101

При более детальном обсуждении вычислимых и невычислимых функций мы встретимся с функциями, вычислимыми с любой наперёд заданной точностью. Это функции, для которых имеется конечный алгоритм вычисления значений с растущей точностью. Например, это имеет место для вычисления числа π с точностью до определённого количества знаков: компьютер может вычислить в π каждый последующий знак после запятой, хотя никогда не достигнет конца вычислений. Поэтому, хотя π, строго говоря, не является вычислимым числом, оно вычислимо с любой наперёд заданной точностью. Однако большинство вещественных чисел непохожи на π. Они не просто невычислимы, они также невычислимы с любой наперёд заданной точностью.

При рассмотрении «успешных» симуляций мы должны рассматривать те, которые основаны на функциях, вычислимых с любой наперёд заданной точностью. В принципе, убедительная реальность может быть создана на основе частичного результата вычислений на компьютере функций, вычислимых с любой наперёд заданной точностью.

Чтобы законы физики были вычислимы, или даже вычислимы с любой наперёд заданной точностью, следует отказаться от традиции опираться на вещественные числа. Причём не только при описании пространства и времени, где обычно задействуются вещественнозначные координаты, но также для всех остальных математических составляющих законов природы. Например, величина силы электромагнитного поля не должна пробегать вещественные значения, а только принимать набор дискретных значений. То же самое должно выполняться для вероятности нахождения электрона в том или ином месте. Шмидхубер обращает внимание, что все когда-либо проделанные в физике вычисления вовлекают манипуляции с дискретными символами (на бумаге, на доске, на компьютере). Поэтому хотя всегда считалось, что эта часть научной работы использует вещественные числа, на практике оказывается, что это не так. То же самое справедливо для всех когда-либо проведённых измерений. Ни один из приборов не имеет абсолютной точности, поэтому наши измерения всегда выдавали дискретные численные результаты. В этом смысле все успехи в физике можно считать успехами цифровой парадигмы. Тогда возможно, что истинные законы сами являются вычислимыми (или вычислимыми с любой наперёд заданной точностью).

Есть много разных взглядов на «цифровую физику». См., например, книгу С. Вольфрама: Stephen Wolfram, «A New Kind of Science». Champaign, Ill.: Wolfram Media, 2002; и книгу С. Ллойда: Seth Lloyd, «Programming the Universe». New York: Alfred A. Knopf, 2006. Математик Роджер Пенроуз считает, что человеческий разум основывается на невычислимых процессах и, следовательно, Вселенная, в которой мы обитаем, обязана содержать невычислимые математические функции. С этой точки зрения наша Вселенная не соответствует цифровой парадигме. См., например: Penrose Roger, «The Emperor’s New Mind». New York: Oxford University Press, 1989; Penrose Roger, «Shadows of the Mind». New York: Oxford University Press, 1994.

Загрузка...