Приведём конкретный пример свойства, которое может быть общим для всех вселенных из некоторой мультивселенной. В главе 2 отмечалось, что современные наблюдательные данные строго указывают на то, что кривизна пространства равна нулю. Однако довольно сложные математические вычисления показывают, что все пузырьки-вселенные в инфляционной мультивселенной обладают отрицательной кривизной. Грубо говоря, пространственные формы с равными значениями инфлатона — формы, определяемые соединением равных чисел на рис. 3.8б, — больше похожи на картофельные чипсы, чем на плоскую поверхность стола. Но даже в этом случае инфляционная мультивселенная остаётся совместимой с наблюдениями, потому что при расширении любой формы её кривизна уменьшается (кривизна жемчужины всем очевидна, а кривизна поверхности Земли не замечалась тысячелетиями). Если наш пузырёк-вселенная продолжает испытывать значительное расширение, его кривизна может быть отрицательной и при этом настолько малой, что современные измерения не смогут уловить отличие от нуля. Отсюда следует возможный тест. Если более точные наблюдения в будущем покажут, что кривизна пространства очень мала, но положительна, это опровергнет гипотезу о том, что наша Вселенная является частью инфляционной мультивселенной, как было отмечено Б. Фрайфогелем, М. Клебаном, М. Родригез Мартинезом и Л. Сасскиндом в статье: B. Freivogel, M. Kleban, M. Rodriguez Martinez, and L. Susskind «Observational Consequences of a Landscape», «Journal of High Energy Physics» 0603, 039 [2006]; если измерения дадут положительное значение для кривизны, равное примерно 10−5, это станет сильным аргументом против квантово-туннельных переходов, которые согласно теории заполняют струнный ландшафт (см. главу 6).