Кандидат химических наук Г. ШУЛЬПИН
Откройте любой учебник химии — и на каждой странице вам встретятся примерно такие фразы: «молекула бензола состоит из шести атомов углерода и шести атомов водорода и представляет собой правильный шестиугольник», «при бромировании фенола атом брома замещает в бензольном ядре водород, соседний с гидроксильной группой»… А задумывались ли вы, как химики узнали строение и форму молекулы бензола и как они определили, что атом брома замещает именно этот, а не другой атом водорода? Все эти истины, которые сегодня кажутся прописными, очень и очень нелегко дались ученым. Например, вопрос о строении молекулы бензола вызывал в прошлом, да еще и в нынешнем веке, ожесточенные споры. Причины тут, наверное, в том, что химик не может увидеть молекулу, он должен судить о ее строении, форме по каким-то косвенным данным. В течение века такими данными были химические превращения молекул. Из одного вещества получались другие, и на основании таких переходов делались логические умозаключения об относительном расположении атомов в молекулах. Удивительно ли, что установление структуры одной-единственной молекулы отнимало годы работы у ученого-химика?
Сегодняшним химикам живется гораздо легче. Примерно в середине нашего века нм на помощь пришли физики. Они помогли химикам «увидеть» молекулы.
Первое, что приходит на память, когда мы употребляем выражение «видеть молекулу», — это электронный микроскоп. Да, изобретение электронного микроскопа облегчило жизнь… но не столько химикам, сколько биологам. Дело в том, что в электронном микроскопе можно разглядеть лишь молекулы-гиганты, характерные для биоорганических веществ — например, длиннющие цепи ДНК. Меньшие молекулы (бензола, например) электронный микроскоп нам не покажет. Да и у ДНК можно увидеть лишь общие очертания, контуры молекулы. О ее внутренней структуре мы из таких наблюдений ничего не узнаем.
О строении маленьких молекул гораздо больше, чем пучок электронов, может рассказать рентгеновское излучение.
Если в затемненной комнате на светлый экран направить луч света сквозь узкую щель, то у световой полосы на экране не будет четких краев: по бокам от полосы мы увидим последовательность чередующихся светлых и темных полосок. Свет словно загибается в стороны от направления луча, прошедшего сквозь щель, и это уклонение именуется дифракцией. А темные и светлые полосы возникают оттого, что, придя к экрану по некоторому направлению от разных участков щели, световые волны могут либо усилить друг друга (если гребень одной придется на гребень другой), либо погасить (если гребень придется на впадину).
Контрастнее и выразительнее эта картина получится, если луч направить на экран не сквозь одну щель, а через несколько — дифракционную решетку. Вид этой картины можно рассчитать по виду решетки. Можно поставить и обратную задачу: по дифракционной картине определить строение решетки, через которую пропущен свет.
Строй молекул в кристалле вещества можно рассматривать тоже как своеобразную дифракционную решетку: щели есть и между атомами в молекуле, и между молекулами. Только учитывая малость этих щелей, берут свет с длиной волны поменьше — рентгеновское излучение. Получившаяся дифракционная картина много расскажет и о строении кристалла и о структуре молекул. Если вещество не имеет четкого кристаллического строения, то и в этом случае дифракционная картина (она имеет вид концентрических темных и светлых кругов) доставляет немалую информацию о структуре молекул.
Налейте в два стакана воду и бросьте в первый несколько крупинок марганцовокислого калия, а во второй капните спиртовой раствор йода. Вы получили два окрашенных раствора. А задумывались ли вы над тем, почему вещества окрашены?
…Свет — это поток электромагнитных волн той или иной длины. Видимый свет — это смесь волн, длины которых лежат в интервале примерно от 0,4 до 0,7 микрометра, причем такая смесь воспринимается глазом как белый свет.
Здесь упрощенно показан спектр поглощения видимого света раствором йода в воде. В видимой части находится пик поглощения (примерно 0,4 мкм фиолетовых и синих лучей. Поэтому йодный раствор имеет желто-оранжевый цвет. Этот пик обусловлен переходом электрона с основного уровня Е0 на первый уровень Е1. Разность энергий ΔE = E1 — Е0 в точности равна энергии, которую несут с собой «ванты света, имеющего длину волны 0,4 мкм. Остальные пики лежат в ультрафиолетовой части спектра (им соответствует большая энергия переходов). Раствор йодистого натрия поглощается только в ультрафиолетовой области, а поэтому он бесцветен. Прописные буквы под горизонтальной осью графика показывают распределение цветов (фиолетового, синего, зеленого, желтого и красного) в видимой части спектра.
Можно рассматривать свет и как поток частичек света, световых квантов — фотонов. Тут такая закономерность: чем больше длина волны световых колебаний, тем меньше энергия, которую несут с собой кванты такого света. Например, энергия фотонов красного света меньше, чем у фотонов фиолетового.
Электрон, который связывает в молекуле два атома, находясь между ними, может обладать различной энергией, как говорят, может занимать разные энергетические уровни. Энергию, необходимую для того, чтобы запрыгнуть с одного на другой, более высокий уровень, электрон может получить, например, от квантов света, упавших на молекулу. Но тут существует такая характерная особенность. Уровней, так сказать, «полочек» энергии, на которых может находиться электрон, немного и все они отвечают строго определенной энергии. Электрон может находиться только на данных уровнях, и принимать промежуточную энергию он не в состоянии. (Представьте, что вы хотите поставить книгу в шкаф. Вы можете положить ее на любую полку, но никак не между полками.)
Что произойдет, если квант света упадет на молекулу? Если энергия кванта в точности равна разности энергий между какими-то двумя энергетическими уровнями, которые может занимать электрон, то он присвоит эту энергию и запрыгнет на более высокий уровень. А что это значит? Это значит, что свет данной энергии (то есть данного цвета) поглотится веществом. Потом электрон вернется в исходное положение, а выделившаяся энергия пойдет на нагревание вещества. А что будет, если энергия кванта света меньше или больше разности энергий электронных «полочек»? В этом случае квант пролетит мимо электрона.
Но ведь зная, какие световые волны поглощаются веществом, мы можем определить важные энергетические характеристики соединения, узнать, на какой высоте располагаются «полки» для электронов! Определить, при какой длине волны свет поглощается, проходя через вещество, нетрудно — у физиков есть для этого точные приборы.
Если, пропуская свет через раствор того или иного вещества, получить на специальном приборе зависимость поглощения света от длины его волны, то такой спектр может много рассказать и о внутреннем устройстве молекулы и о распределении в ней электронов по уровням.
Еще более ценны спектры поглощения веществ в инфракрасной области. Тут поглощение связано с колебаниями атомов в молекуле друг относительно друга. Стоит химику взглянуть на инфракрасный спектр вещества, как он по наличию или отсутствию полос в соответствующих местах может определить, есть или нет в молекуле кетонная, нитрильная, гидроксильная и многие другие группы. Вот как химики теперь узнают строение полученных ими соединений.
Вещества могут поглощать не только свет, но электромагнитные волны в диапазоне радиочастот — длиной порядка метра. Метод, основанный на таком поглощении, называется ядерным магнитным резонансом. Очень грубо смоделировать принцип магнитного резонанса нам поможет… обычный детский волчок.
Пустите по полу вращающуюся детскую юлу. Обратите внимание — ось волчка смотрит в строго заданном направлении. Отклоните ось от вертикали. Ось медленно начнет крутиться вокруг вертикального направления. Это явление называется прецессией. Теперь начните в такт вращения подталкивать ось рукой. Вы увидите, что угол отклонения от вертикали увеличится. Следовательно, волчок поглощает энергию, подводимую извне рукой.
А теперь мысленно заменим вращающийся волчок ядром атома водорода — протоном. Оказывается, в магнитном поле с протоном происходят явления, по физическому характеру сходные с прецессией волчка. В опыте с волчком мы подталкивали его рукой. Когда речь идет о протоне, ту же роль играют колебания магнитного поля.
Рассматривая этот спектр поглощения инфракрасного света веществом, можно сказать, что в молекуле вещества есть кетонная и нитрильная группа, бензольное кольцо и атом кислорода, входящий в состав эфирной группировки.
Так выглядит спектр ядерного магнитного резонанса уксусной «кислоты. Он содержит два пика, соответствующие двум протонам, занимающим в молекуле различное положение.
Будем постепенно изменять частоту этих колебаний. Когда она сравняется с частотой прецессии протона, вещество поглотит энергию поля. Это поглощение отражается прибором, который выписывает пик на графике.
Нужно сказать, что разные ядра водорода в молекуле вступают в резонанс, то есть поглощают энергию при немного отличающихся частотах переменного поля. Это-то свойство и позволяет различать атомы в молекуле и дает богатейшую информацию о ее составе и строении.
Мы рассказали далеко не о всех методах, которые предоставили физики в распоряжение химиков и которые так облегчили работу последним. Мы ничего не сказали об электронном парамагнитном резонансе и комбинационном рассеянии света, об электронографии и масс-спектрометрии, о ядерном квадрупольном резонансе и фотоэлектронной спектроскопии… Все эти методы сегодня на вооружении ученых.