10

Образно говоря, можно считать, что в силу квантовой механики частицы всегда находятся в состоянии, которое мне нравится называть «квантовым дрожанием»: что-то вроде неизбежных случайных квантовых вибраций, что придаёт самому понятию частицы с определённым положением и скоростью (импульсом) приближённый смысл. В этом смысле изменения в положении/скорости, достаточно малые, чтобы быть на равных с квантовыми флуктуациями, являются квантово-механическим «шумом» и, следовательно, не имеют значения.

На более точном языке, если погрешность в измерениях положения умножить на погрешность в измерениях импульса, то результат — неопределённость — всегда больше, чем число, называемое постоянной Планка (в честь Макса Планка, одного из пионеров квантовой физики). Это, в частности, означает, что точное разрешение в процессе измерения положения частицы (небольшая погрешность) обязательно приведёт к большой неопределённости при измерении импульса частицы и, за компанию, её энергии. Поскольку энергия всегда ограничена, разрешение при измерении положения, таким образом, тоже является ограниченным.

Также отметим, что эти понятия всегда будут применяться в конечной пространственной области — как правило, в областях, размер которых сопоставим с современным космическим горизонтом (как в следующем разделе). Область конечного размера, пусть даже большая, подразумевает максимальную неопределённость при измерении положения. Если предполагается, что частица находится в данной области, то неопределённость её положения конечно же будет не больше размера самой области. Согласно принципу неопределённости, такая максимальная неопределённость в положении приводит к минимальной неопределённости при измерении импульса. Помимо ограниченного разрешения при измерении местоположения, мы видим редукцию от бесконечного к конечному числу возможных различных конфигураций положений и скоростей частицы.

Вы всё ещё можете задаваться вопросом о том, что препятствует построению прибора, способного измерять положения частицы с ещё большей точностью. Это также касается энергии. Как описано в книге, если вы хотите измерить положение частицы с большей точностью, необходимо использовать более точный прибор. Для определения местоположения мухи в комнате можно включить обычный верхний свет. Для определения положения электрона необходимо осветить его узким лучом мощного лазера. Для ещё более точного определения положения электрона надо использовать ещё более мощный лазер. Когда более мощный лазер бьёт по электрону, его скорость сильно искажается. Таким образом, ключевой момент здесь в том, что точность определения положения частицы достигается за счёт огромных изменений скорости частицы — и, следовательно, огромных изменений её энергии. Если есть предел того, сколько энергии может иметь частица, а такой предел есть всегда, то также есть предел того, насколько точно можно измерить её положение.

Таким образом, ограниченность энергии в ограниченной пространственной области приводит к конечному разрешению при измерении как положения, так и скорости.

Загрузка...