В разное время многие учёные, включая Нила Грахама; Брайса де Витта; Джеймса Хартли; Эварда Фархи, Джефри Голдстоуна и Сэма Гутмана; Дэвида Дойча; Сидни Коулмена; Дэвида Альберта и других, включая меня самого, независимо обнаружили удивительный математический факт, который, по видимому, является центральным для понимания природы вероятности в квантовой механике. Приведём его формулировку для математически подготовленного читателя: пусть ψ — волновая функция квантово-механической системы — вектор, являющийся элементом гильбертова пространства H. Волновая функция для n тождественных копий системы имеет, таким образом, вид . Пусть A — это произвольный эрмитов оператор с собственными значениями αk и собственными функциями . Пусть FK(A) — это оператор «частоты», который подсчитывает число раз, которое появляется в данном состоянии, принадлежащем . Тогда имеем следующий математический результат:
То есть при неограниченном росте числа тождественных копий системы волновая функция всей составной системы стремится к собственной функции оператора частоты с собственным значением . Это замечательный результат. Из самого определения собственной функции тогда следует, что в указанном пределе наблюдатель, измеряющий A, обнаружит αk дробное число раз, равное , что выглядит как самый прямой вывод знаменитого правила Борна для квантово-механической вероятности. С точки зрения многомирового подхода это означает, что миры, в которых число наблюдений αk не согласуется с правилом Борна, обладают нулевой нормой в гильбертовом пространстве в пределе произвольно больших n. В этом смысле кажется, будто квантово-механическая вероятность имеет прямую интерпретацию в рамках многомирового подхода. Все наблюдатели в многомировом подходе будут видеть результаты с частотами, которые соответствуют возникающим из стандартной квантовой механики, за исключением множества наблюдателей, норма которых в гильбертовом пространстве становится исчезающее мала при n, стремящемся к бесконечности. Хотя это выглядит многообещающим, но по зрелому размышлению возникают сомнения. В каком смысле можно говорить, что наблюдатель, норма которого в гильбертовом пространстве мала или норма которого стремится к нулю при n, стремящемся к бесконечности, неважен или не существует? Мы хотим сказать, что такие наблюдатели аномальны или «маловероятны», но как установить связь между нормой вектора в гильбертовом пространстве и этими характеристиками? Ситуацию можно разъяснить на примере. В двумерном гильбертовом пространстве с состояниями спин-вверх и спин-вниз рассмотрим состояние . При измерении это состояние даёт вероятность состояния спин-вверх примерно 0,98 и состояния спин-вниз примерно 0,02. Если рассмотреть n копий этой спиновой системы, , то при стремлении n к бесконечности подавляющее большинство членов в разложении этого вектора имеют примерно одинаковые количества состояний спин-вверх и спин-вниз. Поэтому подавляющее большинство наблюдателей (копий экспериментаторов) будут видеть состояния спин-вверх и спин-вниз в отношении, которое не согласуется с квантово-механическими предсказаниями. Лишь небольшое количество членов в разложении , у которых 98 процентов состояний спин-вверх и 2 процента состояний спин-вниз, будут согласованы с квантово-механическим ожиданием. Этот результат говорит нам, что только эти состояния и будут теми единственными, имеющими ненулевую норму при n, стремящемся к бесконечности. Тогда абсолютное большинство членов в разложении (абсолютное большинство копий экспериментаторов) следует рассматривать в некотором смысле как «несуществующие». Проблема состоит в том, чтобы понять, что всё это вообще значит.
Я независимо пришёл к описанному выше математическому результату во время подготовки к лекциям по курсу квантовой механики. Было бы полным восторгом получить вероятностную интерпретацию квантовой механики, напрямую следующую из математического формализма — я представляю как учащённо бились сердца всех физиков, которые, как и я, получили этот результат. Поражает, однако, сколь мало известен этот результат в физическом сообществе. Например, я не знаю ни одного стандартного учебника по квантовой физике, в котором он содержится. Я считаю, что этот результат можно осмыслить с нескольких ракурсов: во-первых, как сильную математическую мотивацию вероятностной интерпретации волновой функции Борном — если бы Борн не «угадал» эту интерпретацию, то кто-нибудь, в конце концов, вывел бы её прямо из математического формализма; во-вторых, как проверку совместимости вероятностной интерпретации — если бы этот математический результат не выполнялся, то встал бы вопрос о внутренней осмысленности вероятностной интерпретации волновой функции.