаплоидных ядер, из которых вновь сохраняется лишь одно. Будет ли это (+) — или (-) — штамм — дело случая.

В отличие от спор, получающихся при бесполом размножении, зигоспора предназначена не для расселения, а для своего рода "спячки"; для этого у нее есть и запас питательных веществ, и толстая защитная стенка. Расселение происходит сразу же после прорастания зигоспоры, когда, как это показано на рис. 3.8, образуются спорангии, и начинается бесполое размножение. Во время прорастания оставшееся гаплоидное ядро делится митотически; в результате многократно повторяющихся делений образуется большое число гаплоидных ядер, при этом каждое из них дает начало одной из спор в спорангии. Поэтому все эти споры принадлежат к одному и тому же штамму. Все стадии полового размножения схематически представлены на рис. 3.6.

3.1.4. Отдел Ascomycota

Основные признаки Ascomycota приведены в табл. 3.2. Это самая многочисленная и сравнительно высокоорганизованная группа грибов, которая отличается большей, чем у Zygomycota, сложностью строения, особенно строения репродуктивных органов. К Ascomycota относятся дрожжи, ряд обычных плесеней, настоящие мучнеросные грибы, плодосумчатые грибы, сморчки и трюфели.

Penicillium — широко распространенный сапрофит; он образует голубую, зеленую, а иногда и желтую плесень на самых разных субстратах. Бесполое размножение пеницилла осуществляется с помощью конидий. Конидии представляют собой споры, которые образуются на конце особых гиф, называющихся конидиеносцами. Конидии не заключены в спорангии; напротив, они оголены и свободно рассеиваются по мере созревания. Строение Penicillium изображено на рис. 3.9, А. Мицелий этого гриба образует круглые колонии небольшого размера, а специфическую окраску колониям придают споры, поэтому самый молодой внешний край колонии — обычно белый, а более зрелая центральная часть мицелия, где образуются споры, окрашена. Хозяйственное значение различных видов Penicillium мы обсудим в разд. 3.1.6.

Aspergillus обычно растет на тех же самых субстратах, что и Penicillium, и очень на него похож. Этот гриб образует черные, коричневые, желтые и зеленые плесени. Для сравнения с Penicillium на рис. 3.9, Б изображен мицелий, размножающийся бесполым путем.

Рис. 3.9. Бесполое размножение у двух типичных представителей Ascomycota. A. Penicillium; конидиеносец имеет вид микроскопической кисточки. Б. Aspergillus (шаровидно вздувшийся на вершине конидиеносец несет радиально расходящиеся цепочки конидий). В. Микрофотография конидиеносца Aspergillus niger, полученная с помощью сканирующего электронного микроскопа. × 1372

3.1.5. Отдел Basidiomycota

Основные признаки Basidiomycota перечислены в табл. 3.2. Это группа грибов почти столь же многочисленна, как и Ascomycota. Два последних отдела образуют группу так называемых высших грибов, т. е. наиболее высокоорганизованных грибов. Их большие "плодовые тела" сразу же обращают на себя внимание, будь то съедобные грибы или "поганки"[9], дождевики или зловонные рожки и трутовики. В эту группу входят также многочисленные облигатные паразиты, а именно ржавчинные и головневые грибы.

Agaricus (Psalliota) принадлежит к группе несъедобных шляпочных грибов. То, что мы называем "поганка" или "гриб", это на самом деле недолговечное "плодовое тело". Мицелий шляпочных грибов растет сапрофитно на органическом материале почвы и может жить там много лет. Он образует толстые нити, которые называются ризоморфами. Гифы в этих нитях собраны очень плотно, так что образуется своего рода ткань. При неблагоприятных условиях ризоморфы переходят в состояние покоя и находятся в таком состоянии до тех пор, пока вновь не наступит хорошая погода. Они растут за счет удлинения верхушки и обеспечивают вегетативный рост грибницы. Характерный облик Agaricus показан на рис. 3.10, где также показано строение пластинок.

Рис. 3.10. Строение шампиньона обыкновенного (Agaricus campestris). Культивируемый гриб Agaricus bisporus почти ничем не отличается, но в базидиях находится не четыре, а только две споры. А. Целые спорофоры вместе с мицелием. Б. Вертикальный разрез спорофоров. В. Часть вертикального среза шляпки в направлении X-Y, помеченном на Б


В умеренных широтах "плодовые тела", или спорофоры, появляются осенью; они целиком состоят из гиф, которые расположены очень плотно, образуя некое подобие ткани. Края пластинок состоят из базидий, из которых образуются споры (базидиоспоры). Пластинки обладают положительным геотропизмом и поэтому свешиваются вниз строго вертикально. Споры, которых образуется очень много (у большого гриба примерно полмиллиона спор в минуту), с силой выбрасываются из базидий, падают вертикально вниз между пластинками и уносятся прочь воздушными потоками.

3.1.6. Хозяйственное значение грибов

Полезные грибы

Грибы и плодородие почвы. Сапрофитные грибы играют важную роль в круговоротах биогенных элементов. Вместе с сапрофитными бактериями они образуют группу редуцентов, разлагающих органический материал (рис. 9.31 и разд. 2.3.1).

Очистка сточных вод (см. также разд. 2.3.2). Сапрофитные грибы вместе с простейшими и сапрофитными бактериями являются составной частью той желеобразной пленки из живых существ, которая покрывает камни "загрузки фильтра" в очистных сооружениях.

Бродильное производство (см. также разд. 2.3.4). Старейшее бродильное производство — пивоварение. Пиво получают из ячменя, который предварительно немного проращивают, чтобы превратить крахмал, запасенный в семенах, в сахар мальтозу. Для ускорения этого процесса и строгого контроля за ним используют гиббереллины (разд. 15.2.6). Дальнейшее сбраживание проводят в больших чанах, где "работают" одноклеточные грибы — дрожжи из рода Saccharomyces (например, S. cerevisiae или S. carlsbergensis). На этом этапе сахар превращается в двуокись углерода и спирт, конечная концентрация которого достигает 4-8%. На ранней стадии брожения вносят хмель, который придает пиву аромат и подавляет развитие других микроорганизмов.

Виноделие основано на сбраживании виноградного сока дикими дрожжами, находящимися на кожуре ягод. Конечная концентрация спирта достигает 8-15%, а этого вполне достаточно, чтобы дрожжи погибли. После этого вино выдерживают (правда, не всегда) несколько лет, чтобы оно созрело. При этом остается часть неизрасходованного сахара.

Из других обычных напитков, получаемых в результате брожения, можно упомянуть сидр, приготовляемый из яблочного сока, и японское сакэ, которое делают из риса.

Из побочных продуктов брожения, таких, как меласса, в которой много сахара, можно получить технический спирт.

Другая важная отрасль бродильного производства, где тоже применяют дрожжи, хлебопекарная. В пекарнях используются специальные штаммы дрожжей, которые выделяют много двуокиси углерода, помогающей тесту подняться. Одновременно образуется и спирт, но он улетучивается во время выпечки хлеба. Еще один продукт, который до сих пор получают из грибов, — это лимонная кислота (2-гидрок-сипропан — 1,2,3 — трикарбоновая кислота), широко применяемая в пищевой и фармацевтической промышленности. Ее образует гриб Aspergillus niger.

В сыроварении одновременно используют и бактерии, и грибы (разд. 2.3.4). Некоторые знаменитые сорта сыра вызревают благодаря "работе" различных видов Penicillium: это рокфор (P. roqueforti), камамбер (P. camemberti), голубой датский сыр и итальянская горгонцола.

Антибиотики (см. также разд. 2.3.5). Первым антибиотиком, который стали применять в клинической практике, был пенициллин. Его образуют некоторые виды Penicillium, в частности P. notatum и P. chrysogeпит. При этом последний вид до сих пор служит источником промышленного производства этого антибиотика. Когда в начале 40-х годов стали применять пенициллин, казалось, что его возможности беспредельны, так как этот антибиотик был активен против всех стафилококковых инфекций и самых разных грамположительных бактерий; к тому же он оказался практически нетоксичным для человека. До сих пор пенициллин остается самым важным антибиотиком, а в лечебную практику постоянно вводят все новые и новые, более эффективные синтетические производные, исходным сырьем для которых по-прежнему остается природный пенициллин, в больших количествах получаемый из промышленной культуры этого гриба. Как действует пенициллин, мы уже говорили в разд. 2.2.2.

Гризеофульвин — еще один антибиотик, который получают из Penicillium (особенно из P. griseofulvum). Он обладает противогрибковым действием и особенно эффективен (при пероральном введении) против грибковых заболеваний ног и стригущего лишая. Фумагиллин — это антибиотик особого типа, который получают из Aspergillus fumigatus. Его часто применяют при амебной дизентерии.

Генетика. Некоторые грибы оказались чрезвычайно удобными для генетических исследований; это прежде всего Neurospora (разд. 22.5.1). В будущем для генетической инженерии могут быть использованы и дрожжи.

Новые источники пищи. В разд. 2.3.6 мы уже говорили о том, что белок одноклеточных используют в пищу. Один из таких примеров — непрерывная культура дрожжей Candida на углеводородах нефти, которая была начата в 1971 г. компанией "Бритиш петролеум" в Грэнджмаусе в Шотландии. К середине 70-х годов эта культура давала в год 4000 т белкового концентрата, который шел на корм животным.

Грибы, вредные для человека

Порча пищевых продуктов и материалов. Сапрофитные грибы играют весьма важную роль в биосфере, однако они причиняют достаточно хлопот человеку, разрушая многие органические материалы. Поэтому при хранении зерна, фруктов и других продуктов необходимо применять самые различные защитные меры. Порча продуктов — это постоянная проблема, которая стоит перед человечеством. Натуральные ткани, кожа и другие товары потребления, изготовляемые из природного сырья, тоже разрушаются грибами. Так, например, грибы, живущие на целлюлозе, вызывают гниль различных лесоматериалов и тканей. На сохранение всех этих материалов расходуются большие средства.

Грибы как возбудители заболеваний (о бактериях и вирусах см. в разд. 2.6). Грибы чаще поражают растения, а не животных; бактерии же, напротив, являются характерными патогенами животных. Некоторые наиболее известные и важные болезни перечислены в табл. 3.3. В нее включены и самые известные облигатные паразиты, а именно мучнистая роса, ржавчина и головня. Облигатные паразиты не вызывают гибели своих хозяев, но они снижают урожай, а пораженные растения становятся более уязвимыми для других болезней и более чувствительными к неблагоприятным условиям. Эти грибы имеют огромное экономическое значение, поскольку они поражают посевы сельскохозяйственных культур. Так, настоящая мучнистая роса на 10% снижает урожайность зерновых, например ячменя. Возникла целая развитая индустрия, выпускающая фунгициды, применяемые для защиты посевов.

Таблица 3.3. Некоторые наиболее известные болезни, вызываемые грибами[10]


Грибы поражают самые разные органы растений: рак картофеля — подземные части; ржавчина, настоящая и ложная мучнистая роса и черная пятнистость -листья; головня и спорынья — цветки; мягкие гнили и плесени — спелые плоды.

3.1.7. Практические занятия

При работе с грибами во многих случаях применяются такие же методики, что и для работы с бактериями, т. е. стандартные микробиологические приемы. Многие сапрофитные грибы, как и бактерии, можно выращивать на питательном агаре, а если нужна чистая культура грибов, следует воспользоваться приемами работы в стерильных условиях, описанными в разд. 2.7.2. Для обычной культуры вполне годятся Mucor, Rhizopus, Penicillium и Aspergillus, а из сред лучше всего подходит 2%-ный солодовый агар, разлитый по чашкам Петри. Выбранный вами гриб можно выделить из смешанной культуры, которая выросла сама по себе на хлебе, фруктах или других сочных продуктах. Споры переносят в культуральную среду стерильным шприцем. Культуру лучше всего рассматривать в стереоскопическом микроскопе при малом увеличении.

Царство растений (Plantae)

В начале этой главы мы дали растениям такое определение: растения — это автотрофные эукариоты. Такое определение позволяет исключить грибы, так как они — гетеротрофы. Если грибы включают в царство растений, то другие растения обычно называют "зелеными растениями", подчеркивая тем самым, что у этих растений в отличие от грибов имеется хлорофилл. В нашей книге грибы сознательно выделены в отдельное царство, поэтому в дальнейшем слово "растения" будет означать, что мы имеем в виду только "зеленые растения", т. е. речь идет об автотрофных эукариотах.

"Международный кодекс ботанической номенклатуры" рекомендует все главные группы царства растений называть отделами, а не типами, как в царстве животных. Строго говоря, термины "тип" и "отдел" не эквивалентны, но для удобства отделы можно называть типами.

3.2. Водоросли (Algae)

3.2.1. Основные признаки и систематика водорослей

Водоросли — огромная группа растений, имеющих большое биологическое значение и очень важных для человечества (разд. 3.2.8). Они являются самыми примитивными из растений, и у них нет разделения тела на стебель, корень и листья. Поэтому первоначально их объединяли вместе с грибами в отдел Thallophyta (см. примечание на с. 43). Однако после новых научных открытий стало ясно, что водоросли ничуть не менее разнообразны, чем все остальные группы растений, вместе взятые, и что у них очень мало общих признаков. Вероятно, лучше всего считать водорослями все фотосинтезирующие организмы, выделяющие кислород, которые эволюционировали в водной среде и полностью освоили ее. Правда, некоторые водоросли вышли и на сушу, но в масштабах планеты продуктивность прибрежных и наземных форм ничтожна в сравнении с продуктивностью океанических и пресноводных водорослей. Если придерживаться такой точки зрения, то в группу водорослей следует включить и сине-зеленые водоросли (Cyanophyta). Однако, поскольку эти водоросли — прокариоты, было предложено называть их цианобактериями (Cyanobacteria), чтобы как-то отличить от эукариотических водорослей. При этом из виду упускают один очень важный факт, а именно то, что сине-зеленые водоросли при фотосинтезе выделяют кислород, а все остальные фотосинтезирующие прокариоты — нет. Для того чтобы вода могла расщепиться на водород и кислород, необходимо наличие хлорофилла и фотосистемы II (разд. 9.4.2), что является важным преимуществом перед фотосинтезирующими бактериями. О том, как было достигнуто такое преимущество, известно очень мало, хотя и обнаружены некоторые формы, занимающие промежуточное положение между сине-зелеными водорослями и бактериями. Такое истолкование связи между сине-зелеными водорослями и другими растениями, в том числе и остальными водорослями, подкрепляют данные, свидетельствующие в пользу симбиотической теории, согласно которой хлоропласты растений произошли из сине-зеленых водорослей (разд. 9.3.1).

Подводя итог, можно сказать, что термин "водоросль" сам по себе удобен, но его применение в систематике вносит ненужные осложнения. Сине-зеленые водоросли следует относить к прокариотам, а все остальные водоросли — к эукариотам.

К счастью, эукариотические водоросли вполне естественно распадаются на хорошо различимые группы, причем основным отличительным признаком является набор фотосинтетических пигментов. В современной систематике такие группы получили статус отделов. Родственные связи между отделами до сих пор не выяснены, а этот вопрос очень важен, чтобы понять происхождение высших растений и связь между прокариотами и эукариотами.

Все отделы перечислены на рис. 3.11, а на рис. 3.12 даны современные представления о том, какие связи существуют между этими отделами. Основные признаки водорослей и некоторых главных отделов приведены в табл. 3.4.

Рис. 3.11. Систематика эукариотических водорослей


Рис. 3.12. Возможная взаимосвязь между различными группами водорослей, бактериями и высшими растениями. Более подробно этот вопрос рассматривается в работе: В. S. Rushton, School Science Review, 62, № 221, 648-654, June 1981; этот автор выделяет три подцарства, соответствующие наличию хлорофилла d (вместе с фикобилинами), хлорофилла с или хлорофилла b. К последнему подцарству должны тогда относиться Chlorophyta и все высшие растения

3.2.2. Бесполое размножение водорослей

У водорослей наблюдается как бесполое, так и половое размножение. Ниже кратко перечислены основные типы бесполого размножения от самого простого до самого сложного.

Вегетативное размножение. У некоторых колониальных форм колонии могут дробиться на отдельные фрагменты, которые дают начало новым более мелким колониям. У более крупных водорослей, например у Fucus, на главном талломе могут образовываться дополнительные талломы, которые отламываются и образуют новые организмы.

Фрагментация. Это явление наблюдается у нитчатых водорослей, таких, как сине-зеленые водоросли и Spirogyra. Нить расщепляется строго определенным образом вдоль, и образуются две новые нити. Это явление можно рассматривать как одну из форм вегетативного размножения.

Бинарное деление. В этом случае одноклеточный организм делится на две одинаковые половины, при этом ядро делится митотически. Продольное деление такого типа наблюдается у Euglena.

Зооспоры. Это подвижные споры, имеющие жгутики. Они образуются у многих водорослей, например у Chlamydomonas, и у некоторых грибов (см. Oomycota, табл. 3.2).

Апланоспоры. Эти неподвижные споры образуются, например, у некоторых бурых водорослей.

3.2.3. Половое размножениеводорослей

При половом размножении объединяется генетический материал двух отдельных особей одного и того же вида. Самый простой способ такого размножения у водорослей; он заключается в слиянии двух морфологически (т. е. структурно) идентичных гамет. Такой процесс называется изогамией, а гаметы — изогаметами. Изогамны Spirogyra и некоторые виды Chlamydomonas.

Если одна из гамет менее подвижна или крупней, чем другая, то такой процесс называют анизогамией. У Spirogyra гаметы не отличаются по строению, но одна из них двигается, а другая неподвижна. Это можно рассматривать как физиологическую анизогамию. Существует еще один вариант, когда одна гамета большая и неподвижная, а вторая небольшая и подвижная. Такие гаметы называются женскими и мужскими, а сам процесс называется оогамией. Оогамны Fucus и некоторые виды Chlamydomonas. Женские гаметы крупные потому, что в них находится запас питательных веществ, необходимых для развития зиготы после оплодотворения.

Все три типа полового размножения соответствуют увеличению сложности строения тела, и поэтому оогамия, хотя и встречается у некоторых простых водорослей, таких, как Chlamydomonas, в целом более распространена у более сложных водорослей, например у представителей Phaeophyta. Оогамия — это единственный способ полового размножения у растений, более высоко организованных, чем водоросли.

К сожалению, терминология, применяемая для описания гамет и органов полового размножения растений, очень запутана, особенно у водорослей. Ниже мы объясним только основные термины.

У грибов и низших растений (водорослей, мохообразных и папоротникообразных) гаметы образуются в особых структурах, которые называют гаметангиями. Мужской гаметангий называется антеридием, а женский — оогонием или архегонием.

Оогоний[11] — это простой женский гаметангий, который встречается у многих водорослей и грибов, а женские гаметы или гаметы, которые находятся в нем, называют оосферами. Оплодотворенная оосфера называется ооспорой; она превращается в толстостенную покоящуюся спору, способную переживать неблагоприятные условия. Общее название для женской гаметы — яйцо или яйцеклетка, хотя иногда для обозначения яйцеклетки используют термин "оосфера"; однако это не совсем точно.

Архегоний — это более сложный женский гаметангий, который характерен для мохообразных, папоротникообразных и многих голосеменных; архегоний будет описан далее в этой главе.

В антеридии образуются мужские гаметы, которые называются антерозоидами или сперматозоидами. Они подвижны, потому что снабжены одним или несколькими жгутиками. Такие гаметы характерны для грибов, водорослей, мохообразных, папоротникообразных и некоторых голосеменных. У животных мужские гаметы называются сперматозоидами или спермиями. Перечисленные названия приведены на рис. 3.13.

Рис. 3.13. Типы гаметангиев и гамет, встречающиеся в растительном царстве


Для тех целей, которые стоят перед нами в этой главе, не столь важно, как называть разные гаметы одного и того же пола, поэтому вполне достаточно различать сперматозоиды, т. е. все мужские гаметы, и яйцеклетки, т. е. все женские гаметы.

Как и у грибов, у некоторых водорослей наблюдается гетероталличность (разд. 3.1.3).

3.2.4. Отдел Chlorophyta

Основные свойства Chlorophyta перечислены в табл. 3.4.

Таблица 3.4. Систематика и основные признаки некоторых главных групп водорослей. Звездочкой отмечен систематический признак.


Chlamydomonas (хламидомонада) — одноклеточная подвижная водоросль, которая живет главным образом в стоячей воде, т. е. в прудах и канавах, особенно если вода еще и обогащена растворимыми азотистыми соединениями, например стоками со скотных дворов. Клетки этой водоросли часто встречаются в таком огромном количестве, что вода становится зеленой. Некоторые виды живут в морской воде или в солоноватых лиманах.

Строение

Хламидомонада совсем не похожа на растение, так как она активно движется и у нее имеются пульсирующие вакуоли. Строение хламидомонады изображено на рис. 3.14. На электронной микрофотографии видны типичные для эукариот органеллы: аппарат Гольджи, митохондрии, рибосомы и мелкие вакуоли. В хлоропластах многих водорослей выявлена особая структура — пиреноид. Это — белковое образование, состоящее главным образом из рибулозобисфосфаткарбоксилазы — фермента, который осуществляет фиксацию двуокиси углерода. Пиреноид участвует в запасании углеводов, например крахмала. Красный глазок воспринимает изменения в интенсивности освещения, и клетка либо перемещается туда, где интенсивность света оптимальна для фотосинтеза, либо остается на месте, если освещенность достаточна. Такая ответная реакция на свет называется фототаксисом (разд. 15.1.2). Клетка хламидомонады передвигается за счет биения двух жгутиков и ввинчивается в воду, как штопор, вращаясь вокруг продольной оси.

Рис. 3.14. A. Chlamydomonas в световом микроскопе; х 600. Б. Схема строения Chlamydomonas. В. Электронная микрофотография Chamydomonas reinhardtii. × 1400

Жизненный цикл

Жизненный цикл Chlomydomonas изображен на рис. 3.15. Взрослая особь гаплоидна.

Рис. 3.15. Схема жизненного цикла Chlamydomonas

Бесполое размножение

Бесполое размножение осуществляется с помощью зооспор. Родительская клетка теряет жгутики, и протопласт клетки делится на два-четыре дочерних протопласта (обычно на четыре). В это же время происходит митотическое деление ядра; кроме того, делится и хлоропласт. У дочерних протопластов образуются новые клеточные стенки, новые глазки и новые жгутики. В образовании новых жгутиков участвуют центриоли (базальные тельца). Клеточная стенка родительской клетки ослизняется, и дочерние клетки, которые теперь называют зооспорами, выходят наружу. Из каждой зооспоры вырастает полноценная взрослая клетка Chlamydomonas. Этот процесс изображен на рис. 3.16, А.

Рис. 3.16. Размножение Chlamydomonas, А. Бесполое размножение. Б. Половое размножение у изогамных видов

Половое размножение

Одни виды Chlomydomonas — гомоталличны, другие — гетероталличны; при этом разные виды могут быть изогамными, анизогамными или оогамными. Размножение изогамных видов изображено на рис. 3.16, Б. При прорастании ядро зиготы первый раз делится мейотически, при этом восстанавливается гаплоидное состояние, свойственное взрослым организмам. Высвободившиеся молодые клетки Chlomydomonas можно называть зооспорами, пока они полностью не созреют.

В прудах и других водоемах с непроточной, но чистой водой живет еще одна водоросль — неветвящаяся нитчатая водоросль Spirogyra. Большая часть видов спирогиры — плавающие формы, а нити у нее слизистые и скользкие.

Строение

Цилиндрические клетки спирогиры соединены торец в торец и образуют нить, изображенную на рис. 3.17. Все клетки идентичны, и между ними не наблюдается разделения функций. Тонкий слой цитоплазмы лежит по периферии клетки, а большая вакуоль как бы обмотана тяжами цитоплазмы. Такие тяжи удерживают ядро в центре клетки. Один или несколько спиралевидных хлоропластов лежат в тонком постенном слое цитоплазмы.

Рис. 3.17. Строение Spirogyra. А. Схематический вид сбоку. Б. Схема поперечного среза клетки в области ядра. Видно цилиндрическое строение клетки

Рост и размножение

Нити спирогиры растут интеркалярно, т. е. за счет деления любой из клеток, входящих в состав нити, независимо от того, где находится эта клетка. У большинства же растений зона роста ограничена верхушечной областью. Ядро клетки спирогиры делится митотически, затем из выростов боковых стенок образуется новая поперечная клеточная стенка. Получаются две дочерние клетки, которые вырастают до нормальных размеров, в результате чего вся нить увеличивается в длину.

Как мы уже отмечали (разд. 3.2.1), бесполое размножение происходит путем фрагментации.

Половое размножение осуществляется весьма специфическим способом, характерным для нитчатых водорослей: две нити располагаются бок о бок и супротивные клетки обеих нитей соединяются короткими трубчатыми выростами. Все содержимое клетки ведет себя как гамета; процесс этот можно рассматривать как анизогамный, поскольку, хотя обе гаметы и идентичны морфологически, только одна из них подвижна и перетекает в другую клетку через соединительную трубку. Такой процесс называется конъюгацией.

3.2.5. Отдел Phaeophyta

Основные признаки Phaeophyta перечислены в табл. 3.4.

У скалистых берегов Британского побережья часто встречаются разные водоросли из рода Fucus. Они очень хорошо приспособились к достаточно суровым условиям литоральной зоны, т. е. той зоны, которая попеременно то обнажается при отливе, то снова покрывается водой.

Наиболее известны три вида Fucus, которые чаще других встречаются у побережья в трех разных зонах на разной глубине; такое явление называется зональным распределением. Эти водоросли распределяются по зонам в соответствии с их способностью выдерживать пребывание на воздухе. Перечислим основные признаки, по которым их можно узнать, и места на берегу, где их можно найти:

F. spiralis (эти плоские водоросли выбрасывает на берег море) — у высшей точки прилива. В погруженном состоянии таллом слегка закручен в спираль.

F. serratus (то, что называют обыкновенными, зубчатыми или пильчатыми водорослями) — в средней приливной зоне. Края таллома зазубрены.

F. vesiculosus (так называемые пузырчатые водоросли) — у высшей точки отлива. Имеются воздушные пузыри, которые обусловливают плавучесть. На рис. 3.18 можно видеть характерные внешние признаки F. vesiculosus, а на рис. 3.19 изображены основные особенности его внутреннего строения.

Рис. 3.18. Внешнее строение Fucus vesiculosus. Отмечены характерные признаки и, в частности, приспособления к окружающей среде. Плодущий конец (рецептакул) представляет собой набухшую и покрытую мелкими вздутиями (скафидиями или концептакулами), сообщающимися с наружной средой только узкими отверстиями, часть таллома. У женских растений плодущие концы темно-зеленые, у мужских оранжевые. Воздушные пузыри обычно парные и придают водоросли плавучесть. Придаточные ответвления (иногда отламываются; это одна из форм вегетативного размножения). Верхушечная клетка представляет собой точку роста, где происходит деление клеток. Ребро — это жесткое образование, которое выполняет механические функции и, возможно, участвует в переносе некоторых веществ. Пластинка плоская и упругая (кожистая); зеленовато-коричневого цвета из-за близкого к поверхности фотосинтезирующего слоя; покрыта слизью, предохраняющей от высыхания при отливе. Ребро вместе с пластинкой образуют таллом. Укореняющаяся часть таллома (в данном случае базальный диск) бесцветна и очень прочно прикрепляет таллом к скалам и т. п. Размеры водоросли варьируют в пределах до 1 м или более. Слоевище плоское и ремневидное; характер ветвления таков, что сопротивление волнам сводится к минимуму; воздушные пузыри поддерживают слоевище у поверхности, что способствует фотосинтезу. Черешок — это в основном ребро; черешок гибкий и потому успешно противостоит волнам


Рис. 3.19. Органы размножения Fucus vesiculosus. А. Вертикальный разрез плодущего конца (при малом увеличении). Б. Вертикальный разрез скафидия (при большом увеличении)


В теле водоросли, или талломе, наблюдается некоторое разделение функций между разными тканями. Эта тенденция у Phaeophyta прослеживается лучше, чем у всех остальных групп водорослей. Приспособления водорослей к окружающей среде мы рассмотрим чуть позже.

Органы размножения

Половое размножение оогамное. F. vesiculosus и F. serratus — двудомные растения, т. е. у них есть и мужские, и женские особи. F. spiralis — гермафродит, у которого на одном растении в одних и тех же вместилищах — скафидиях, или концептакулах, — находятся и мужские, и женские репродуктивные органы. Репродуктивные органы развиваются внутри скафидиев на "плодущих" кончиках некоторых слоевищ. В каждом скафидии имеется узкое отверстие (пора), через которое впоследствии высвобождаются наружу репродуктивные органы. Их строение показано на рис. 3.19.

Взрослые растения диплоидные, а гаметы образуются в результате мейотического деления.

Приспособления к окружающей среде

Прежде чем мы рассмотрим приспособления Fucus к среде обитания, следует сказать несколько слов о самой среде, которая достаточно враждебна. Будучи растениями приливно-отливной зоны, разные водоросли в разной степени подвергаются воздействию воздушной среды во время отлива. Поэтому у них должны быть защитные приспособления от высыхания. К тому же и температура очень резко меняется, когда холодные морские волны вливаются в прогретые лужицы, оставшиеся после отлива. Растения должны быть приспособлены и еще к одному фактору, а именно к резким изменениям солености воды, будь то ее увеличение при испарении из небольших водоемов, образовавшихся после отлива, или ее уменьшение во время дождя. Для того чтобы противостоять таким факторам, как приливы, отливы, прибой и удары волн, нужна достаточная механическая прочность. Большие волны начинают перекатывать камни, и это может очень сильно повредить растения.

Морфологические приспособления (общее строение)

Слоевище водоросли прочно прикреплено к грунту укореняющейся частью таллома (ризоидами или базальным диском) (рис. 3.18). Оно настолько прочно связывается с грунтом (обычно это камни), что водоросль чрезвычайно трудно оторвать от него. Как правило, первым не выдерживает камень, а не укореняющаяся часть таллома.

Таллом водорослей не сплошной, а рассеченный; он дихотомически ветвится в одной плоскости, и это позволяет свести к минимуму сопротивление толще воды. К тому же он прочный и упругий, но не жесткий. Ребра слоевища крепкие и гибкие.

У плавучей водоросли F. vesiculosus имеются специальные воздушные пузыри, которые удерживают слоевище у поверхности воды, т. е. в условиях, способствующих максимальному улавливанию света для фотосинтеза.

Физиологические приспособления

Среди фотосинтетических пигментов преобладает бурый пигмент — фукоксантин. Это — одно из приспособлений к фотосинтезу под водой, так как фукоксантин сильно поглощает синий свет, который проникает в толщу воды гораздо дальше, чем более длинноволновые лучи, например красные.

Таллом выделяет много слизи, которая заполняет все внутренние полости водоросли и просачивается наружу. Слизь помогает лучше удержать воду и препятствует обезвоживанию.

Осмотическое давление в клетках намного выше, чем в морской воде, поэтому осмотических потерь воды не наблюдается.

Приспособления к половому размножению

Выход гамет синхронизирован с приливами. Во время отлива таллом обсыхает, и из скафидиев наружу выдавливаются репродуктивные органы, которые от высыхания предохраняются слизью. Во время прилива стенки репродуктивных органов растворяются, высвобождая гаметы. Мужские гаметы подвижны и обладают положительным хемотаксисом в отношении веществ, выделяемых женскими гаметами.

Развитие зиготы происходит сразу же после оплодотворения, что сводит к минимуму риск быть унесенной в океан.

3.2.6. Отдел Euglenophyta

Основные признаки Euglenophyta приведены в табл. 3.4. Для этого отдела характерны признаки как растений, так и животных, что сильно затрудняет классификацию относящихся сюда организмов. По этой причине их обычно включают в свои систематические схемы и ботаники, и зоологи. Эти проблемы мы обсудим позднее, после описания рода Euglena.

Euglena — самая обычная одноклеточная водоросль, живущая в пресноводных прудах, канавах и любых других водоемах, богатых растворенными органическими соединениями. Как и Chlamydomonas, она иногда размножается так интенсивно, что вода становится зеленой, потому что среди пигментов эвглены преобладает хлорофилл. Строение эвглены показано на рис. 3.20, где отмечены и некоторые ее особенности.

Рис. 3.20. Строение Euglena gracillis. Канал — место, через которое поступает пища у незеленых видов; пелликула здесь отсутствует, что позволяет заглатывать мелкие частички. Глазок (стигма) имеет красный цвет; участвует в реакции фототаксиса. Фоторецептор обнаруживает источник света и заставляет организм плыть в направлении оптимальной освещенности (фототаксис); направление движения может меняться при затенении фоторецептора. Длинный жгутик используется для локомоции; обычно направлен вперед; волнообразные движения проходят по жгутику от основания к кончику; жгутик тащит за собой клетку; во время движения вперед клетка вращается вокруг своей оси, оставляя за собой штопорообразный след. Пульсирующая вакуоль окружена вспомогательными вакуолями; участвует в осморегуляции, выкачивая в резервуар избыток воды, поступившей в клетку в результате осмоса. Короткий жгутик не участвует в локомоции. Парамилоновая гранула образована полимером глюкозы, похожим на крахмал и являющимся запасным углеводом. Пелликула располагается под плазматической мембраной; гибкая. Хлоропласты содержат фотосинтетические пигменты. В цитоплазме находятся сократительные волокна, которые обусловливают перистальтические волны деформации клетки; такое движение называется эвгленоидным


У Euglena нет клеточной стенки. Снаружи клетка покрыта плазматической мембраной, сразу же под которой находится белковая пелликула. Пелликула довольно гибкая, и это позволяет клетке принимать разную форму. Пелликула полностью окружает цитоплазму, и ее можно рассматривать как своего рода наружный скелет. Она состоит из ряда утолщенных продольных полосок и микрофибрилл, переплетенных между собой. Когда внутри цитоплазмы сокращаются крошечные фибриллы, которые называются мионемами, полоски пелликулы начинают скользить относительно друг друга, в результате чего изменяется форма тела. Это явление называется эвгленоидным движением. Другой, более обычный для эвглены способ передвижения за счет вращения длинного жгутика изображен на рис. 3.20 (рассмотрите глазок, фоторецептор и длинный жгутик) и подробно описан в разд. 17.6.3.

Бесполое размножение происходит посредством продольного деления клетки надвое. Полового размножения не наблюдается.

Питание

Зеленые виды Euglena автотрофны и синтезируют все необходимые им вещества из двуокиси углерода, воды и минеральных солей. Вместе с тем они нуждаются в поступлении извне витаминов В1 и В12, которые они не могут синтезировать сами. В этом Euglena не отличается от животных, хотя такая потребность в витаминах характерна и для многих других водорослей.

У нескольких видов Euglena хлорофилла нет, и поэтому они не окрашены и не способны к фотосинтезу (т. е. гетеротрофны). Питаются они по типу сапрофитов, переваривание происходит вне клетки. Когда водоем загрязнен, они процветают, так как разлагающийся материал богат органическими соединениями. Другие бесцветные формы способны заглатывать мелкие частички пищи, для чего у них имеется своеобразная "глотка", где отсутствует пелликула. Затем эти частички перевариваются внутри клетки (голозойное питание, разд. 10.1.1). Пища загоняется в глотку за счет движения жгутиков. Эти виды во многом напоминают простейшее Реrапеmа (разд. 4.1.1).

Если зеленые клетки Euglena долго держать в темноте, то хлоропласты исчезают, и клетки становятся бесцветными. Если в среде достаточно органических веществ, то клетки могут долго жить как сапрофиты. Когда их переносят на свет, снова появляется хлорофилл.

Проблемы систематики Euglena

Как мы уже говорили и как это следует из табл. 3.1, для Euglena характерны признаки и растений, и животных. Один из таких животных признаков, который мы еще не рассматривали, — это наличие в глазке астаксантина — пигмента, свойственного животным.

Легкость, с которой некоторые эвглены могут переходить из зеленой формы в бесцветную и наоборот, свидетельствует о том, что постоянно бесцветные виды, по-видимому, произошли от зеленых. Если впоследствии у бесцветных форм возникли специальные приспособления для голозойного питания, подобные тем, которые имеются у Peranema, то вполне возможно, что предки простейших были похожи на растения. Не следует забывать, однако, что эволюция могла идти и в обратном направлении, ведь мы уже обсуждали в начале этой главы возможность того, что предки растений могли быть похожи на животных (т. е. на гетеротрофных эукариот).

Решая вопрос о том, в царство растений или в царство животных помещать Euglena, необходимо помнить, что некоторые признаки животных имеются и у хламидомонады, и тем не менее ее обычно относят к растениям. Основные затруднения систематиков связаны со способом питания. Судя по всему, эвглену все же следует относить к растениям, так как наличие хлоропластов считается уникальной особенностью, присущей только царству растений. Все это, однако, лишний раз напоминает нам, сколь трудно навязать природе искусственную систематику, придуманную людьми.

Систематическое положение Euglena: Среди растений

Царство: Plantae

Отдел: Euglenophyta

Класс: Euglenophyceae

Род: Euglena

Среди животных

Царство: Animalia

Тип: Protozoa

Класс: (Flagellata) Mastigophora

Род: Euglena

3.3. Составьте таблицу растительных и животных признаков Euglena. Воспользуйтесь для этого табл. 3.1, рис. 3.20 и сведениями, изложенными выше.

3.2.7. Направления эволюции водорослей

Даже тех нескольких примеров, которые мы рассмотрели в предыдущих разделах, вполне достаточно, чтобы понять, что существует множество типов водорослей, включая и такие одноклеточные формы, как Chlamydomonas, и такие сравнительно крупные организмы, как Fucus, у которых тело дифференцировано и наблюдается определенное разделение функций между отдельными тканями. У некоторых крупных бурых водорослей имеются даже проводящие ткани, хотя настоящей проводящей ткани — ксилемы и флоэмы — у них нет.

У водорослей четко прослеживается тенденция к усложнению процесса полового размножения от простой изогамии и анизогамии к оогамии. Однако следует с большой долей осторожности использовать ту или иную тенденцию для объяснения эволюционных взаимосвязей между отдельными группами водорослей. Такие взаимосвязи до сих пор окончательно не выяснены, а группа Chlorophyta (зеленые водоросли), от которой, как полагают, произошли наземные растения, отличается очень большим разнообразием: в ней есть и простые одноклеточные формы, и гораздо более сложные, а половое размножение также варьирует от изогамии до оогамии.

3.2.8. Значение водорослей

Роль водорослей в биосфере

По современным оценкам, на долю океана приходится по меньшей мере половина мировой первичной продукции, выражающейся в количестве фиксированного углерода. Эту первичную продукцию образуют водоросли — единственные растения, которые населяют океан. Учитывая ту огромную площадь, которую занимает океан, следует ожидать, что его продуктивность должна быть еще больше, но нельзя забывать, что фотосинтез возможен только в поверхностных слоях, куда проникает свет и где лимитирующим фактором является доступность биогенных элементов, особенно азота и фосфора.

Водоросли — очень важные первичные продуценты (гл. 12), с которых начинается большинство пищевых цепей, в том числе практически все морские и многие пресноводные цепи. Эти цепи через зоопланктон, ракообразных и т. п. доходят до рыб. Многие микроскопические водоросли — одноклеточные, и именно они являются главным компонентом фитопланктона[12].

Фиксация углерода — это только одно из следствий фотосинтеза (разд. 9.2). Кроме того, благодаря фотосинтезу поддерживается уровень кислорода в атмосфере, при этом по меньшей мере половину всего кислорода выделяют водоросли, и их вклад в этот процесс намного больше, чем вклад наземных лесов.

Альгиновая кислота, агар и каррагенан

Из водорослей получают многие полезные продукты, например альгиновую кислоту, агар и каррагенан. Альгиновая кислота и ее производные (альгинаты) — это полисахариды, которые экстрагируют из срединной пластинки и клеточных стенок таких бурых водорослей, как Laminaria, Ascophyllum и Macrocystis. Водоросли добывают в большом количестве в прибрежных мелких водах; Macrocystis, например, собирают на побережье Калифорнии. Очищенные альгинаты не токсичны и легко образуют гели. Их широко применяют в качестве отвердителей и желеобразующих веществ для получения промышленных товаров (например, в косметике — для изготовления кремов для рук); в качестве эмульгаторов — для приготовления мороженого; в качестве желеобразующих веществ — в кондитерской промышленности; при изготовлении лаков, красок и лекарств; для получения глазурованной керамической посуды.

Агар — полисахарид, который получают из красных водорослей. Он образует такие же гели, как и альгинаты, но, возможно, более известен, так как является очень удобной средой для выращивания бактерий и грибов. С этой целью готовят разбавленный раствор агара, затем добавляют в него различные питательные вещества, стерилизуют и дают застыть, получая желеобразную массу. Кроме того, агар используют для тех же самых целей, что и альгинаты.

Каррагенан (карраген) — это еще один полисахарид клеточной стенки, который получают главным образом из красной водоросли Chondrus crispus. По своей химической структуре он очень похож на агар и применяется для тех же самых целей.

Диатомит (кизельгур)

Водоросли, относящиеся к отделу Bacillariophyta, в основном одноклеточные; их называют диатомовыми. Для этих водорослей характерно особое строение клеточной стенки, в которой содержится кремний. После гибели клеток остатки диатомей падают на дно морей и озер, и постепенно там накапливаются большие отложения. Образующаяся таким образом "диатомовая земля" содержит очень много (до 90%) кремния. После соответствующей очистки эту "землю" можно использовать как превосходный фильтрующий материал (например, при получении сахара или для осветления пива), как наполнитель при изготовлении красок или бумаги и как изоляционный материал, способный противостоять резким перепадам температуры.

Удобрение

На фермах, расположенных вблизи побережья, крупные водоросли (красные и бурые) по традиции используют как удобрения, хотя и в незначительных масштабах. Водоросли богаты калием, но в них гораздо меньше азота и фосфора, чем в простом навозе. Поэтому их удобряющее действие не очень велико. Более значимую роль играют свободноживущие сине-зеленые водоросли, которые являются очень важными азотфиксаторами и довольно распространены в почве (разд. 9.11.1).

Пищевые продукты

Некоторые водоросли подают прямо к столу, особенно на Дальнем Востоке. Красную водоросль Porphyra, считающуюся деликатесом, и большую бурую водоросль Laminaria обычно едят в сыром виде или же готовят из них разные блюда. В Южном Уэльсе Porphyra кладут в одно из традиционных блюд, для приготовления которого отваренные водоросли смешивают с овсянкой и потом все это тушат в масле. В поисках новых источников пищи много внимания было уделено промышленному культивированию водорослей. Однако для получения новых пищевых продуктов годятся очень немногие водоросли, и до сего времени сколько-нибудь значимые успехи в этой области были достигнуты при культивировании бактерий и грибов. Из сине-зеленых водорослей многообещающей считается Spirulina.

Очистка сточных вод

Водоросли вносят определенный вклад в работу микроорганизмов по очистке сточных вод, так как в сточных водах содержатся питательные вещества не только для бактерий, грибов и простейших, но и для микроскопических зеленых водорослей. Они особенно полезны в открытых "окислительных прудах", которые достаточно широко используются в тропических и субтропических странах. Открытые пруды глубиной от 1 до 1,5 м заливают неочищенными стоками. В процессе фотосинтеза водоросли выделяют кислород и обеспечивают таким образом жизнедеятельность других аэробных микроорганизмов, растущих в сточных водах. Время от времени водоросли собирают и перерабатывают на корм скоту.

Научные исследования

Одноклеточным водорослям присущи все характерные признаки типичных растений, поэтому они являются идеальным материалом для научных исследований, так как, во-первых, их можно выращивать в большом количестве в строго определенных условиях и, во-вторых, для этого не требуется очень много места. Примером таких водорослей может служить Chlorella, которой по праву принадлежит почетное место в исследованиях фотосинтеза (разд. 9.4.3). Водоросли используются и при изучении поглощения ионов. Они принесли большую пользу и в новаторских исследованиях строения клеточной стенки и жгутиков.

Вред, наносимый водорослями

В определенных условиях водоросли "цветут", т. е. в огромных количествах скапливаются в воде. "Цветение" наблюдается при достаточно теплой погоде, когда в воде много питательных веществ. Такая ситуация очень часто искусственно создается человеком, когда в воду сбрасывают промышленные стоки или же когда в реки и озера попадают удобрения с полей. В результате начинается взрывоподобное размножение первичных продуцентов (водорослей), и они в нарушение всех законов природы начинают отмирать раньше, чем их успеют съесть. При последующем разложении остатков происходит столь же интенсивное размножение аэробных бактерий и вода полностью лишается кислорода. Все это происходит очень быстро, и из-за нехватки кислорода начинают гибнуть рыбы и другие животные и растения. Увеличение концентрации питательных веществ в воде, которое запускает весь этот процесс, называется эвтрофизацией водоема, и если оно происходит быстро, то можно считать, что это еще одна из форм загрязнения окружающей среды.

Токсины, образующиеся при "цветении" воды, в особенности при размножении сине-зеленых водорослей, увеличивают гибель животных. Подобные взрывы численности водорослей представляют собой серьезную проблему для рыбоводческих хозяйств, особенно там, где интенсивный вывоз удобрений на поля еще в большей степени усиливает эвтрофизацию. Сходные осложнения возникают и при "цветении" воды в океане. Кроме того, токсины, накапливаясь в теле моллюсков и ракообразных, питающихся водорослями, и затем попадая в организм человека, вызывают у него различные отравления и паралич.

С водорослями связаны и многие сложности при хранении питьевой воды в запасных резервуарах, когда она загрязняется продуктами жизнедеятельности водорослей или когда водоросли начинают расти на песчаных фильтрах, полностью забивая их.

3.4. Те трудности, о которых мы только что говорили, чаще возникают в водохранилищах, расположенных в низинах. Объясните, почему это так и должно быть.

3.5. В отличие от многих грибов и бактерий водоросли не вызывают никаких заболеваний. С чем это связано?

3.3. Отдел Bryophyta — печеночники и мхи

Найдены ископаемые отпечатки сине-зеленых водорослей, живших 3 млрд. лет назад, а эукариотические организмы существуют более 1 млрд. лет. Первые же организмы, которые освоили сушу, т. е. примитивные растения, возникли всего лишь 420 млн. лет назад. По-видимому, самой большой и единственной трудностью, которую надо было как-то преодолеть, чтобы перейти от водного образа жизни к наземному, была проблема обезвоживания. Любое растение, незащищенное тем или иным способом, например непокрытое восковой кутикулой, очень скоро высохнет и несомненно погибнет. Даже если преодолеть эту трудность, останутся другие нерешенные проблемы, и прежде всего вопрос о том, как размножаться половым путем. У водорослей в размножении участвуют плавающие мужские гаметы, которые могут приблизиться к женским гаметам только в водной среде.

Обычно считают, что предками первых растений, освоивших сушу, были зеленые водоросли (рис. 3.12); это предположение основывается на том, что у более эволюционно прогрессивных представителей зеленых водорослей появились хорошо развитые репродуктивные органы, а именно архегонии (женские репродуктивные органы) и антеридии (мужские репродуктивные органы), в которых находятся гаметы, защищенные от неблагоприятных воздействий. Это обстоятельство и ряд других, вполне определенных приспособлений, помогающих избежать высыхания, позволили некоторым представителям зеленых водорослей завладеть сушей.

Ниже перечислены те основные трудности, которые связаны с переходом от водного к наземному существованию.

Обезвоживание. По целому ряду причин (разд. 5.1.2) для жизни необходима вода, а воздух — это среда, которая способствует высыханию. Поэтому наземным растениям нужно было выработать какие-то приспособления для добывания и запасания воды.

Размножение. Нежные половые клетки должны быть защищены, а мужские гаметы (сперматозоиды) могут встретиться с женскими гаметами только в воде.

Опора. В отличие от воды воздух никак не поддерживает растение.

Питание. Для фотосинтеза растениям необходимы свет и двуокись углерода, поэтому хотя бы часть растения должна возвышаться над землей. А минеральные соли и вода находятся в земле или на ее поверхности, и, чтобы эффективно использовать эти вещества, часть растения должна находиться в земле и расти в темноте.

Газообмен. Для фотосинтеза и дыхания нужно, чтобы обмен двуокиси углерода и кислорода происходил не с окружающим раствором, а с атмосферой.

Факторы окружающей среды. Вода, особенно когда ее так много, как, скажем, в озере или в океане, обеспечивает большее постоянство условий окружающей среды. Сухопутная же среда обитания в гораздо большей степени подвержена воздействию таких важных переменчивых факторов, как температура, интенсивность освещения, концентрация ионов в среде и рН.

В последних разделах этой главы будет показано, как растения успешно освоили сушу в результате постепенного изменения своего строения и функций. Читателю следует попытаться понять именно эти главные изменения, а не заучивать во всех подробностях различия между отдельными растениями.

3.3.1. Основные признаки и систематика Bryophyta

Отдел Bryophyta — наиболее примитивный из всех групп наземных растений. В этот отдел входят два главных класса — Hepaticae (печеночники) и Musci (мхи). Основные признаки и систематика Bryophyta представлены в табл. 3.5.

Таблица 3.5. Систематика и основные признаки Bryophyta

Отдел Bryophyta

Общие признаки

Чередование поколений, при котором преобладает гаметофитное поколение

Нет проводящей ткани, т. е. нет ни ксилемы, ни флоэмы

Тело представлено талломом (слоевищем) или слегка дифференцировано на простые "листья" и "стебли"

Нет настоящих корней, стеблей и листьев: гаметофит прикрепляется к субстрату нитевидными ризоидами

Спорофит[13] прикреплен к гаметофиту, полностью зависит от него и питается за его счет

Споры на спорофите образуются в споровой коробочке, расположенной на конце тонкой ножки, возвышающейся над гаметофитом

Встречаются главным образом в сырых затененных местах

Таблица 3.5. Систематика и основные признаки Bryophyta


Мохообразные сравнительно плохо приспособлены к жизни на суше, поэтому они в основном привязаны к сырым, затененным местам. Это небольшие, просто устроенные растения. Опорная и проводящая ткани у них развиты очень слабо или вообще отсутствуют. Нет настоящей сосудистой ткани (ксилемы или флоэмы). Нет и настоящих корней; вместо них у мохообразных имеются особые тонкие нитчатые выросты стебля, удерживающие их в почве, которые называются ризоидами. Вода и минеральные соли поглощаются всей поверхностью тела, в том числе и ризоидами. А это значит, что ризоиды — не настоящие корни, они лишь закрепляют растение в грунте. (В настоящих корнях, как и в настоящих стеблях или листьях имеются проводящие ткани). Поэтому стебли и листья мохообразных не гомологичны стеблям и листьям сосудистых растений, у которых эти органы входят в состав диплоидного спорофита, а не гаплоидного гаметофита. Мохообразные не покрыты сверху кутикулой, или же кутикула очень нежная, и поэтому у них ничто не препятствует потере (или поступлению) воды. Тем не менее многие мохообразные приспособились выдерживать периоды засухи, используя для этой цели какие-то не совсем понятные механизмы. Так, например, было установлено, что такой хорошо известный ксерофитный мох, как Grimmia pulvinata, больше года остается живым при 20°С в абсолютно высушенном состоянии. Сразу же после того, как растение попадает во влажную среду, у него восстанавливаются все функции.

Чередование поколений

Как у всех наземных растений[14] и некоторых наиболее высоко организованных водорослей, таких, как Laminaria, у мохообразных наблюдается чередование поколений. В ходе жизненного цикла (т. е. цикла от зиготы одного поколения до зиготы следующего поколения) один тип организма сменяется другим, т. е. гаплоидный гаметофит сменяется диплоидным спорофитом, и затем цикл повторяется снова. Схема такого цикла изображена на рис. 3.21. Гаплоидное поколение называется гаметофитом (от греч. Gameto — гамета; phyton — растение), так как оно способно к половому размножению и образует гаметы. Гаметы образуются в результате митоза, поэтому они тоже гаплоидны. Сливаясь, гаметы образуют диплоидную зиготу, из которой вырастает следующее поколение — поколение диплоидных спорофитов. Они называются спорофитами потому, что способны к бесполому размножению с образованием спор. Споры образуются в результате мейоза, т. е. здесь мы видим возврат к гаплоидному состоянию. Гаплоидные споры дают начало гаметофитному поколению.

Рис. 3.21. Обобщенная схема жизненного цикла растения, у которого наблюдается смена поколений. Обратите внимание на наличие гаплоидных (n) и диплоидных (2n) стадий. Гаметофит всегда гаплоиден, а гаметы всегда образуются путем митотического деления. Спорофит всегда диплоиден, а споры всегда образуются путем редукционного деления


Одно из этих двух поколений всегда преобладает над другим, и на его долю приходится большая часть жизненного цикла: можно сказать, что это — доминирующее поколение. У мохообразных доминирует поколение гаметофитов, у всех остальных наземных растений — поколение спорофитов. Доминирующее поколение принято помещать в верхнюю половину схемы, изображающей жизненный цикл. Внимательно изучите рис. 3.21, так как на нем в обобщенном виде представлен жизненный цикл всех наземных растений, в том числе и наиболее высоко организованных цветковых растений. Никогда не забывайте, что гаметы у растений образуются не в результате мейоза, как у животных, а в результате митоза; мейотическое деление происходит при образовании спор.

3.3.2. Класс Hepaticae — печеночные мхи

Характерные признаки класса Hepaticae представлены в табл. 3.5. По своему строению печеночники намного проще, чем мхи, и в целом они более привязаны к сырым и затененным местам. Их можно найти на берегу рек и ручьев, на влажных камнях и среди болотной растительности. У большинства печеночников видны правильные доли или вполне выраженные "стебли" с небольшими простыми "листочками". Проще всего устроены талломные печеночники, тело которых представлено плоским слоевищем и не имеет деления на стебли и листья. Рассмотрим самый простой вид — Pellia. Печеночник Pellia широко распространен в Великобритании. Растение окрашено в тускло-зеленый цвет, ширина плоских "веточек" — около 1 см. На вертикальном срезе слоевища видны фотосинтезирующие клетки с хлоропластами; эти клетки находятся только в самых близких к верхней или нижней поверхности слоях таллома. Говоря другими словами, здесь мы видим зачатки дифференцировки тканей.

Жизненный цикл

Половое размножение гаметофитов происходит весной или в начале лета. Репродуктивные органы — мужские антеридии и женские архегонии — находятся на верхней поверхности таллома на концах разветвлений. Расположение репродуктивных органов показано на рис. 3.22 и 3.24. Мужские и женские гаметы образуются внутри соответствующих органов из материнских клеток гамет, ядра которых делятся митотически. Схема жизненного цикла представлена на рис. 3.23. Обратите внимание на то, что репродуктивные органы предохраняют развивающиеся гаметы от обезвоживания и высыхания. К тому же яйцеклетки защищены слизью, находящейся в канале шейки архегония.

Рис. 3.22. Внешний вид и характерные признаки Pellia. Гаметофит изображен вместе с прикрепленным к нему несамостоятельным спорофитом. Коробочка пеллии представляет собой шарообразную структуру, окрашенную в черный цвет; в ней развиваются споры. Коробочка образуется на конце спорофора белого цвета, достигающего в длину 5 см. Спорофит (спорогоний) представляет собой диплоидную половую стадию, зависимую от гаметофита; поглощает питательные вещества через основание ножки; вырастает весной. Ребро сильнее выражено на брюшной поверхности, где оно шире; несет ризоиды. Таллом имеет темно-зеленый цвет и способен к фотосинтезу; края разделены на глубоко врезанные лопасти. Покрывало представляет собой остаток ткани, покрывающей архегонии. Антеридии находятся в небольших вздутиях на поверхности таллома. Ризоиды одноклеточные, растут на вентральной поверхности и служат главным образом для закрепления в грунте


Рис. 3.23. Схема жизненного цикла Pellia


Рис. 3.24. Жизненный цикл Pellia


Оплодотворение. Для оплодотворения необходима вода. Когда поверхность таллома увлажняется, созревшие антеридии жадно поглощают воду и лопаются, высвобождая мужские гаметы (антерозоиды или сперматозоиды). У каждого сперматозоида имеется два жгутика. Сперматозоидов образуется так много, что жидкость, покрывающая таллом, приобретает молочно-белый оттенок. Сперматозоиды подплывают к архегониям, куда их привлекают белки, секретируемые шейкой архегония. Такое передвижение — еще один пример хемотаксиса (разд. 15.12). Сперматозоиды проплывают через шейку архегония в брюшко, которое находится у основания архегония; именно здесь располагается женская гамета, или яйцеклетка. В брюшке происходит оплодотворение, т. е. слияние ядра сперматозоида с ядром яйцеклетки, и образуется диплоидная зигота.

Развитие зиготы. Под каждым покрывалом обычно образуется только одна зигота. Из зиготы вырастает спорофит; у него образуется подставка, которая врастает в гаметофит и действует как всасывающий орган, через который спорофит получает питательные вещества (рис. 3.24). У развивающегося спорофита нет хлорофилла, поэтому он не способен к фотосинтезу и целиком зависит от гаметофита. По мере роста спорофита стенка архегония разрастается и образует так называемый колпачок или калиптру.

Бесполое размножение. В коробочке спорофита находятся материнские клетки спор, которые делятся мейотически с образованием гаплоидных спор. Другие клетки дифференцируются в массу длинных тонких структур, которые называются пружинками или элатерами; в стенках элатер находятся спиральные утолщения. На этой стадии спорофит остается целую зиму в состоянии покоя; он по-прежнему покрыт покрывалом и калиптрой. Весной рост возобновляется: спорофор быстро удлиняется, колпачок разрушается и коробочка выносится высоко над талломом. Споры становятся многоклеточными (рис. 3.24), в них появляются хлоропласты и каждая спора превращается в гаметофит.

Когда коробочка высыхает, в стенке создается напряжение и в конце концов коробочка раскрывается четырьмя створками. Если засуха продолжается, створки перегибаются, наружу выставляются элатеры и масса спор. При высыхании элатеры скручиваются, и так, то скручиваясь в сухую погоду, то раскручиваясь в сырую, они разрыхляют споровую массу и способствуют равномерному высеиванию спор из коробочки. Поскольку споры находятся достаточно высоко над талломом, они захватываются воздушными потоками и рассеиваются повсюду.

Прорастание. Спора прорастает тотчас же, как только она попадает в подходящее влажное место. Из нее вырастает таллом гаметофитного поколения. Жизненный цикл Реllia представлен на рис. 3.23.

Успешное приспособление к жизни на суше

Способ распространения спор у печеночников, основанный на высыхании коробочки и рассеивании мелких легких спор ветром, — это хорошее приспособление к существованию в наземных условиях. Вместе с тем печеночники все еще сильно зависят от воды. Это обусловлено следующими причинами:

1. Таллом гаметофита — небольшая тонкая и нежная структура; соотношение поверхность/объем у него очень велико; кутикулы нет, а значит, велики и потери воды в результате испарения.

2. Для размножения печеночникам необходима вода, иначе сперматозоиды не смогут подплыть к архегониям. Эти растения приспособились высвобождать сперматозоиды только в достаточно влажной среде, потому что только во влажной среде лопаются антеридии. Печеночники частично приспособились к жизни на суше, так как гаметы у них образуются в защитных структурах — антеридиях и архегониях.

3. Специальных опорных тканей нет, поэтому рост растения вверх ограничен.

4. У печеночников нет корней, способных далеко проникать в субстрат, и они могут жить только там, где на поверхности почвы или в ее верхних слоях имеется достаточно влаги и минеральных солей. Однако у печеночников имеются ризоиды, которыми они прикрепляются к грунту, — это одно из приспособлений к жизни на твердом субстрате.

3.6. Печеночные и лиственные мхи иногда называют земноводными в мире растений. Кратко объясните, почему их можно так называть.

3.3.3. Класс Musci — лиственные мхи

Основные признаки лиственных мхов перечислены в табл. 3.5. Эти мхи гораздо более дифференцированы, чем печеночники, но, как и печеночники, это небольшие растения, встречающиеся главным образом в сырых местах. Они часто образуют плотные подушки.

Самый обычный представитель лиственных мхов — Funaria — встречается на полях, вырубках и перекопанных землях, где она поселяется одной из первых. Funaria особенно любит селиться на кострищах и пожарищах. Это — один из самых обычных сорняков в теплицах и садах. На рис. 3.25 показан внешний вид Funaria и перечислены некоторые характерные для нее признаки.

Рис. 3.25. Строение Funaria. Гаметофит изображен с прикрепленным к нему наполовину самостоятельным спорофитом. Антеридии представляют собой мужские репродуктивные органы. Спорофит (спорогоний) наполовину зависит от гаметофита. 'Лист' хорошо развит с ясно выраженной средней жилкой; листорасположение спиральное. Коробочка способна к фотосинтезу; незрелая коробочка имеет зеленый цвет, зрелая — желтовато-коричневый. Когда коробочка созреет, крышечка открывается по месту, называемому кольцом. Колпачок (калиптра) представляет собой остатки архегония; он покрывает коробочку во время развития, а позднее отпадает. Перистом — двойной ряд зубцов, который открывается наружу при сухой погоде, и способствует рассеиванию спор

3.4. Отдел Pteridophyta — папоротники, плауны и хвощи

Самые древние папоротникообразные известны нам по ископаемым отпечаткам конца Силурийского периода, их возраст составляет примерно 380 млн. лет. Неизвестно, произошли ли эти растения от мохообразных или независимо от водорослей, но это самые первые из известных нам сосудистых растений. Сосудистые растения — это растения, у которых имеется сосудистая или проводящая ткань, т. е. проводящие ткани ксилемы и флоэмы. Чтобы подчеркнуть, насколько крупным достижением по сравнению с простыми проводящими клетками некоторых мохообразных является возникновение проводящей ткани, все сосудистые растения иногда включают в один отдел Tracheophyta с двумя подотделами — папоротникообразных и более прогрессивных семенных растений.

Наличие проводящих тканей — это один из признаков спорофитного поколения, т. е. поколения, которое у мохообразных относительно невелико и зависит от гаметофита. Именно наличие проводящей ткани не у гаметофитного, а у спорофитного поколения является единственной причиной, по которой у всех сосудистых растений доминирует спорофит.

Для нас здесь важны два свойства проводящей ткани. Во-первых, она образует транспортную систему, которая разносит питательные вещества и воду по всем клеткам тела, что позволяет растениям достигать больших размеров и сложной организации. Во-вторых, тело растения получает внутреннюю опору, так как ксилема не только служит проводящей тканью, но и содержит лигнифицированные клетки, которые обладают большой прочностью и жесткостью. У некоторых вымерших папоротникообразных за счет вторичного роста интенсивно развивалась ксилема, образуя древесину — основную опорную ткань современных деревьев и кустарников. У сосудистых растений развита и другая лигнифицированная ткань — склеренхима, которая дополнительно увеличивает механическую прочность ксилемы (разд. 8.2.1). Проводящие ткани папоротникообразных примитивнее по своему строению, чем проводящие ткани цветковых растений. Так, ксилема папоротникообразных образована не сосудами, а трахеидами, а флоэма — не ситовидными трубками, а ситовидными клетками (разд. 8.2.2).

У самых первых сосудистых растений — псилофитов (эта группа сейчас почти целиком вымерла) — не было корней, которые появились только позднее у других папоротникообразных. Корни проникают глубоко в почву, что облегчает добывание воды, которая разносится по ксилеме ко всем остальным частям растения. В процессе эволюции возникли три явно отличающиеся друг от друга группы папоротникообразных — плауны, хвощи и папоротники; все они дожили до наших дней.

Как только тело растения получило возможность возвышаться над землей, сразу же возникла конкуренция за свет и проявилась тенденция к развитию все более высоких форм. Последовавший за силурийским девонский период отмечен появлением "древовидных" папоротников, одревесневшие стволы которых имели толщину до 2 м и достигали 30 м в высоту. К следующему, каменноугольному периоду повсюду были распространены громадные заболоченные леса из гигантских плаунов и хвощей; из этих "деревьев" в конце концов возникли современные залежи каменного угля. В этих лесах достигли расцвета насекомые и земноводные. Повсюду встречались и папоротники, и древовидные папоротники (у которых не было древесины). Папоротникообразные доминировали среди растительности около 70 млн. лет, начиная с девонского периода и вплоть до пермского периода, когда их вытеснили сначала голосеменные, а затем и цветковые растения (см. геохронологическую шкалу в приложении 5).

Несмотря на большой прогресс в приспособлении спорофитного поколения в сухопутной среде, адаптация практически не затронула гаметофита. Гаметофит у папоротникообразных еще меньше и еще менее стойкий к обезвоживанию, чем у мохообразных; он называется заростком и отмирает тотчас же, как только из него образуется новый спорофит. На заростках развиваются сперматозоиды, которые, плавая в каплях воды, достигают женских гамет.

Разноспоровость

У некоторых папоротникообразных гаметофит защищен и остается внутри споры предшествующего спорофитного поколения. В этом случае образуются споры двух разных типов, поэтому растения с такими особенностями называют разноспоровыми. Растения, у которых все споры одинаковые, как у мохообразных, называют равноспоровыми.

У разноспоровых растений образуются крупные споры, которые называются мегаспорами, и мелкие споры, называемые микроспорами. Структуры, которые участвуют в образовании спор, имеют разные названия, что отражено в табл. 3.6 и на рис. 3.26.

Таблица 3.6. Словарь терминов, применяемых при описании процесса спорообразования

Стробил или спороносная шишка — собранные вместе спорофиллы.

Спорофилл лист, на котором образуются спорангии (от греч. Phyllon — лист).

Мегаспорофилл — лист, несущий мегаспорангии.

Микроспорофилл — лист, несущий микроспорангии.

Спорангий — структура, в которой у растений образуются споры; спорангии участвуют в бесполом размножении.

Мегаспорангии спорангий, в котором образуются мегаспоры.

Микроспорангий спорангий, в котором образуются микроспоры.

Мегаспора — сравнительно крупная спора, которая прорастая образует женский гаметофит.

Микроспора — относительно мелкая спора, которая прорастая образует мужской гаметофит.

Равноспоровое (гомоспоровое) растение-растение, образующее споры только одного типа, например Pellia, Funaria, Dryopteris.

Разноспоровое (гетероспоровое) растение-растение, образующее споры двух разных типов, т. е. мегаспоры и микроспоры, например Selaginella и все тайнобрачные растения.

Рис. 3.26. Схема, иллюстрирующая принцип разноспоровости


Из мегаспор вырастают женские гаметофиты (женские заростки), на которых развиваются архегонии, а микроспоры дают начало мужским гаметофитам (мужским заросткам), на которых развиваются антеридии. Сперматозоиды, образующиеся в антеридиях, затем мигрируют к женским заросткам. И мужские, и женские заростки остаются спрятанными внутри спор. Микроспоры очень мелкие, образуется их очень много, и они легко разносятся ветром; вместе с микроспорами рассеиваются и мужские заростки, находящиеся в них. Появление разноспоровости — очень важный этап эволюции семенных растений, о чем мы поговорим ниже.

3.4.1. Систематика и основные признаки Pteridophyta

Систематика и основные признаки современных папоротникообразных представлены в табл. 3.7. Опущен класс Psilopsida, который почти полностью вымер.

3.4.2. Класс Pteropsida — папоротники

Основные признаки Pteropsida перечислены в табл. 3.7. Папоротники обычно встречаются только во влажных тенистых местах. Немногие папоротники могут расти на открытом месте; таким исключением является самый обычный папоротник-орляк (Pteridium). Папоротники широко распространены в тропических дождевых лесах, где условия (температура, освещение и влажность) для них наиболее подходящие.

Таблица 3.7. Систематика и основные признаки Pteridophyta


Мужской папоротник (Dryopteris filix-mas), пожалуй, наиболее распространен в Великобритании; он встречается по всей стране в сырых лесах, лесополосах и других тенистых местах. Вайи (листья) спорофита достигают высоты до 1 м и более и растут от толстого горизонтального стебля или корневища. На корневище находятся придаточные корни. От основного стебля могут отламываться отдельные ветви и давать начало новым растениям, это — одна из форм вегетативного размножения. У основания слоевище покрыто сухими бурыми чешуйками, которые защищают молодые листья от заморозков и от засухи. Молодые листья плотно закручены в характерные для папоротников "завитки". Выше по слоевищу размеры чешуек постепенно уменьшаются, и они все дальше отходят друг от друга. Главная ось слоевища называется главным черешком, а листочки, отходящие от нее в обе стороны, называются листочками перистого листа. Небольшие округлые выступы на листочках называются вторичными листочками. С внешним видом и основными признаками спорофита Dryopteris filix-mas можно познакомиться на рис. 3.27.

Рис. 3.27. Внешний вид и основные признаки спорофитного поколения мужского папоротника, или щитовника (Dryopteris filix-mas). А. Схема и детали строения одной пары листочков; все другие имеют такое же строение. Б. Листья папоротника. В. Нижняя поверхность листа с видимыми на ней сорусами (некоторые сорусы покрыты индузием)

Жизненный цикл

Жизненный цикл Dryopteris представлен в виде схемы на рис. 3.28.

Рис. 3.28. А. Жизненный цикл Dryopteris filix-mas


Рис. 3.28. Б-Д. Микрофотографии. Б. Продольный разрез соруса. В. Продольный разрез антеридиев. Г. Продольный разрез архегония. Д. Заросток с первым появляющимся листом


Бесполое размножение. Споры образуются в конце лета в специальных структурах, которые называются спорангиями. Спорангии находятся на нижней поверхности листа в особых скоплениях, которые называются сорусами (рис. 3.28, А). Каждый сорус закрыт округло-сердцевидным покрывалом, которое называется индузием. Внутри каждого спорангия происходит мейотическое деление диплоидных материнских клеток спор и образуются гаплоидные споры. Все споры совершенно одинаковы, поэтому Dryopteris относится к равноспоровым растениям. После созревания индузий высыхает, сморщивается и отпадает, а открывшийся при этом спорангий начинает подсыхать. В стенке каждого спорангия располагается кольцо — гребневидная полоска клеток, внутренние и радиальные стенки которых утолщены (рис. 3.28, Б). Такие клетки окружают не весь спорангий; часть клеток кольца имеет тонкие стенки. Несколько тонкостенных клеток образуют особый участок, называемый стомиумом. По мере высыхания клеток кольца их тонкие наружные стенки начинают втягиваться внутрь сморщенной цитоплазмы. Возникающее при этом напряжение заставляет лопаться всю полоску тонкостенных клеток, и при этом кольцо закручивается назад. Когда клетки лопаются, споры "выстреливают" из спорангия, как из катапульты. В конце концов цитоплазма тоже выталкивается из клеток кольца, в результате чего в нем резко снимается напряжение, и оно снова возвращается в исходное положение, выбрасывая наружу последние остатки спор.

Прорастание. Споры остаются в состоянии покоя недолго, и если условия позволяют, то они прорастают и дают начало новому гаметофитному поколению. Гаметофит представляет собой тонкую сердцевидную пластинку диаметром около 1 см (рис. 3.28, А). Пластинка зеленая, способна к фотосинтезу и прикрепляется к почве одноклеточными ризоидами. У такого очень нежного заростка нет кутикулы, он быстро высыхает и поэтому может жить только там, где достаточно влаги.

Половое размножение. На нижней поверхности гаметофита (заростка) образуются простые антеридии и архегонии (рис. 3.28, А). Эти репродуктивные органы защищают находящиеся в них гаметы. Гаметы возникают путем митоза из материнских клеток гамет; при этом, как и у мохообразных, в антеридиях образуются сперматозоиды, а в архегониях — по одной яйцеклетке. У каждого сперматозоида имеется пучок жгутиков. Если влаги хватает, то из антеридиев выходят созревшие сперматозоиды, которые подплывают к архегониям. Движение сперматозоидов обусловлено ответной реакцией хемотаксиса на яблочную кислоту (2-гидроксибутан-дикарбоновую кислоту), выделяемую клетками шейки архегония. Оплодотворение обычно перекрестное, потому что антеридии созревают раньше архегониев. После оплодотворения образуется диплоидная зигота. Запомните, что оплодотворение, как и у мохообразных, все еще зависит от наличия воды.

Развитие зиготы. Из зиготы развивается спорофит. У молодого зародыша образуется ножка, через которую он поглощает питательные вещества гаметофита, пока эту функцию не возьмут на себя собственные корни и листья спорофита. Гаметофит вскоре увядает и отмирает.

Жизненный цикл папоротника схематически представлен на рис. 3.29.

Рис. 3.29. Схема жизненного цикла Dryopteris filix-mas


3.7. В чем выражается более совершенная, чем у печеночников и мхов, адаптация папоротников к жизни на суше?

3.8. Какие поколения папоротникообразных могут полностью обеспечивать себя питательными веществами?

Выберите правильные ответы:

а) взрослые печеночники и гаметофиты мхов;

б) взрослые печеночники и спорофиты мхов;

в) взрослые гаметофиты папоротников;

г) взрослые спорофиты папоротников.

3.9. В чем выражается недостаточная адаптация мхов, печеночников и папоротников к жизни на суше?

3.10. Как распространяются папоротники?

3.11. а) Чем защищена зигота печеночников (или мхов) и папоротников? б) Как она снабжается питательными веществами?

3.4.3. Класс Lycopsida — плауны

Основные признаки Lycopsida перечислены в табл. 3.7. Обратите внимание на то, что, несмотря на некоторое внешнее сходство с мхами, эти растения принадлежат к папоротникообразным и более высоко организованы, чем настоящие мхи, которые относятся к мохообразным. Когда-то Lycopsida были распространены гораздо шире, чем в наши дни; среди них было много древовидных, о чем говорилось на с. 76. По своей приспособленности к жизни на суше плауны занимают промежуточное положение между папоротниками и семенными растениями.

Представители рода Selaginella (плаунки) распространены главным образом в тропиках, а в Великобритании встречается всего один вид — S. selaginoides. Это растение довольно обычно в горных областях на северо-западе Великобритании, где его можно найти в благоприятных для него влажных условиях, на мокрых скалах, пастбищах и вблизи воды. Для S. selaginoides характерен стелющийся стебель, который обычно плоско лежит на земле, и от него отходят короткие прямостоячие ветви. Внешний вид самой обычной селагинеллы, часто встречающейся в теплицах, — S. Kraussiana — показан на рис. 3.30. У этого растения четыре ряда небольших листьев, которые расположены супротивно парами, при этом каждая пара состоит из большого (нижнего) и малого (верхнего) листьев. У основания каждого листа имеется язычок (лигула) — небольшой пленчатый вырост. Вниз от стебля отходят похожие на корни образования, которые называются ризофорами. Ризофоры ветвятся и дают придаточные корни.

Рис. 3.30. Внешний вид и характерные признаки спорофитного поколения Selaginella kraussiana — растения, обычно встречающегося в теплицах. У Selaginella selaginoides — единственного вида, растущего в Великобритании, — все листья одинакового размера. Кроме того, у него нет ризофоров, а есть только придаточные корни


При размножении образуются вертикальные ветви, которые называются стробилами или шишками. Стробилы состоят из четырех вертикальных рядов листьев одинакового размера, на дорсальной поверхности которых образуются спорангии; поэтому их называют спорофиллами.

Жизненный цикл

Жизненный цикл Selaginella изображен схематически на рис. 3.31. Если вам не известно значение терминов, которые мы будем использовать дальше, обратитесь к табл. 3.6.

Рис. 3.31. Схема жизненного цикла Selaginella


Бесполое размножение. Как сказано выше, Selaginella образует стробилы, или шишки. Нижние листья представляют собой мегаспорофиллы, на которых образуются мегаспорангии, верхние листья — микроспорофиллы, на которых образуются микроспорангии (рис. 3.32). В каждом мегаспорангии образуются по четыре мегаспоры, а в каждом микроспорангии — множество микроспор; и в том и в другом случае происходит мейотическое деление материнских клеток спор. Поскольку образуются споры двух разных типов, Selaginella относят к разноспоровым растениям.

Рис. 3.32. Жизненный цикл Selaginella


Развитие спор и половое размножение. микроспоры дают начало мужским гаметофитам. В процессе развития микроспоры высвобождаются и рассеиваются или же высыпаются вниз на мегаспорофиллы. Содержимое микроспоры превращается в мужской заросток, состоящий из одной вегетативной клетки и одиночного антеридия, внутри которого после митоза образуются сперматозоиды со жгутиками. Заросток — редуцированное гаметофитное поколение — не способен к фотосинтезу и целиком зависит от запаса питательных веществ в микроспоре. Можно проследить, что эти вещества образовались еще у предыдущего спорофитного поколения.

Из мегаспор развиваются женские гаметофиты. Снова развитие начинается задолго до рассеивания спор, причем содержимое мегаспоры превращается в женский заросток — редуцированный гаметофит. После раскрывания споры заросток выходит наружу. Он образует ризоиды, частично зеленеет, и в нем начинаются процессы фотосинтеза. Однако, как и у мужских гаметофитов, основная часть питательных веществ поступает из запасов споры, которые образовались еще у предшествующего спорофитного поколения. На поверхности женского заростка появляются архегонии, внутри которых находится по одной яйцеклетке, образовавшейся путем митоза.

Обратите внимание на то, что зрелые гаметофиты плаунов не отделены от спорофита и этим отличаются от всех уже рассмотренных нами сухопутных растений. Это очень важное эволюционное достижение — одно из приспособлений к жизни на суше, которое привело к тому, что легко уязвимый гаметофит стал хотя бы отчасти защищен спорой. Гаметофитное поколение не способно жить самостоятельно, оно питается за счет веществ, которые запасло в споре предшествующее спорофитное поколение.

Вместе с преимуществами проявились и сопутствующие им недостатки, связанные с тем, что сперматозоиды должны путешествовать от мужского заростка, находящегося внутри микроспоры, к женскому заростку, лежащему внутри мегаспоры. Самооплодотворение гаметофита становится совсем невозможным, а споры (а следовательно, и гаметофиты) при рассеивании могут быть отнесены далеко друг от друга.

Оплодотворение. Стенки микроспор разрушаются, и сперматозоиды выходят наружу. Для того чтобы это произошло, нужна вода, поскольку только тогда сперматозоиды смогут подплыть к архегониям на женском заростке. Заросток все еще находится в мегаспоре, а она либо по-прежнему прикреплена к родительскому спорофиту, либо же отделяется от него. Сперматозоиды проникают в шейку архегония, один из них сливается с яйцеклеткой, и образуется диплоидная зигота.

Развитие зиготы. Зигота развивается в зародыш спорофита. Верхняя часть зародыша превращается в удлиненную структуру, называемую подвеском, которая проталкивает зародыш к запасу питательных веществ гаметофита и мегаспоры. У зародыша образуются корень, стебель и листья. До тех пор, пока он не станет самостоятельным фотосинтезирующим растением, он питается через ножку.

Обратите внимание на то, что более крупные по сравнению с микроспорой размеры мегаспоры связаны с наличием в ней запасов питательных веществ. Этими запасами снабжается не только женский гаметофит, но и зародыш следующего за ним спорофитного поколения. Таким образом, питательные вещества, запасенные одним спорофитным поколением, используются на ранних этапах развития следующего спорофитного поколения. Жизненный цикл Selaginella показан на рис. 3.32.

3.4.4. Класс Sphenopsida — клинолистовидные, или членистые (хвощи)

Основные признаки Sphenopsida представлены в табл. 3.7. Единственный дошедший до нас род Equisetum включает в себя около 25 видов[15], распространенных по всему земному шару (кроме Австралии)[16]. Многие из них обитают во влажных и сырых местах, вблизи прудов и на болотах. Однако обыкновенный, или полевой, хвощ (Equisetum arvense) обычен по всей Великобритании и встречается даже в более сухих местах: на полях, по обочинам дорог, на пустошах и в садах.

У спорофитов имеются горизонтальные подземные стебли (корневища), а высота надземных побегов обычно не превышает 1 м. От узлов отходят мутовки мелких заостренных листьев, похожих на чешуйки. Воздушные побеги бывают двух типов — "стерильные" вегетативные побеги и "плодущие" побеги, несущие спороносные шишки (стробилы). Стерильные побеги зеленые; от узлов у них отходят не только мутовки чешуевидных листьев, но и мутовки ветвей. Плодущие побеги у большинства видов бесцветные или бледнобурые, не ветвятся, и на верхушке у них сидит по одному спороносному стробилу; у некоторых видов эти побеги зеленые и ветвятся. Междоузлия (участки между узлами) всех составных частей растения в середине полые, а снаружи покрыты рядом продольных низбегающих бороздок. Внешний вид и некоторые признаки Е. arvense изображены на рис. 3.33.

Рис. 3.33. Внешний вид и характерные особенности спорофитного поколения Equisetum arvense. 'Плодущие' (спорангиеносные) побеги высотой 10-25 см красно-коричневого цвета появляются в марте. Спорофилл представляет собой плоский диск на короткой ножке, на нижней стороне которого располагается 5-10 спорангиев. Стерильные вегетативные побеги достигают в высоту 20-80 см. На каждом узле побега располагается мутовка мелких, похожих на чешуйки зеленых листьев (микрофиллов). Корневище представляет собой горизонтальный подземный стебель с хорошо выраженными узлами и междоузлиями; на каждом узле корневища развиваются хорошо разветвленные придаточные корни. Клубень — это короткая округлая ветвь длиной в одно междоузлие; предназначен для зимовки и вегетативного размножения

3.5. Отдел Spermatophyta — семенные растения

Spermatophyta (греч. sperma — семя) — самая процветающая группа наземных растений. В этом разделе основное внимание мы уделим тем адаптационным приспособлениям семенных растений, которые способствовали их процветанию, и, кроме того, сравним их с более низко организованными группами, которые мы уже рассмотрели.

Семенные растения, по-видимому, произошли от вымерших семенных папоротников. Если вспомнить Selaginella (как одного из представителей папоротникообразных), то следует отметить, что у нее, по существу, такой же жизненный цикл, как и у семенных растений; разница лишь в том, что у Selaginella женский гаметофит автотрофен, а у семенных растений он утрачивает автотрофность. Однако давайте забудем о селагинелле и попытаемся сравнить жизненный цикл семенных растений и равноспоровых папоротникообразных (обыкновенных папоротников).

Одна из основных трудностей, с которой сталкиваются растения на суше, связана с уязвимостью гаметофитного поколения. Так, например, у папоротников гаметофит — это нежный заросток, который образует мужские гаметы (сперматозоиды), нуждающиеся в воде, чтобы достичь яйцеклетки. А у семенных растений гаметофит защищен и очень сильно редуцирован. Только сравнив жизненные циклы семенных и более примитивных растений, можно понять, что и у семенных растений сохраняется чередование поколений. Семенные растения обладают тремя очень важными преимуществами: 1) разноспоровостью, 2) образованием семян и 3) появлением неплавающих мужских гамет.

Разноспоровость

Очень важным шагом на пути эволюции от папоротникообразных к семенным растениям было появление растений, образующих споры двух типов — микроспоры и мегаспоры. Такие растения называют разноспоровыми; они были рассмотрены в разд. 3.4. В табл. 3.6 приведен краткий словарь терминов, относящихся к спорообразованию в жизненном цикле разноспоровых растений (см. также рис. 3.26). Все семенные растения разноспоровые.

Из микроспоры развивается мужской гаметофит, а из мегаспоры возникает женский гаметофит. И в том и в другом случае гаметофит очень сильно редуцирован и не выходит из споры. Исключение составляет свободно живущий самостоятельный гаметофит равноспоровых растений, таких, как Dryopteris. Спора защищает гаметофит от высыхания, что является важным приспособлением к жизни на суше. Гаметофиты не способны к фотосинтезу, поэтому они нуждаются в запасах питательных веществ, накопленных в спорах предшествующим спорофитным поколением. Как мы увидим дальше, предельная редукция гаметофита наблюдается у цветковых растений.

Мегаспоры образуются в мегаспорангиях на мегаспорофиллах, а микроспоры — в микроспорангиях на микроспорофиллах. У семенных растений структура, эквивалентная мегаспорангию, называется семязачатком. Внутри семязачатка развивается всего одна мегаспора, или один женский гаметофит, который называется зародышевым мешком. Структура, эквивалентная микроспорангию, называется пыльцевым мешком. В пыльцевом мешке образуется много микроспор, которые называются пыльцевыми зернами или пылинками.

Эволюция семени

У семенных растений мегаспоры не отделяются от спорофита. В отличие от той картины, что мы наблюдаем у более примитивных разноспоровых организмов, мегаспоры остаются внутри семязачатков (мегаспорангиев), прикрепленных к спорофиту. Внутри мегаспоры развивается женский гаметофит (зародышевый мешок) и образуется одна или несколько женских гамет, или яйцеклеток. После оплодотворения женской гаметы семязачаток называют уже семенем. Таким образом, семя — это оплодотворенный семязачаток. Семязачаток, а позднее и семя обладает целым рядом преимуществ:

1. Женский гаметофит защищен семязачатком, целиком зависит от родительского спорофита, но гораздо менее чувствителен к обезвоживанию, чем свободно живущий гаметофит.

2. После оплодотворения образуется запас питательных веществ, получаемый гаметофитом от родительского спорофитного растения, от которого он по-прежнему не отделен. Этот запас используется развивающейся зиготой (следующим спорофитным поколением) после прорастания семени.

3. Семена приспособлены к тому, чтобы противостоять неблагоприятным условиям, и могут оставаться в состоянии покоя до тех пор, пока условия не станут благоприятными для прорастания.

4. У семян могут развиваться различные приспособления, облегчающие их распространение. Семя представляет собой сложную структуру, в которой собраны клетки трех поколений — родительского спорофита, женского гаметофита и зародыша следующего спорофитного поколения. В самом общем виде это изображено на рис. 3.34. Родительский спорофит дает семени все, что нужно для жизни, и только после того, как семя полностью созреет, т. е. накопит запас питательных веществ для зародыша спорофита, оно отделяется от родительского спорофита.

Рис. 3.34. Связь между гаметофитным и спорофитным поколениями у разных групп растений

Эволюция неплавающих мужских гамет и оплодотворения, независимого от воды

Для полового размножения растений, которые мы уже рассмотрели, необходимо, чтобы сперматозоид мог подплыть к яйцеклетке, т. е. нужна вода. Поэтому перед семенными растениями встают определенные проблемы. Для того чтобы произошло оплодотворение, мужские гаметы должны достичь женских гамет, а, как мы уже говорили, мужские и женские гаметы развиваются отдельно, и к тому же женские гаметы еще и остаются внутри семязачатков спорофита. Мужские гаметы образуются мужскими гаметофитами внутри микроспор, или пыльцевых зерен. Они не превращаются в плавающие сперматозоиды, а остаются неподвижными и переносятся вместе с пыльцевыми зернами из пыльцевых мешков (микроспорангиев) к семязачаткам. Такой перенос пыльцы называется опылением. На последнем этапе опыления образуется пыльцевая трубка, которая растет в сторону семязачатка; по этой трубке неподвижные мужские гаметы достигают яйцеклетки, и происходит оплодотворение. Вода не нужна спермиям ни на одной из перечисленных стадий. Только у некоторых примитивных семенных растений, таких, как саговниковые, спермин выходят из пыльцевых трубок, что указывает на определенную связь с несеменными растениями. На рис. 3.34 сравниваются жизненные циклы семенных и некоторых несеменных растений. Особо выделены происхождение семян и взаимосвязь между спорофитным и гаметофитным поколениями. Опыление, возможно, и не дает никакой выгоды, так как этот процесс носит чисто случайный характер и достигается с трудом, а образование большого количества пыльцы биологически невыгодно. Считают, что первоначально опыление происходило только с помощью ветра. Однако уже на заре эволюции цветковых растений появились первые летающие насекомые (около 300 млн. лет назад, в каменноугольном периоде). Сразу же возникла возможность более эффективного опыления насекомыми. Одна из групп семенных растений — цветковые растения — наиболее успешно использует эту возможность.

3.12. Шансы для выживания и возникновения пыльцевых зерен (микроспор), переносимых ветром, намного меньше, чем для спор Dryopteris. Почему?

3.13. Объясните, почему мегаспоры крупные, а микроспоры мелкие.

3.5.1. Основные признаки и систематика Spermatophyta

Основные признаки и систематика Spermatophyta представлены в табл. 3.8.

Таблица 3.8. Основные признаки и систематика Spermatophyta

Отдел Spermatophyta (семенные растения)

Общие признаки

Разноспоровые, т. е. имеют два типа спор: микроспоры и мегаспоры; микроспора = пыльцевое зерно, мегаспора = зародышевый мешок.

Зародышевый мешок (мегаспора) остается целиком закрытым в семязачатке (мегаспорангии); семя — это оплодотворенный семязачаток.

Спорофит доминирует; гаметофитное поколение крайне редуцировано.

Для полового размножения не нужна вода, потому что мужские гаметы не способны плавать (исключение составляют некоторые наиболее примитивные представители); чтобы оплодотворить яйцеклетки, они проникают в завязь через пыльцевую трубку

Сложные по строению проводящие ткани в корнях, стеблях и листьях.

Класс Gymnospermae (главным образом хвойные; кроме того, тиссовые, саговниковые, гинкговые и др.)

"Голые" семена: это означает, что семена лежат открыто, т. е. не спрятаны в завязи.

Обычно образуют шишки, на которых появляются спорангии и споры.

Плоды не образуются, потому что нет завязи.

В ксилеме нет сосудов — только трахеиды; во флоэме нет клеток-спутниц — только альбуминовые клетки (сходные по функции с клетками-спутницами, но отличающиеся от них по происхождению).

Класс Angiospermae (цветковые растения)

Семена спрятаны в завязи.

Образуют цветки, в которых развиваются спорангии и споры.

После оплодотворения из завязи образуется плод.

Ксилема состоит из сосудов; флоэма содержит клетки-спутницы.

Подклассы: двудольные и однодольные (см. табл. 3.9).


В этой таблице рассматриваются две группы семенных растений — голосеменные и покрытосеменные. Последнюю группу обычно называют цветковыми растениями. У голосеменных семязачаток, а потом и семена располагаются на поверхности особых листьев, которые называют мегаспорофиллами или семенными чешуйками. Эти чешуйки собраны в шишки. У покрытосеменных семена закрыты, что еще лучше предохраняет гаметофит и образующуюся затем зиготу. Структуры, в которые заключены семена, называются плодолистиками. Считают, что плодолистики эквивалентны мегаспорофиллам (листьям), сложенным так, что они закрывают семязачатки (мегаспорангии). Плодолистик может быть один или их может быть много.

Полое основание плодолистика, или группы слившихся вместе плодолистиков, называется завязью. В завязи находятся семязачатки. После оплодотворения завязь называют плодом, а семязачатки — семенами. Или плоды, или семена (иногда и то и другое) часто имеют различные приспособления для рассеивания.

На рис. 3.35 в виде простых схем изображены для сравнения различные спороносные структуры сосудистых растений. Сравнение поможет вам понять некоторые термины, которые были использованы при изложении этого материала.

Рис. 3.35. Схематическое сравнение спороносных структур у сосудистых растений (папоротникообразных и семенных)

3.5.2. Класс Gymnospermae — голосеменные, например хвойные, саговниковые, тиссовые, гинкговые

Основные признаки Gymnospermae перечислены в табл. 3.8.

Голосеменные — процветающая группа растений, распространенных по всему земному шару; леса из представителей голосеменных составляют примерно треть всех лесов планеты. Среди голосеменных — деревья или кустарники, в основном вечнозеленые с листьями, похожими на иголки. Самая большая группа — хвойные, куда входят деревья, произрастающие в высоких широтах и распространяющиеся на север дальше всех других деревьев. Хвойные имеют большое хозяйственное значение, прежде всего как источник поделочной древесины, которая используется не только для получения пило- и лесоматериалов, но и для получения смолы, скипидара и древесной мезги. К хвойным относятся сосны, лиственницы (с опадающей на зиму хвоей), пихты, ели и кедры. Рассмотрим типичное хвойное дерево-сосну обыкновенную (Pinus sylvestris).

Pinus sylvestris распространена в Центральной и Северной Европе, СССР и Северной Америке. Она интродуцирована также в Великобританию, но в природных условиях растет только в Шотландии. Сосны выращивают и для декоративных целей, и для получения лесо- и пиломатериалов. Это — красивое величественное дерево высотой до 36 м с характерной отслаивающейся корой розовато- или желтовато-коричневого цвета. Сосны чаще всего растут на песчаных или небогатых горных почвах, и поэтому корневая система у них обычно расстилается по поверхности и сильно ветвится. Внешний вид сосны показан на рис. 3.36.

Каждый год из мутовки боковых почек на верхушке ствола вырастает новая мутовка ветвей. Характерный заостренный на конус облик Pinus и других хвойных обусловлен тем, что мутовки более молодых (и более коротких) веток на верхушке книзу постепенно сменяются все более старыми (и более длинными). С возрастом нижние ветки отмирают и отпадают, поэтому стволы старых деревьев обычно лишены ветвей (рис. 3.36).

Рис. 3.36. Внешний вид и характерные особенности спорофитного поколения сосны обыкновенной (Pinus syIvestris)


Главные ветви и ствол продолжают расти из года в год за счет роста верхушечной почки. Поэтому говорят, что для хвойных характерен неограниченный рост. Чешуевидные листья расположены спиралью; в пазухах таких листьев находятся почки, из которых развиваются очень короткие веточки (длиной 2-3 мм), называемые укороченными побегами. Это — стебли с ограниченным ростом, на верхушке которых растет по два листа. Как только побег вырастет, чешуевидный лист у его основания отпадает, и на его месте остается рубец. Листья похожи на иголки, что уменьшает площадь поверхности листа, а следовательно, и потери воды. Кроме того, листья покрыты толстой восковой кутикулой, а устьица глубоко погружены в ткань листа — еще одно приспособление для сохранения воды. Ксероморфные приспособления вечнозеленых растений обеспечивают минимальную потерю воды во время холодных сезонов, когда вода замерзает, и ее трудно извлечь из почвы. Через два-три года укороченные побеги отпадают вместе с листьями, и на их месте остается еще один рубец.

Дерево представляет собой спорофит и является разноспоровым. Весной на дереве образуются и мужские, и женские шишки. Диаметр мужских шишек составляет около 0,5 см; они округлые и располагаются кучками у основания новых побегов под верхушечной почкой. Они образуются в пазухах чешуевидных листьев вместо укороченных побегов. Женские шишки появляются в пазухах чешуевидных листьев на конце новых сильных побегов на некотором расстоянии от мужских шишек и располагаются более беспорядочно. Полное развитие шишек занимает три года, поэтому все шишки имеют разные размеры, и на одном дереве можно обнаружить шишки от 0,5 до 6 см величиной. Молодые шишки зеленого цвета, а на второй год они становятся коричневыми или красновато-коричневыми. И мужские, и женские шишки состоят из плотно прижатых друг к другу спорофиллов, расположенных спиралью вокруг центральной оси (рис. 3.36).

На нижней поверхности каждого спорофилла мужской шишки находятся два микроспорангия, или пыльцевых мешка. Внутри пыльцевых мешков происходит мейотическое деление материнских клеток пыльцы и образуются пыльцевые зерна, или микроспоры. У пыльцевых зерен имеется по два воздушных мешка, которые помогают им переноситься ветром. В мае шишки становятся совсем желтыми из-за пыльцы, которая целым облаком вылетает из них. В конце лета они увядают и отпадают.

Спорофилл женской шишки состоит из нижней кроющей чешуйки и более крупной верхней чешуи, несущей семязачатки. На верхней поверхности крупной чешуи рядом находятся два семязачатка; в них происходит мейотическое деление материнской клетки мегаспоры и образуются четыре мегаспоры, из которых только одна развивается дальше. Опыление происходит еще на первом году развития шишки, но оплодотворение задерживается до следующей весны, когда прорастут пыльцевые трубки. Из оплодотворенных семязачатков образуются крылатые семена. Они продолжают зреть в течение второго года и высыпаются лишь на третий год. К этому времени шишка становится довольно крупной, одревесневает, а чешуи отгибаются наружу, перед тем как ветер разнесет семена.

3.5.3. Класс Angiospermae — покрытосеменные, или цветковые, растения

Основные признаки Angiospermae перечислены в табл. 3.8.

Покрытосеменные лучше других растений приспособлены к жизни на суше. Они появились в меловом периоде, около 135 млн. лет назад, быстро размножились, освоив самые разные местообитания, и вскоре вытеснили голосеменные, заняв главенствующее положение среди наземной растительности. Некоторые покрытосеменные вновь вернулись к пресноводному, а несколько видов — даже к солоноводному образу жизни.

Одна из самых характерных особенностей покрытосеменных, если не считать закрытые семена, о которых мы уже говорили, это — появление цветков вместо шишек. Наличие цветков позволило этим растениям привлечь для опыления насекомых, а иногда даже птиц и летучих мышей. Яркая окраска цветков, душистый аромат, съедобная пыльца и нектар-все это средства для привлечения животных. В некоторых случаях насекомые вообще не могут обходиться без цветков. Эволюция насекомых и цветков в ряде случаев была очень тесно связана, в результате чего возникли самые разные, очень специфические и притом взаимовыгодные отношения. Адаптация цветка, как правило, была направлена на максимальное увеличение шансов для переноса пыльцы насекомыми, и поэтому этот процесс более надежен, чем опыление ветром. Растениям, опыляемым насекомыми, не нужны такие большие количества пыльцы, как при опылении ветром. Тем не менее многие цветковые растения приспособились к опылению ветром.

Жизненный цикл

Жизненный цикл типичного цветкового растения изображен на рис. 3.37.

Рис. 3.37. Жизненный цикл покрытосеменных


Основное назначение этого рисунка — сравнить жизненный цикл цветкового растения с жизненными циклами более примитивных растений. Подробно сам жизненный цикл будет описан в разд. 20.2. В сущности, он почти не отличается от цикла, изображенного на рис. 3.21. Обратите особое внимание на те стадии, когда происходит мейоз или митоз. Гаметы образуются в результате митоза, а споры — в результате мейоза, как и у всех остальных растений со сменой поколений. Строго говоря, цветок — это орган и бесполого, и полового размножения, поскольку в нем образуются споры (бесполое размножение), внутри которых возникают гаметы (половое размножение). Следует отметить, что пыльцевое зерно является спорой, а не мужской гаметой, так как в нем самом находятся мужские гаметы. Как уже говорилось выше, пыльцевые зерна переносят мужские гаметы на женские репродуктивные органы, а это позволяет обойтись без плавающих сперматозоидов.

Процесс развития эндосперма также изображен на рис. 3.37. Из эндосперма образуются запасы питательных веществ, а сам способ их образования уникален и присущ только покрытосеменным.

Двудольные и однодольные

Покрытосеменные растения делятся на две большие группы, которым можно дать статус классов или подклассов в зависимости от того, какой систематической схемой пользоваться. Чаще всего эти две группы называют однодольными и двудольными. В табл. 3.9 перечислены основные признаки, по которым они различаются. Немногие из этих признаков в отдельности имеют систематическое значение, поскольку существуют многочисленные исключения, и лишь сочетание нескольких признаков позволяет точно идентифицировать такие растения. По современным представлениям однодольные — более совершенная группа; полагают, что они, вероятно, произошли от примитивных двудольных.

Таблица 3.9. Основные различия между двудольными и однодольными


Покрытосеменные растения бывают травянистые (т. е. не одревесневшие) и деревянистые. Деревянистые растения — это кустарники и деревья. У таких растений образуется большое количество вторичной ксилемы (древесины), которая служит внутренней опорой для ствола и, кроме того, выполняет функции проводящей ткани. Ксилема возникает в результате активности клеток камбия. Травянистые растения, или травы, полагаются только на тургесцентность клеток и на небольшое количество механических тканей, таких, как колленхима, склеренхима или ксилема; немудрено, что и сами они не очень велики. У травянистых растений либо совсем нет камбия, либо, если он и имеется, его активность незначительна. Многие травянистые растения однолетние, т. е. они за один год завершают свой цикл развития от семени до семени. У некоторых травянистых растений образуются многолетние органы типа луковиц, клубнелуковиц или клубней, которые перезимовывают или же переживают такие неблагоприятные условия, как засуха (разд. 20.1.1). В этом случае они бывают двулетними или многолетними, т. е. они либо образуют семена на второй год и отмирают, либо живут год за годом. Кустарники и деревья — многолетние растения и могут быть либо вечнозелеными, т. е. образуют и сбрасывают листву круглый год, и поэтому на растении всегда есть листья, либо листопадными, т. е. полностью сбрасывают листья в холодное или засушливое время. Чтобы проиллюстрировать, насколько разнообразны покрытосеменные, на рис. 3.38-3.42 показано строение некоторых представителей этого класса.

Рис. 3.38. Строение листа однодольных (А) и двудольных (Б) растений


Рис. 3.39. Строение цветка и вегетативных органов однодольного травянистого растения — овсяницы луговой (Festuca pratensis). Это многолетнее растение высотой 30-120 см образует большие дерновины, встречается по всей Великобритании на заливных лугах, пастбищных угодьях, старых пастбищах и по обочинам дорог. Вторые листья на рисунке обозначены серым цветом. Листья, как правило, расположены двумя рядами попеременно то на одной, то на противоположной стороне стебля. А. Строение вегетативных органов. В узле имеется меристема, из которой вырастают лист и междоузлия; не полый в отличие от междоузлий. Для листовой пластинки характерно параллельное жилкование. Ушки представляют собой небольшие заостренные выступы (имеются не у всех злаков). Стебель неразветвленный; быстро удлиняется перед самым цветением, и тогда его называют соломиной. Влагалище второго листа цилиндрическое и частично закрывает междоузлие между вторым и третьим узлами. Придаточные корни отрастают от основания стеблей; образуют мочковатую корневую систему без стержневого корня. Молодой побег с еще не удлиненными междоузлиями; узлы расположены близко друг к другу и спрятаны во влагалища у основания побега. Стебель образуют узлы и междоузлия, а лист — листовая пластинка и влагалище. Б. Строение соцветия. В. Детали строения одиночного открытого цветка, или цветочка; не изображены две небольшие лепестковидные структуры (пленочки, или лодикулы), которые покрывают завязь


Рис. 3.40. Строение цветка и вегетативных органов двудольного травянистого растения — лютика ползучего (Ranunculus repens). Это обычное многолетнее растение встречается на мокрых лугах, в сырых лесах, садах и на брошенных пашнях по всей Великобритании. Цветки имеют пять раздельных блестящих лепестков золотисто-желтого цвета; тычинок и плодолистиков много; цветет с мая по август


Рис. 3.41. Строение цветка и вегетативных органов дикого рододендрона (Rhododendron ponticum) — вечнозеленого двудольного кустарника, достигающего в высоту 3 м. Цветки рододендрона, появляющиеся в мае-июне, собраны в соцветия на конце побега; каждый цветок имеет довольно крупные размеры и по форме колоколообразный. Листья вдоль стебля располагаются поочередно, а вокруг верхушечной почки собраны в мутовку. Рододендроны обычно высаживают в парках и садах. Исходно интродуцированное, это растение успешно акклиматизировалось и хорошо растет на кислых почвах (песчаных или торфяных) на тех же местах, что и вереск, или в лесу


Рис. 3.42. Строение цветка и вегетативных органов конского каштана (Aesculus hippocastanum) — широколиственного двудольного дерева, теряющего листву на зиму. Высота дерева достигает 30 м и более

3.5.4. Краткое перечисление адаптационных приспособлений голосеменных и покрытосеменных растений к жизни на суше

Проблемы, связанные с переходом от водного образа жизни к наземному, мы уже затрагивали в разд. 3.3. Теперь, когда мы познакомились с представителями всех основных групп наземных растений, можно вновь вернуться к этому вопросу и обсудить, почему же голосеменные и покрытосеменные так хорошо приспособились к жизни на суше. Основное преимущество этих растений над всеми остальными, конечно же, связано с их способом размножения. Здесь можно выделить три главных аспекта:

1. Гаметофитное поколение очень редуцировано. Гаметофит полностью зависит от спорофита и всегда находится под его защитой. А у мхов и печеночников, у которых преобладает гаметофит, и у папоротников, у которых есть свободноживущий заросток, гаметофит не защищен и очень легко высыхает.

2. В отличие от всех других растений, у которых сперматозоиды подплывают к яйцеклеткам, покрытосеменным для оплодотворения не нужна вода. Мужские гаметы семенных растений неподвижны и переносятся ветром или насекомыми вместе с пыльцевыми зернами. На конечном этапе опыления мужские гаметы проникают к яйцеклетке через пыльцевую трубку, а сами яйцеклетки при этом заключены внутри семязачатков.

3. Из всех современных растений только у семенных есть особые структуры-семена. Возникновение семени стало возможным благодаря тому, что семязачатки вместе со всем своим содержимым остаются на родительском спорофите.

Другие характерные особенности покрытосеменных, помогающие им жить на суше, перечислены ниже. Подробнее мы обсудим их в соответствующих разделах этой книги.

а) У всех сосудистых растений ткани ксилемы и склеренхимы лигнифицированы и дают внутреннюю опору. У многих семенных растений наблюдаются вторичный рост и отложение большого количества древесины (вторичной ксилемы). К таким растениям относятся кустарники и деревья.

б) Настоящие корни, которые тоже характерны для сосудистых растений, позволяют эффективно извлекать влагу из почвы.

в) От высыхания эти растения защищены эпидермисом и нерастворимой в воде кутикулой или же пробкой, образующейся при вторичном утолщении.

г) Эпидермис наземных органов, и в особенности эпидермис листьев, пронизан устьицами, что способствует лучшему газообмену между растением и атмосферой. д) У растений есть и другие приспособления к жизни в жарких безводных местах (ксероморфные адаптации); об этих приспособлениях речь пойдет в разд. 18.2.3 и 19.3.2.

3.6. Сравнительная сводка признаков наземных растений

На рис. 3.43 перечислены некоторые ключевые признаки наземных растений, рассмотренных в этой главе. Особое внимание обращено на особенности жизненного цикла у разных растений.

Рис. 3.43. Сравнение мохообразных, папоротникообразных и семенных растений

Загрузка...