Глава 4. Объединяя законы природы На пути к теории струн

Современная космология, от Большого взрыва до инфляции, ведёт своё начало из одного научного ядра: общей теории относительности Эйнштейна. В новой теории гравитации Эйнштейн отбросил общепринятое представление о жёстком и неизменном пространстве и времени; перед наукой предстал динамичный космос. Открытия такого масштаба крайне редки. Но Эйнштейн мечтал о покорении ещё более высоких вершин. С накопленным к 1920-м годам математическим арсеналом и геометрической интуицией он приступил к развитию единой теории поля.

Под единой теорией поля Эйнштейн подразумевал некую схему, которая позволит вплести все силы природы в единый и самосогласованный математический ковёр. Вместо одного набора законов для одних физических явлений и другого набора для других, Эйнштейн хотел свести все известные законы под единый свод. Но десятилетия напряжённой работы Эйнштейна в направлении объединения не оказали в то время значительного влияния — цель была великой, но для неё не пришло ещё время. Позднее другие исследователи подхватили знамя единой теории, широко шагая вперёд. Наиболее успешная схема объединения получила название теория струн.

В моих предыдущих книгах «Элегантная Вселенная» и «Ткань космоса» рассказывалось об истории возникновения теории струн и её основных свойствах. За годы, прошедшие с момента появления этих книг, состояние и общий статус теории привлекли внимание широкой общественности, что совершенно естественно. Несмотря на все успехи теории струн, от неё ждут определённых предсказаний, экспериментальная оценка которых даст ответ на вопрос о правильности или неправильности теории. Так как три новых типа мультивселенных (которые мы обсудим в главах 5 и 6) возникают в теории струн, сейчас важно обсудить текущий статус теории и возможности для её экспериментальной проверки и согласования с наблюдательными данными. Это и будет содержанием текущей главы.

Краткая история объединения

Когда Эйнштейн размышлял об объединении, науке были известны две силы: гравитация, описываемая его собственными уравнениями, и электромагнетизм, описываемый уравнениями Максвелла. Эйнштейн предполагал объединить две теории в единую математическую конструкцию, которая сочленила бы действие всех сил в природе. Эйнштейн был преисполнен надежд о своей единой теории. Работы Максвелла по объединению в XIX столетии совершенно справедливо рассматривались им как образцовый вклад в копилку человеческой мысли. До Максвелла электричество, текущее по проводам, притяжение, вызываемое детским магнитиком, и свет, идущий от Солнца к Земле, считались тремя разными, никак не связанными друг с другом явлениями. Максвелл осознал, что на самом деле они составляют сплетённое воедино научное триединство. Электрические токи порождают магнитные поля; магниты, перемещающиеся рядом с проводами, порождают в них электрические токи; а волнообразные возмущения, бегущие сквозь электрические и магнитные поля, порождают свет. Эйнштейн ожидал, что его собственная работа приведёт к продвижению программы объединения Максвелла и станет следующим и, возможно, финальным шагом на пути к единому описанию законов природы — такому описанию, в котором будут объединены электромагнетизм и гравитация.

Цель была весьма амбициозна, и Эйнштейн отнёсся к ней очень серьёзно. У него была уникальная способность полностью отдаваться задаче, которую он перед собой поставил, и последние тридцать лет своей жизни он полностью посвятил проблеме объединения. Его личный секретарь Хелен Дукас была рядом с ним в принстонском госпитале в предпоследний день его жизни, 17 апреля 1955 года. Она вспоминает, как прикованный к постели Эйнштейн почувствовал себя лучше и сразу же попросил принести черновики с уравнениями, в которых он писал и писал математические символы в безуспешной надежде, что единая теория поля выкристаллизуется. Настало утро, но Эйнштейн не проснулся. Его последние вычисления не пролили больше света на вопрос объединения.{24}

Немногие современники Эйнштейна разделяли его страсть к поискам объединения. С середины 1920-х до середины 1960-х годов физики, руководствуясь квантовой механикой, делали успехи в раскрытии тайны атома и использовании его скрытой мощи. Возник мощный очевидный соблазн подсмотреть, из чего устроена материя. И хотя многие соглашались, что единая теория была достойной целью, но в эру, когда теоретики и экспериментаторы рука об руку работали над открытием законов микромира, интерес к ней ослабевал. С уходом Эйнштейна работа над единой теорией практически прекратилась.

Вся глубина его неудачи была осознана, когда в последующих исследованиях выяснилось, что объединение осуществлялось в слишком узких рамках. Эйнштейн не только принижал роль квантовой физики (он полагал, что единая теория вытеснит квантовую механику, и поэтому нет никакой надобности закладывать её в основы теории), но в его работе не учитывались два дополнительных взаимодействия, обнаруженные экспериментально: сильное ядерное взаимодействие и слабое ядерное взаимодействие. Первое из них является тем сильным клеем, который не позволяет распасться атомному ядру, а второе, помимо прочего, ответственно за радиоактивный распад. Единая теория должна объединять не две силы, а четыре; мечта Эйнштейна стала ещё более призрачной.

В конце 1960-х и в начале 1970-х годов пошла обратная волна. Физики осознали, что методы квантовой теории поля, успешно применённые в электромагнетизме, также хорошо описывают слабое и сильное ядерные взаимодействия. Таким образом, все три негравитационные силы описываются на одном математическом языке. Более того, при подробном исследовании этих квантовых теорий поля — в основном в работах Шелдона Глэшоу, Стивена Вайнберга и Абдуса Салама, отмеченных Нобелевской премией, а также в последующих работах Глэшоу и его гарвардского коллеги Говарда Джорджи — обнаружились взаимосвязи, указывающие на возможное единство электромагнитных, слабых и сильных взаимодействий. Руководствуясь идеей Эйнштейна почти полувековой давности, эти теоретики доказали, что три на первый взгляд различные силы могут на самом деле быть проявлением единой, монолитной силы природы.{25}

Всё это явилось впечатляющим продвижением к единой теории, однако на таком обнадёживающем фоне возникла досадная проблема. Когда учёные применили методы квантовой теории к четвёртой силе в природе — гравитации, оказалась, что математика просто не работает. Вычисления, вовлекающие квантовую механику и общерелятивистское описание гравитационного поля по Эйнштейну, привели к странным результатам, равносильным математической галиматье. Как бы успешно не работали общая теория относительности и квантовая механика на своих естественных масштабах, на больших и малых расстояниях, бессмысленный результат, полученный при попытке их объединения, означал глубокую трещину в понимании законов природы. Являясь изначально лишь эстетическим устремлением, объединение стало логической необходимостью.

В середине 1980-х годов произошёл следующей ключевой скачок. Новая теория, теория суперструн, завладела умами физиков по всему миру. Она смягчила разногласия между общей теорией относительности и квантовой механикой и дала надежду, что гравитация может быть встроена в объединённый квантово-механический каркас. Наступила эра суперструнного объединения. Исследования шли с огромной скоростью, и тысячи журнальных страниц быстро заполнились вычислениями, прояснившими разные аспекты нового подхода и создавшими фундамент для его последовательной формулировки. Была развита впечатляющая и изощрённая математическая структура, но многое в теории суперструн (для краткости, теории струн) оставалось неясным.{26}

Позже, начиная с середины 1990-х годов, попытки теоретиков распутать эти загадки неожиданно привели теорию струн к сюжету с мультивселенными. Учёным давно было известно, что математические методы, применяемые при анализе теории струн, используют множество приближений, а потому их можно усовершенствовать. Когда была сделана часть уточнений, учёные осознали, что соответствующий математический аппарат ясно указывает, что наша Вселенная является, возможно, частью некоторой мультивселенной. На самом деле, из математики теории струн следует не одна мультивселенная, а несколько различных типов мультивселенных, частью которых мы можем быть.

Для полного осознания этих захватывающих и дискуссионных идей и для понимания их роли в неослабевающем поиске законов космоса, следует отступить на шаг назад и оценить для начала статус теории струн.

Ещё раз о квантовых полях

Давайте начнём с более внимательного рассмотрения традиционной квантовой тории поля, оказавшейся столь успешной. Это послужит подготовкой к обсуждению струнного объединения, а также поможет выявить ключевые взаимосвязи между этими двумя подходами к формулировке законов природы.

В главе 3 обсуждалось, что классическая физика описывает поле как нечто типа тумана, который пронизывает область пространства и может переносить возмущения в виде ряби и колебаний. Если бы Максвелл описывал свет, например, освещающий в данный момент этот текст, он бы с восторгом рассказывал об электромагнитных волнах, которые исходят от солнца или от настольной лампы и колеблются в пространстве, направляясь к этой странице. Он стал бы математически описывать движение волн с помощью чисел, изображающих силу поля и направление поля в каждой точке пространства. Колеблющееся поле соответствует колеблющимся числам: численное значение поля в каждой заданной точке периодически увеличивается и уменьшается.

Вовлечение в квантовую механику понятия поля приводит к квантовой теории поля, обладающей двумя существенно новыми свойствами. Мы встречались с ними ранее, но стоит напомнить. Во-первых, квантовая неопределённость заставляет значение поля в каждой точке случайно колебаться — вспомните флуктуирующее поле инфлатона в инфляционной космологии. Во-вторых, подобно воде, состоящей из молекул H2O, квантово-механическое поле состоит из бесконечно малых частиц, известных как кванты поля. Кванты электромагнитного поля — это фотоны, и поэтому квантовая физика изменяет классическое описание вашей настольной лампы, данное Максвеллом, — теперь лампа излучает устойчивый поток из 100 миллиардов миллиардов фотонов в секунду.

Десятилетия дальнейших исследований установили, что эти свойства квантовой механики, применённые к полям, являются совершенно общими. Каждое поле подвержено квантовым флуктуациям. Каждое поле сопоставляется какому-то виду частиц. Электроны — это кванты электронного поля. Кварки — это кванты кваркового поля. В качестве (очень) приближённого наглядного образа физики иногда думают о частицах как об узлах или плотных крупицах соответствующего поля. Но как бы вы не представляли частицы, в рамках квантовой теории поля они математически описываются как крохотные крапинки или точки, не имеющие пространственного размера и внутренней структуры.{27}

Наша вера в квантовую теорию поля обусловлена одним существенным фактом: ни один эксперимент не противоречит её предсказаниям. Наоборот, данные подтверждают, что уравнения квантовой теории поля описывают поведение частиц с изумительной точностью. Наиболее впечатляющим примером является квантовая теория поля электромагнитных сил, квантовая электродинамика. С её помощью физики провели подробные вычисления магнитных свойств электрона. Работа достаточно трудоёмкая, и точные результаты потребовали десятилетий вычислений. Но это того стоило. Полученные результаты совпадают с реальными измерениями с точностью до десяти знаков после запятой, что является совершенно невообразимым согласием теории и эксперимента.

После такого успеха можно ожидать, что квантовая теория поля является математическим фундаментом для понимания всех сил в природе. Многие известные физики разделяли такую точку зрения. В результате упорного труда многих из них к концу 1970-х было установлено, что слабое и сильное ядерные взаимодействия действительно прекрасно описываются квантовой теорией поля. Оба взаимодействия аккуратно описаны в терминах полей — сильные и слабые поля, — распространяющихся и взаимодействующих согласно математическим правилам квантовой теории поля.

Однако, как указывалось выше в историческом обзоре, многие из упомянутых физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше. Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать. Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнуться друг от друга, притом что они электромагнитно притягиваются и гравитационно отталкиваются, — как правило, приводит к ответу бесконечность. И хотя некоторые вещи во Вселенной и могут быть бесконечными, например протяжённость пространства и количество заполняющего его вещества, но вероятности бесконечными быть не могут. По определению, значение вероятности должно находиться между 0 и 1 (между 0 и 100, если считать в процентах). Бесконечная вероятность совсем не означает, что нечто скорее всего произойдёт, или определённо случится; скорее наоборот — это бессмыслица, как говорить об одиннадцатом яйце в десятке. Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно.

Физики выяснили, что проблема коренится в дрожании и флуктуациях из-за квантовой неопределённости. Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Возникли разные математические противоречия, такие как бесконечные вероятности.

Чтобы понять, почему так происходит, представьте, что вы владелец старого дома в Сан-Франциско. Если кто-то из ваших жильцов устраивает слишком бурные вечеринки, вам, наверное, придётся поднапрячься, чтобы привести жильцов в чувство, но вы точно можете не беспокоиться, что пирушка нарушит устойчивость самого здания. Однако, если начнётся землетрясение, вы столкнётесь с более серьёзной проблемой. Флуктуации трёх негравитационных полей — полей, что населяют здание пространства-времени, — подобны неутомимым участникам вечеринок. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать.{28}

В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым, так что для его описания необходимо привлекать как квантовую механику, так и общую теорию относительности. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать в самый критический момент анализа, оставляя без ответа вопросы, касающиеся того, как Вселенная родилась и как она, возможно, умрёт в центре чёрной дыры.

Более того — и это действительно впечатляюще, — отвлекаясь от озвученных примеров чёрных дыр и Большого взрыва, можно вычислить, насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10−99 кубического сантиметра (грубо говоря, это сфера с радиусом 10−33 сантиметра с так называемой планковской длиной, как показано на рис. 4.1).{29} Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё. В целях объединения гравитации и квантовой механики потребуется совершить множество переходов, сталкиваясь с известным и неизвестным на всей этой гигантской территории, которая по большей части остаётся экспериментально недоступной. Такая задача весьма амбициозна и многие учёные были убеждены, что она нерешаема.

Рис. 4.1. Планковская длина, на которой сходятся гравитация и квантовая механика, примерно в 100 миллиардов миллиардов раз меньше, чем любая область, когда-либо исследованная экспериментально. На схеме каждое большое деление соответствует уменьшению размера в 1000 раз; благодаря этому данная схема целиком умещается на одной странице, что, однако, визуально снижает масштабность этого огромного диапазона. Для лучшего понимания укажем, что если увеличить атом до размеров наблюдаемой Вселенной, то планковская длина будет равна размерам обычного дерева

Поэтому вы можете представить то удивление и недоверие, когда в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн.

Теория струн

Хотя теория струн имеет репутацию сложной теории, её основная идея очень проста. Мы видели, что стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля. С каждым типом частиц связан свой тип поля. Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого в теории струн предлагается рассматривать их как крошечные, струноподобные вибрирующие нити, как на рис. 4.2. Приглядитесь поближе к любой частице, которая раньше считалась элементарной, и вы увидите, как того требует теория, крохотную вибрирующую струнку. Загляните поглубже в электрон и вы обнаружите струну, загляните поглубже в кварк и вы опять обнаружите струну.

Рис. 4.2. Согласно струнному объяснению устройства природы, на планковских расстояниях фундаментальные составляющие материи имеют вид струноподобных нитей. Однако из-за ограниченности разрешающей способности нашего оборудования мы видим эти струны как точки

При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы — лейтмотив всей теории струн, — но вибрируют они по-разному. Электрон менее массивен чем кварк, и согласно теории струн это означает, что струна электрона вибрирует менее энергично, чем струна кварка (очередное проявление эквивалентности энергии и массы, воплощённое в уравнении E = mc2). Электрон также обладает электрическим зарядом, величина которого превышает величину заряда кварка, и эта разница объясняется другими, более тонкими, различиями в струнном вибрационном поведении каждого из них. Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот.

На самой деле, теория побуждает нас думать, что вибрирующие струны не просто порождают свойства частицы-хозяина, а что они и есть сама частица. По причине бесконечно малого размера струны, порядка планковской длины — 10−33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны. Большой адронный коллайдер, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10−19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц, подобно тому как Земля выглядит как точка, если на неё смотреть с Плутона. Тем не менее, согласно теории струн, частицы являются струнами.

В этом, в двух словах, и заключается теория струн.

Струны, точки и квантовая гравитация

У теории струн есть много других существенных свойств, и её развитие значительно расширило то схематическое описание, которое я изложил. В этой главе (а также в главах 5, 6 и 9) мы познакомимся с некоторыми наиболее важными достижениями, но сейчас я хотел бы подчеркнуть три особо важных момента.

Во-первых, когда учёные физики предлагают модель описания природы с помощью квантовой теории поля, они также выбирают поля, которые войдут в теорию. Этот выбор диктуется экспериментальными ограничениями (каждый известный тип частиц определяет отбор соответствующего поля), а также теоретическими предпосылками (гипотетические частицы и их поля, такие как инфлатон и поле Хиггса, вводятся для изучения открытых и спорных вопросов). Главным примером является Стандартная модель. Рассматриваемая как венец достижений физики частиц XX столетия благодаря своей способности правильно описывать огромное количество данных, собранных на ускорителях частиц по всему миру, Стандартная модель является квантовой теорией поля, в которой присутствуют пятьдесят семь различных квантовых полей (это поля, соответствующие электрону, нейтрино, фотону и различным типам кварков — u-кварку, d-кварку, c-кварку и так далее). Стандартная модель, безусловно, крайне успешна, но многие физики полагают, что по-настоящему фундаментальное понимание не требует такого разношёрстного набора ингредиентов.

Впечатляющее свойство теории струн состоит в том, что частицы определяются самой теорией: разные типы частиц соответствуют разному вибрационному поведению струны. И поскольку вибрационное поведение задаёт свойства соответствующей частицы, то если мы поймём теорию настолько хорошо, что определим все типы вибрационного поведения, мы сможем объяснить все свойства всех частиц. Тогда потенциал и перспективы теории струн заключаются в том, чтобы превзойти квантовую теорию поля путём получения всех свойств частиц математически. Это не только объединит всё на свете под зонтиком вибрирующих струн, а также покажет, что будущие «сюрпризы» — как, например, открытие неизвестных пока типов частиц — встроены в теорию струн с самого начала и в принципе будут доступны при достаточно упорных вычислениях. Теория струн строится не последовательными приближениями к полному описанию природы. Она предлагает полное описание с самого начала.

Во-вторых, среди возможных вибраций струны есть одна, обладающая всеми нужными свойствами для того, чтобы быть квантовой частицей гравитационного поля. Хотя дострунные попытки свести воедино гравитацию и квантовую механику оказались неудачными, исследования выявили свойства, которыми будет обладать гипотетическая частица — получившая название гравитон, — соответствующая квантовому гравитационному полю. Было показано, что гравитон должен быть безмассовым, не иметь заряда и обладать квантово-механическим свойством, известным как спин-2. (Грубо говоря, гравитон должен вращаться как волчок, причём в два раза быстрее, чем фотон.){30} Замечательно, что первые струнные теоретики — Джон Шварц, Джоэл Шерк и, независимо от них, Тамиаки Йонея — обнаружили, что в списке струнных вибраций присутствует именно такая вибрация, свойства которой соответствуют гравитону. В точности соответствуют. Когда в середине 1980-х годов были выдвинуты убедительные доводы в пользу того, что теория струн является математически согласованной квантово-механической теорией (в основном благодаря работам Шварца и его соавтора Майкла Грина), присутствие гравитонов означало, что теория струн является давно искомой квантовой теорией гравитации. Этот пункт в списке достижений теории струн наиболее важен, именно поэтому она так быстро воспарила к вершинам мировой научной известности.[21]{31}

В-третьих, как бы ни была радикальна теория струн, она идёт по проторённому пути, известному в истории физики. Обычно, новые и успешные теории не игнорируют предыдущие достижения. Наоборот, успешные теории, как правило, включают в себя добытые ранее знания, тем самым значительно расширяя область физических явлений, которые можно аккуратно описать. Специальная теория относительности расширяет наше понимание мира высоких скоростей; общая теория относительности идёт дальше и учитывает большие массы (там, где действуют сильные гравитационные поля); квантовая механика и квантовая теория поля вводят нас в мир малых расстояний. Понятия, привлекаемые этими теориями, и предсказываемые ими свойства не похожи ни на что известное ранее. Более того, если применять эти теории в привычных рамках доступных нам скоростей, размеров и масс, они сведутся к описаниям, открытым до XX столетия — к классической механике Ньютона и классическим полям Фарадея, Максвелла и других.

Возможно, теория струн является следующим и окончательным шагом на этом пути. В единых рамках она описывает области, подвластные релятивизму и квантам. Более того, важно то, что в теории струн это происходит таким образом, что охватываются все открытия, сделанные ранее. Может показаться, что теория, основанная на вибрирующих нитях, не имеет ничего общего с картиной гравитации как искривлённого пространства-времени, диктуемой общей теорией относительности. Тем не менее, применив теорию струн в ситуации, когда гравитация существенна, а квантовая механика нет (например, для массивного объекта большого размера, такого как Солнце), вы получите уравнения Эйнштейна. Вибрирующие нити и точечные частицы тоже мало похожи. Однако, применив теорию струн в ситуации, когда существенна квантовая механика, а гравитация нет (например, для небольших наборов медленно вибрирующих и движущихся с большой скоростью струн, или для сильно растянутых струн; энергия таких струн мала, что эквивалентно малости массы — поэтому гравитацией можно пренебречь), вы увидите, что математика теории струн трансформируется в математику квантовой теории поля.

На рис. 4.3 показаны логические связи между основными теориями, развитыми со времён Ньютона. Теория струн могла бы претендовать на существенный отрыв от своих предшественников и отступить от нарисованной схемы. Замечательно, что этого не происходит. Теория струн достаточно революционна для преодоления барьеров физики двадцатого столетия. При этом она достаточно консервативна, чтобы прошедшие три столетия открытий смогли уютно разместиться в её математическом аппарате.

Рис. 4.3. Взаимосвязи между основными теоретическими достижениями в физике. С исторической точки зрения, новые и успешные теории расширяют границы нашего понимания (более высокие скорости, бо́льшие массы, меньшие расстояния) и сводятся к предыдущим теориям в менее экстремальных физических условиях. Теория струн следует именно такому пути прогресса — расширяет границы понимания, и при определённых условиях сводится к общей теории относительности и квантовой теории поля

Пространственные измерения

Теперь обсудим кое-что необычное. Переход от точек к нитям — лишь часть нового подхода, предлагаемого теорией струн. В первые годы исследований по теории струн физики столкнулись с фатальными математическими изъянами (названными квантовыми аномалиями), влекущими за собой такие неприемлемые процессы, как спонтанное возникновение или исчезновение энергии. Как правило, когда подобные проблемы возникают в обсуждаемой теории, физики реагируют очень остро и быстро. От такой теории отказываются. Действительно, в 1970-х многие думали, что с теорией струн так и надо поступить. Но некоторые исследователи упорно придерживались другой точки зрения.

В результате сложных исследований было выяснено, что проблемные свойства тесно связаны с числом пространственных измерений. Вычисления показали, что если бы у Вселенной было не три привычных измерения, а больше — дополнительные измерения помимо обычных вправо/влево, вперёд/назад и вверх/вниз, — то уравнения теории струн стали бы непротиворечивыми. Точнее, в уравнениях теории струн нет изъянов во вселенной с девятью пространственными измерениями и одним временным, что в совокупности составляет десять измерений.

Было бы здорово объяснить, как это происходит, не вдаваясь в технические подробности. Однако я не умею этого делать, и никогда не встречал кого-нибудь, кто умел. Я предпринял такую попытку в «Элегантной Вселенной», но описал только самым общим образом, как число измерений влияет на струнные вибрации, и не объяснил, откуда возникает выделенное значение десять. Так что здесь дам некую техническую наводку. В теории струн есть одно уравнение, в котором присутствует вклад вида (D − 10) умножить на (проблему), где D — это число пространственно-временных измерений, а проблема — это некое математическое выражение, приводящее к проблемному физическому явлению, подобному ранее упомянутому нарушению закона сохранения энергии. Я не могу предложить никакого интуитивного, нетехнического объяснения, почему уравнение имеет именно этот вид. Но в вычислениях возникает именно оно. Простое, но ключевое наблюдение состоит в том, что если число измерений равно десяти, а не четырём, как можно было бы ожидать, вклад в уравнение становится 0 умножить на проблему. Поскольку умножение на ноль всегда даёт ноль, во вселенной с десятью пространственно-временными измерениями проблема исчезает. Таково математическое объяснение. Именно поэтому физики, занимающиеся теорией струн, рассматривают вселенную, в которой более четырёх пространственно-временных измерений.

Но даже если вы всем умом стремитесь идти по пути, благословлённому математикой, если об идее дополнительных измерений вы слышите в первый раз, то такая гипотеза может показаться довольно странной. Пространственные измерения так просто не теряются, ведь это не ключи от машины или один из ваших любимых носков. Если бы во Вселенной, помимо высоты, ширины и длины существовало что-то ещё, то это обязательно кто-нибудь заметил бы. Хотя и не обязательно. В начале XX столетия в нескольких пророческих статьях немецкого математика Теодора Калуцы и шведского физика Оскара Клейна было высказано предположение о существовании измерений, легко ускользающих от обнаружения. Они предсказывали, что в отличие от привычных пространственных измерений, простирающихся на большие или даже бесконечные расстояния, могут существовать дополнительные измерения, настолько малые и скрученные, что их очень трудно увидеть.

Возьмите обычную трубочку для коктейлей. А теперь вообразите, что она необычайно длина, что при той же ширине она по высоте равна Эмпайр-стейт-билдинг. Поверхность этой трубочки (как и любой другой) имеет два измерения. Длинное вертикальное измерение и короткое круговое измерение, накрученное вокруг трубочки. Теперь представьте, что вы смотрите на эту трубочку с другого берега реки Гудзон (рис. 4.4а). Трубочка очень тонкая, она выглядит как вертикальная линия, тянущаяся от земли до неба. Остроты зрения недостаточно, чтобы разглядеть маленькое круговое измерение с такого расстояния, хотя оно есть в каждой точке вдоль всего длинного вертикального измерения. Можно прийти к неправильному выводу, что поверхность трубочки имеет одно измерение, а не два.[22]

Рис. 4.4. а) Поверхность высокой трубочки имеет два измерения; длинное вертикальное измерение легко увидеть, а малое круговое измерение обнаружить труднее;

б) Гигантский ковёр имеет три измерения; протяжённые измерения с севера на юг и с запада на восток легко увидеть, а невысокий ворс ковра обнаружить труднее

Или представьте другую визуальную аналогию — огромный ковёр, покрывающий солончаки штата Юта. С высоты птичьего полёта ковёр выглядит как ровная поверхность с двумя измерениями, тянущимися с севера на юг и с запада на восток. Но если спуститься на землю и рассмотреть ковёр вблизи, можно увидеть, что его поверхность покрыта плотным ворсом: крохотные нитяные петельки протянуты в каждой точке ровной основы ковра. У ковра есть два больших, легко видимых измерения (с севера на юг и с запада на восток), но также одно малое измерение (петельки из ниток), которые труднее обнаружить (рис. 4.4б).

Из предложения Калуцы — Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость, подобно вертикальной размерности трубочки или географическим измерениям ковра, велики (может даже бесконечны). Однако, если дополнительное пространственное измерение скручено подобно круговому измерению трубочки или ковра и имеет чрезвычайно малый размер — в миллионы или даже в миллиарды раз меньше, чем размер атома, — оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Такое измерение действительно может легко потеряться. Так начиналась теория Калуцы — Клейна, гипотеза о том, что наша Вселенная имеет больше трёх пространственных измерений (рис. 4.5).

Рис. 4.5. Теория Калуцы — Клейна постулирует существование крошечных дополнительных пространственных измерений, прикреплённых к каждой точке обычных больших трёх пространственных измерений. Если бы можно было значительно увеличить структуру пространства, гипотетические дополнительные измерения стали бы видимыми. (Дополнительные измерения прикреплены для пущей ясности только к узловым точкам, изображённым на иллюстрации.)

Из вышесказанного следует, что предложение о «дополнительных» измерениях хоть и непривычно, но всё же не является абсурдом. Неплохое начало, но сразу же возникает вопрос: если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея? Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что одним росчерком пера, в прямом смысле слова, он может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением. Результат изучения модифицированных уравнений оказался настолько захватывающим, что, как вспоминает его сын, Калуца повёл себя непривычным для него образом: отбросив обычную сдержанность, он ударил обеими руками по столу, вскочил на ноги и запел арию из «Женитьбы Фигаро».{32} Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение. О, чудо! Получив это уравнение, Калуца распознал в нём уравнение электромагнитного поля, обнаруженное Максвеллом полувеком ранее.

Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления, рябь. Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием.

В 1919 году, узнав о гипотезе объединения в дополнительных измерениях, Эйнштейн засомневался. Он был впечатлён подходом, который позволил продвинуть вперёд его мечту, но его беспокоила неординарность самого метода. После двухгодичных размышлений, задержав при этом выход в печать статьи Калуцы, Эйнштейн наконец-то принял эту идею и мгновенно стал одним из самым рьяных поклонников дополнительных пространственных измерений. В своих собственных поисках единой теории Эйнштейн постоянно возвращался к этой теме.

Несмотря на благословение самого Эйнштейна, последующие исследования показали, что программа Калуцы — Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались искусные способы обойти эту проблему, наравне с всевозможными обобщениями и модификациями исходного предложения Калуцы — Клейна, однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.

Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он требовал их присутствия. Таким образом, в теории струн возник новый, готовый к использованию формализм для привлечения программы Калуцы — Клейна. На вопрос «если теория струн является долгожданной искомой единой теорией, тогда почему мы не видим требуемые дополнительные измерения?» до нас эхом, сквозь десятилетия, доносится ответ теории Калуцы — Клейна, что эти измерения находятся вокруг нас, но слишком малы, чтобы их увидеть. Теория струн возродила программу Калуцы — Клейна, и к середине 1980-х годов учёные во всём мире воодушевлённо полагали, что это только вопрос времени — самого близкого времени, как говорили наиболее рьяные сторонники, — когда теория струн приведёт к полному описанию всей материи и взаимодействий.

Большие надежды

В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. Во многом похожая атмосфера царила в 1920-х годах, когда перед учёными распахнул свои двери мир квантовых явлений. При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, объяснении свойств материи, определении числа пространственных измерений, прояснении сингулярностей чёрных дыр, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути. С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы сегодня можем экспериментально измерить, дорога будет длинная, даже по самым скромным оценкам.

В какой её части мы находимся? В конце главы я кратко опишу самые современные достижения в некоторых ключевых областях (оставляя в стороне вопрос о параллельных вселенных, что будет более подробно рассмотрено в последующих главах), дам оценку успехам и нерешённым проблемам.

Теория струн и свойства частиц

Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Например, почему электрон обладает именно такой массой, а u-кварк имеет именно такой электрический заряд? Интерес к этим вопросам не просто академический, он отражает очень важный факт, что упоминался ранее. Если бы у частиц были другие свойства — например, будь электрон чуть тяжелее или легче, или электростатическое отталкивание между электронами сильнее или слабее, — ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой.[23] Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле.

Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными. Если нам удастся ответить на этот вопрос, это станет одним из самых важных шагов на пути к пониманию того, почему Вселенная такая как она есть.

В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория, — поэтому теория успешно работает с широким спектром значений масс и зарядов.[24] Если вообразить мир, где масса электрона или его заряд будут меньше или больше, чем в нашем, то квантовая теория поля опишет явления в таком мире, не моргнув глазом; для этого всего лишь надо будет подстроить значения параметров в уравнениях теории.

Сможет ли теория струн справиться с этим лучше?

Одна из самых красивых черт струнной теории (то, что более всего меня поразило, когда я приступил к её изучению) состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Подобно тому как поток воздуха, проходящий сквозь духовой инструмент, приобретает колебательное движение, характер которого определяется геометрической формой инструмента, колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений.

Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби — Яу (на математическом жаргоне многообразия Калаби — Яу), названных в честь математиков Эудженио Калаби и Шин-Туна Яу, которые изучали их свойства задолго до осознания важности их роли в теории струн (рис. 4.6). Проблема в том, что нет какой-то одной, выделенной формы Калаби — Яу. Наоборот, подобно музыкальным инструментам, эти пространства имеют разные размеры и контуры. И так же как разные музыкальные инструменты издают разные звуки — дополнительные измерения, различающиеся по размерам и по форме (а также по другим параметрам, с которыми мы встретимся в следующей главе), порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.

Рис. 4.6. Крупный план пространственной структуры в теории струн, где показан пример дополнительных измерений, закрученных в одно из пространств Калаби — Яу. Подобно набивке на основе ковра, пространство Калаби — Яу прикреплено в каждой точке трёх привычных больших измерений (представленных двумерной решёткой), однако для простоты восприятия эти пространства размещены только в узлах решётки

Когда я начал заниматься теорией струн в середине 1980-х годов, было известно небольшое количество пространств Калаби — Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Моя диссертация стала одним из самых первых шагов в этом направлении. Спустя несколько лет, когда я стал постдоком (под руководством того самого Яу из Калаби — Яу), число пространств Калаби — Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения — но ведь для этого и существуют студенты! Время шло и число страниц в каталоге пространств Калаби — Яу только увеличивалось; как будет видно в главе 5, теперь их больше чем песчинок на пляже. На всех пляжах вместе взятых. Даже представить невозможно. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби — Яу то самое, единственное. Пока это никому не удалось.

Поэтому теория струн пока не реализовала свои возможности по объяснению свойств фундаментальных частиц. В этом отношении теория струн до сих пор не имеет особых преимуществ перед квантовой теорией поля.{33}

Однако, следует помнить, что слава теории струн в первую очередь основана на том, что она может решить центральную дилемму теоретической физики XX столетия — непримиримость общей теории относительности и квантовой механики. В рамках теории струн общая теория относительности и квантовая механика наконец-то гармонично соединяются. Именно в этом состоит самое важное преимущество теории струн, позволяющее обойти основную преграду, препятствующую применению стандартных методов квантовой теории поля. Если бы мы обладали лучшим пониманием математического аппарата теории струн и могли бы однозначно выбрать форму дополнительных измерений, ту, которая приведёт к объяснению наблюдаемых свойств частиц, это был бы феноменальный триумф. Однако нет никакой гарантии, что теория струн сможет с этим справиться. Более того, нет никакой необходимости требовать этого от неё. Квантовая теория поля заслуженно считается в высшей степени успешной теорией, хотя она не может объяснить фундаментальные свойства частиц. Если теория струн тоже не сможет это объяснить, но при этом ключевым образом продвинется намного дальше квантовой теории поля, включив в себя гравитацию, то только это уже будет монументальным достижением.

Действительно, в главе 6 мы увидим, что в космосе, заполненном параллельными мирами — как следует из некоторых современных версий теории струн, — было бы совершенно неправильно думать, будто математический анализ выявит единственную форму дополнительных измерений. Наоборот, подобно тому как множество различных форм ДНК приводят к разнообразию жизни на Земле, огромное разнообразие форм дополнительных измерений может приводить к множеству вселенных, населяющих струнную мультивселенную.

Теория струн и эксперимент

Если типичная струна имеет крохотный размер, как на рис. 4.2, то для обнаружения её протяжённой структуры — той самой характеристики, которая отличает её от частицы — потребуется ускоритель в миллионы миллиардов раз мощнее, чем Большой адронный коллайдер. При современных технологиях такой ускоритель будет примерно с галактику и будет потреблять каждую секунду столько энергии, сколько потратит весь мир за тысячелетие. Предполагая, что выдающийся технологический прорыв не предвидится, такая ситуация означает, что на сравнительно малых энергиях, достижимых на имеющихся ускорителях, струны неотличимы от точечных частиц. Такова экспериментальная версия упомянутого ранее теоретического факта: на низких энергиях теория струн сводится к квантовой теории поля. Таким образом, даже если теория струн и является правильной фундаментальной теорией, в широком диапазоне доступных экспериментов она будет проявляться как квантовая теория поля.

Это уже хорошо. Хотя квантовая теория поля не может объединить общую теорию относительности и квантовую механику, не может предсказать фундаментальные свойства частиц в природе, но она умеет объяснять великое множество экспериментальных данных. Измеренные на эксперименте свойства частиц берутся в качестве исходных данных (это определяет состав полей и кривые энергии), после чего с помощью математического аппарата теории предсказывается поведение этих частиц в других экспериментах, в основном на ускорителях. Получаемые результаты в высшей степени достоверны; именно по этой причине поколения учёных, занимающихся физикой частиц, используют квантовую теорию поля в качестве основного метода.

Выбор полей и кривых энергий в квантовой теории поля равносилен выбору формы дополнительных измерений в теории струн. Одна из проблем в теории струн состоит в том, что математика, которая связывает свойства частиц (таких как массы и заряды) с формой дополнительных измерений, в высшей степени нетривиальна. Поэтому работа в обратном направлении очень трудна — использование экспериментальных данных для определения конкретной формы дополнительных измерений, аналогично тому как такие данные определяют состав полей и кривых энергий в квантовой теории поля. Возможно, что однажды удача улыбнётся теоретикам и они смогут из экспериментальных данных определить форму дополнительных измерений в теории струн, но пока этого не произошло.

Поэтому в обозримом будущем наиболее обещающим способом связи теории струн с экспериментальными данными будут предсказания, которые, конечно, можно объяснить с помощью более традиционных методов, но для которых гораздо более естественное и убедительное объяснение возникает из теории струн. Конечно, можно теоретизировать насчёт того, что я печатаю этот текст пальцами ног, но гораздо более естественная и убедительная гипотеза — и я оцениваю её как правильную, — что я всё-таки печатаю пальцами рук. Аналогичные рассуждения применительно к экспериментам, собранным в табл. 4.1, вполне могут служить косвенными подтверждениями правильности теории струн.

Таблица 4.1. Эксперименты и наблюдения, способные установить связь между экспериментальными данными и теорией струн

Эксперимент/наблюдения Объяснение
Суперсимметрия В теории суперструн приставка «супер» отсылает к суперсимметрии — математической конструкции с чёткими следствиями: у каждой известной частицы должен иметься партнёр с такими же электрическими и сильными ядерными свойствами. Теоретики полагают, что эти частицы до сих пор не были обнаружены, потому что они тяжелее, чем их известные партнёры, и находятся вне досягаемости современных ускорителей. Энергии Большого адронного коллайдера может хватить для их рождения, поэтому многие считают, что мы, возможно, находимся на пороге открытия суперсимметричного характера природы.
Дополнительные измерения и гравитация Поскольку пространство является средой для гравитации, увеличение числа измерений расширяет область действия гравитации. Подобно постепенному растворению капли чернил в стакане с водой, сила гравитации размывается при распространении сквозь дополнительные измерения — что, возможно, объясняет слабость гравитационного взаимодействия (когда вы поднимаете чашку с кофе, сила ваших мышц преодолевает гравитационное притяжение всей Земли). Если нам удастся измерить силу гравитации на расстояниях, меньших чем размер дополнительных измерений, это позволит ухватить её прежде, чем она растворится во всём пространстве, и, следовательно, есть шанс обнаружить более сильное притяжение. На сегодняшний день, измерения на расстояниях примерно в один микрон (10−6 метра) не обнаружили никаких отклонений от предсказаний, сделанных для мира с тремя пространственными измерениями. Наличие отклонений при уменьшении расстояния даст убедительное доказательство существования дополнительных измерений.
Дополнительные измерения и потеря энергии Если дополнительные измерения существуют, но их размер меньше микрона, то они недоступны для экспериментов, напрямую измеряющих силу гравитации. Однако Большой адронный коллайдер предлагает другие способы их обнаружения. Осколки, возникающие при лобовых столкновениях быстрых протонов, могут выпасть из привычных трёх больших измерений и оказаться в других измерениях (где по причинам, которые мы рассмотрим позже, эти осколки, возможно, станут частицами гравитации, или гравитонами). В таком процессе осколки уносят с собой энергию, в результате чего наши детекторы после столкновения должны зафиксировать потерю энергии. Такая потеря энергии может убедительно свидетельствовать в пользу существования дополнительных измерений.
Дополнительные измерения и чёрные мини-дыры Обычно считается, что чёрные дыры — это остатки массивных звёзд, истративших своё ядерное топливо и схлопнувшихся под собственным весом, однако это слишком упрощённый подход. При достаточном сжатии стать чёрной дырой может всё, что угодно. Более того, если есть дополнительные измерения, то гравитация усиливается при действии на малых расстояниях, поэтому создать чёрную дыру будет легче, так как сильное гравитационное поле приводит к тому, что для создания того же самого гравитационного притяжения необходимо меньшее давление. Даже если столкнуть всего два протона на скоростях, достижимых на Большом адронном коллайдере, то можно накачать достаточно малый объём пространства таким количеством энергии, что запустится механизм образования чёрных дыр. Возникнет лишь слабое подобие чёрной дыры, но оно будет безошибочно узнаваемо. Математический анализ, основанный на работах Стивена Хокинга, показывает, что крошечные чёрные дыры быстро распадаются на более лёгкие частицы, следы которых могут быть обнаружены детекторами коллайдера.
Гравитационные волны Хотя размер струны очень мал, но если найдётся способ как-то её ухватить, её можно растянуть до больших размеров. Для этого потребуется приложить силу более чем 1020 тонн, но растяжение струны — это всего лишь вопрос приложения достаточной энергии. Теоретики обнаружили экзотические ситуации, когда энергия подобного растяжения рождается в астрофизических процессах, порождающих длинные струны, растянутые в пространстве. Их можно обнаружить, даже несмотря на очень большую отдалённость. Вычисления показывают, что при колебании длинной струны в пространстве-времени порождаются гравитационные волны — весьма специального характера, поэтому они могут дать ясный наблюдательный знак. В течение следующих нескольких десятилетий, если не раньше, высокочувствительные детекторы, расположенные на Земле и, при условии достаточного финансирования, на орбите, могут обнаружить эти волны.
Реликтовое излучение Реликтовое излучение уже продемонстрировало свои возможности в тестировании квантовой физики: экспериментально зафиксированные температурные колебания реликтового излучения возникают из квантовых флуктуаций, растянутых при пространственном расширении. (Вспомните пример со словами, написанными крохотными буквами на поверхности воздушного шарика, которые проявляются по мере надувания шарика.) Расширение пространства при инфляции так велико, что даже небольшие следы, оставленные струнами, могут растянуться настолько, чтобы их можно было обнаружить — возможно, это сделает спутник «Планк» Европейского космического агентства. Успех или неудача зависит от деталей поведения струн в ранней Вселенной — что за сообщение было оставлено струнами на поверхности раздувающегося вселенского шарика. Есть много разных идей и вычислений. Теоретики ждут, что скажут наблюдательные данные.

Возможные эксперименты ранжируются от экспериментов по физике частиц на Большом адронном коллайдере (поиск суперсимметричных частиц и указаний на дополнительные измерения) до настольных экспериментов (измерение силы гравитационного притяжения на расстояниях одной миллионной доли метра и даже меньше) и астрономических наблюдений (поиск определённых типов гравитационных волн и малых температурных колебаний реликтового излучения). В табл. 4.1 объясняются разные подходы, но общая оценка легко прослеживается. Положительный исход любого из этих экспериментов может быть объяснён без привлечения теории струн. Например, хотя математическое описание суперсимметрии (см. первую строчку в табл. 4.1) изначально было открыто в теоретических исследованиях по теории струн, с тех пор оно также используется в неструнных теоретических моделях. Таким образом, открытие суперсимметричных частиц станет подтверждением теории струн, но не бесспорным доказательством. Аналогично, хотя дополнительные пространственные измерения естественным образом возникают в теории струн, они также возникают и в неструнных моделях (мы помним, что Калуца, предлагая свою идею, совсем не думал о теории струн). Поэтому самой благоприятной следует рассматривать такую ситуацию, где будет получен ряд положительных результатов из тех, что приведены в табл. 4.1, которые подтвердят правильность теории в разных её проявлениях. И как в примере с печатью текста пальцами ног, неструнные объяснения окажутся надуманными перед лицом целого набора положительных результатов.

Отрицательные результаты экспериментов гораздо менее полезны. Провал в поисках суперсимметричных частиц может означать, что они не существуют или что они слишком тяжёлые, чтобы быть обнаруженными даже на Большом адронном коллайдере; провал в поисках свидетельств существования дополнительных измерений может означать, что они не существуют или что они слишком малы, чтобы быть доступными нашим технологиям; провал в поисках микроскопических чёрных дыр может означать, что гравитация не становится сильнее на малых расстояниях, или что наши ускорители недостаточно мощные для более глубокого проникновения в микромир; провал в поисках струнных проявлений в наблюдениях гравитационных волн или реликтового излучения может означать неправильность теории струн, или что эти проявления слишком малы, чтобы быть измеренным на современном оборудовании.

На сегодняшний день наиболее вероятно, что даже самые многообещающие положительные результаты экспериментов не смогут определённо подтвердить правоту теории струн, а отрицательные результаты, скорее всего, не смогут её опровергнуть.{34} При этом надо не ошибиться. Если мы обнаружим доказательства существования дополнительных измерений, суперсимметрии, чёрных мини-дыр или любого из других возможных проявлений теории струн, это станет важной вехой в поиске единой теории. Это придаст нам уверенность, что избранная нами математическая дорога ведёт в правильном направлении.

Теория струн, сингулярности и чёрные дыры

В большинстве ситуаций квантовая механика и гравитация успешно игнорируют друг друга, при этом первая применяется к малым объектам, таким как молекулы и атомы, а вторая к большим объектам, соразмерным звёздам и галактикам. Однако обе теории вынуждены встречаться в мирах, известных как сингулярности. Сингулярность — это любая физическая ситуация, реальная или гипотетическая, которая настолько экстремальна (огромные массы, малый размер, гигантская кривизна пространства, проколы или разрывы в самой пространственно-временной структуре), что квантовая механика и общая теория относительности ведут себя неадекватно, выдавая результаты, сродни сообщению об ошибке на экране калькулятора при попытке разделить на ноль.

Цель любой квантовой теории гравитации состоит в том, чтобы свести воедино квантовую механику и гравитацию таким образом, чтобы сингулярности исчезли. Разработанный математический аппарат должен быть непротиворечив даже в момент Большого взрыва или в центре чёрной дыры[25] и давать разумное описание ситуаций, которые в течение длительного времени ставили исследователей в тупик. Именно в этом направлении теория струн достигла своих самых впечатляющих успехов, уменьшив список сингулярностей.

В середине 1980-х годов группа исследователей, состоящая из Ланса Диксона, Джеффа Харви, Кумруна Вафы и Эдварда Виттена, пришла к выводу, что некоторые проколы в ткани пространства (называемые сингулярностями орбифолда), которые доставляли много хлопот уравнениям Эйнштейна, прекрасно ведут себя в теории струн. Ключ к успеху состоял в том, что струна в отличие от точечной частицы не может свалиться в такой прокол. Поскольку струна — это протяжённый объект, она может удариться о прокол, может обмотаться вокруг него либо воткнуться в него, но подобного рода умеренные взаимодействия совершенно не портят уравнения теории струн. Это важно не потому, что такие изъяны в пространстве действительно имеют место — может, да, а может, и нет, — а потому, что именно таких свойств мы хотим от квантовой теории гравитации: способности работать осмысленно в ситуации, когда по отдельности отказывают как общая теория относительности, так и квантовая механика.

В 1990-х годах в нашей работе с Полом Аспинволлом и Дэвидом Моррисоном, а также независимо Эдвардом Виттеном было установлено, что более сильные сингулярности (известные как флоп-сингулярности), возникающие при сжатии сферической области пространства до бесконечно малого размера, тоже описываются теорией струн. Интуиция подсказывает, что струна при движении может накрутиться на такую сжатую область пространства, подобно обручу на мыльный пузырь, создавая нечто вроде кругового ограждения. Вычисления показывают, что такой «струнный щит» сводит на нет любые потенциально разрушительные последствия и гарантирует, что уравнения теории струн остаются непротиворечивыми — никаких ошибок типа «1 разделить на 0», — даже когда отказывают уравнения общей теории относительности.

За прошедшие годы исследователи показали, что множество других, более сложных сингулярностей (с названиями конифолд, ориентифолд, энханкон и так далее) также полностью контролируются теорией струн. Таким образом, имеется растущий список ситуаций, в которых Эйнштейн, Бор, Гейзенберг, Уилер и Фейнман воскликнули бы: «Мы просто не понимаем, что происходит!», но теория струн даёт полный и непротиворечивый ответ.

Достигнут значительный прогресс. Но остаётся проблема устранения с помощью теории струн сингулярностей чёрных дыр и Большого взрыва, более суровых, чем рассмотренные ранее. Идя к этой цели, теоретики приложили немало усилий, и они добились значительных успехов. Но если подытожить, то впереди ещё долгий путь, прежде чем наиболее трудные и важные сингулярности будут полностью осознаны.

Тем не менее одно важное открытие пролило свет на теорию чёрных дыр. В 1970-х годах в работах Якоба Бекенштейна и Стивена Хокинга было установлено, что чёрные дыры обладают определённой степенью беспорядка, известной как энтропия (см. главу 9). Подобно тому как беспорядок, царящий в ящике для носков, отражает множество способов их случайного расположения, так и беспорядок внутри чёрной дыры, согласно фундаментальным физическим законам, свидетельствует о множестве вариантов случайного размещения её внутренностей. Однако даже после долгих усилий физикам не удалось достаточно хорошо разобраться в том, как устроены внутренности чёрных дыр, не говоря уж о том, чтобы проанализировать возможные способы их размещения. Струнные теоретики Эндрю Строминджер и Кумрун Вафа вырвались из этого тупика. Смешав фундаментальные ингредиенты теории струн (с некоторыми из них мы встретимся в главе 5), они построили математическую модель беспорядка чёрной дыры, достаточно простую и понятную, чтобы извлечь из неё численное значение энтропии. Полученный результат в точности совпал с ответом Бекенштейна и Хокинга. Хотя осталось много открытых вопросов (например, точная идентификация составляющих чёрной дыры), эта работа стала первым надёжным квантово-механическим анализом беспорядка чёрной дыры.[26]

Замечательный прогресс в изучении сингулярности чёрной дыры и её энтропии привёл физическую общественность к обоснованной убеждённости, что со временем оставшиеся трудности, связанные с чёрными дырами и Большим взрывом, будут преодолены.

Теория струн и математика

Сравнение с экспериментальными или наблюдательными данными является единственным способом определить, правильно ли теория струн описывает природу. Но эта цель оказалась труднодостижимой. Несмотря на все успехи теории струн, она остаётся исключительно математической конструкцией. Но было бы неправильным считать теорию струн простым потребителем математических идей. Наоборот, некоторые важные струнные достижения являются вкладом в развитие математики.

Как известно, работая над созданием общей теории относительности, Эйнштейн перерыл всю математическую литературу, пытаясь найти строгий язык описания искривлённых пространств. Более ранние математические достижения таких математиков, как Карл Фридрих Гаусс, Бернхард Риман и Николай Лобачевский, подвели под общую теорию относительности крепкий фундамент. В некотором смысле, сейчас теория струн помогает выплатить интеллектуальный долг Эйнштейна, подталкивая развитие новых математических направлений. Тому есть много примеров, но я приведу лишь один, который целиком отражает суть струнных открытий в математике.

В общей теории относительности выстроена прочная связь между геометрией пространства-времени и наблюдаемой физикой. Уравнения Эйнштейна, дополненные распределением материи и энергии в некоторой заданной области, определяют конечную форму пространства-времени. Различные физические условия (то есть различные конфигурации масс и энергии) приводят к различной форме пространства-времени; разные виды пространства-времени соответствуют физически различным условиям. Хотите узнать, каково это — падать в чёрную дыру? Проведите вычисления на основе пространственно-временной геометрии, открытой Карлом Шварцшильдом при изучении сферических решений уравнений Эйнштейна. А что если чёрная дыра быстро вращается? Тогда вычисляйте с помощью геометрии, открытой в 1963 году новозеландским математиком Роем Керром. Геометрия и физика в общей теории относительности подобны инь и ян.

Теория струн резко меняет подобное заключение, утверждая, что могут быть различные формы пространства-времени, приводящие, тем не менее, к физически неотличимым описаниям реальности.

Это можно осмыслить следующим образом. Начиная с античных времён и до эры современной математики, геометрические пространства рассматриваются как набор точек. Например, мячик для пинг-понга состоит из точек, составляющих его поверхность. До теории струн базовые конституэнты вещества также считались точками, точечными частицами, и такая общность основных ингредиентов говорила о согласованности между геометрией и физикой. Однако в теории струн основным объектом является не точка. Это струна. Отсюда следует, что с теорией струн должен быть связан новый тип геометрии, основанный не на точках, а на петлях. Эта новая геометрия получила название струнной геометрии.

Чтобы ощутить струнную геометрию, вообразите струну, которая движется в геометрическом пространстве. Заметим, что зачастую струна может вести себя как точечная частица, невинно скользя туда-сюда, сталкиваясь со стенками, взбираясь на горки и опускаясь в долины, и так далее. Но в определённых ситуациях струна способна на нечто новое. Представьте, что пространство (либо его часть) имеет форму цилиндра. Струна может навиться вокруг него, подобно резиновому колечку, натянутому на банку с газировкой, — такая конфигурация в принципе невозможна для точечной частицы. Такие «намотанные» струны и их «ненамотанные» коллеги прощупывают геометрическое пространство разными способами. Если цилиндр станет толще, то намотанная на него струна ответит растяжением, а ненамотанная струна, скользящая по его поверхности, ничего не заметит. Следовательно, намотанные и ненамотанные струны по-разному чувствуют проявления формы пространства, в котором они движутся.

Это наблюдение крайне интересно, потому что приводит к поразительному и совершенно неожиданному выводу. Струнные теоретики обнаружили специальные пары геометрических форм пространства, проявляющие совершенно разные свойства, когда их прощупывают с помощью ненамотанных струн. Они также проявляют совершенно разные свойства при их тестировании намотанными струнами. При этом — тут наступает кульминационный момент — при тестировании струнами обоих типов, намотанными и ненамотанными, эти пространства становятся неразличимы. То, что намотанные струны видят в одном пространстве, ненамотанные видят в другом, и наоборот, что приводит к одинаковой коллективной картине, составленной на основе полной физики теории струн.

Такие парные формы являются мощным математическим инструментом. Если в общей теории относительности вы интересуетесь тем или иным свойством, то следует выполнить математические расчёты, привлекая то единственное геометрическое пространство, возникающего в изучаемой системе. Но в теории струн существование пар физически эквивалентных геометрических форм означает, что у вас появился выбор: проводить вычисления можно с помощью любой формы. Совсем удивительно, что при гарантированно одинаковых ответах для любой формы математические выкладки по пути к ответу могут быть совершенно разными. Во многих ситуациях крайне трудные математические вычисления для одной геометрической формы становятся более чем простыми для другой. При этом понятно, что любой математический аппарат, позволяющий упростить сложные математические расчёты, имеет огромную ценность.

В течение многих лет физики и математики достаточно продуктивно пользовались этим словариком по переводу сложного в простое для продвижения вперёд в решении ряда важных математических проблем. Одна такая задача, которую я особенно люблю, посвящена подсчёту числа сфер, которые можно упаковать (некоторым специальным математическим способом) в заданное пространство Калаби — Яу. В течение долгого времени математики интересовались этим вопросом, но вычисления во всех случаях, кроме простейших, были непреодолимыми. Возьмите пространство Калаби — Яу, показанное на рис. 4.6. Если упаковывать сферу в это пространство, она может много раз намотаться на часть пространства Калаби — Яу, подобно тому как лассо может много раз намотаться на пивную бочку. Итак, сколько существует способов упаковать сферу в данное пространство, если сфера наматывается, скажем, пять раз? Услышав такой вопрос, математик должен кашлянуть, бросить мельком взгляд на свои ботинки и быстро удалиться, сославшись на неотложную встречу. Теория струн сгладила остроту вопроса. Переводя вычисления со сложного на простое пространство из пары Калаби — Яу, струнные теоретики получили ответы, которые огорошили математиков. Каково число пятикратно намотанных сфер, упакованных в пространство Калаби — Яу на рис. 4.6? 229 305 888 887 625. А если сфера намотана десять раз? 704 288 164 978 454 686 113 488 249 750. Двадцать раз? 53 126 882 649 923 577 113 917 814 483 472 714 066 922 267 923 866 451 936 000 000. Эти числа стали предвестниками целого спектра результатов, открывших новую главу в математике.{35}

Итак, независимо от того, правильно теория струн описывает физическую Вселенную или нет, она уже проявила себя в качестве мощного инструмента исследований вселенной математической.

Современный статус теории струн

Информация из предыдущих четырёх глав собрана в табл. 4.2, которая является своеобразным отчётом о состоянии теории струн. Также она включает некоторые дополнительные данные, на которых я подробно не останавливался. Эта картина описывает теорию в её развитии, которая уже добилась ошеломляющих результатов, но до сих пор лишена самого важного: экспериментального подтверждения. Она так и будет оставаться умозрительной до тех пор, пока не будет установлена убедительная связь с экспериментом или наблюдениями. Поиск такой связи является важнейшей задачей. Однако заметим, что такая ситуация характерна не только для теории струн. Любая попытка объединить гравитацию и квантовую механику выводит в область, находящуюся далеко за пределами современных возможностей экспериментальных исследований. Это неизбежно, когда ставятся такие в высшей степени амбициозные цели. Расширение границ фундаментальных знаний в поиске ответов на самые глубокие вопросы, занимающие умы человечества последние несколько тысячелетий, является выдающимся проектом, который вряд ли удастся быстро осилить. Скорее всего, не хватит даже десятилетий.

Таблица 4.2. Краткий отчёт о состоянии теории струн

Цель Цель необходима? Статус
Объединение гравитации и квантовой механики ДА. Основная цель состоит в объединении общей теории относительности и квантовой механики. ОТЛИЧНО. Многочисленные вычисления и идеи подтверждают успешное объединение общей теории относительности и квантовой механики.[27]
Объединение всех сил НЕТ. Объединение гравитации и квантовой механики не требует дальнейшего объединения с другими силами в природе. ОТЛИЧНО. Хоть такой необходимости нет, полная единая теория в течение долгого времени была целью физических исследований. Теория струн достигает этой цели, описывая все силы единым образом — их кванты являются проявлением определённых типов вибраций струн.
Учёт ключевых достижений предыдущих теорий НЕТ. В принципе, новая успешная теория не обязана быть похожей на успешные теории прошлого. ОТЛИЧНО. Хотя прогресс не обязательно должен быть поступательным, история говорит, что обычно это именно так: как правило, старые успешные теории вытекают в предельном случае из новых успешных теорий. Теория струн включает ключевые достижения предыдущих физических теорий.
Объяснение свойств частиц НЕТ. Достойная цель, достижение которой объяснит многое — но этого не требуется от успешной теории квантовой гравитации. НЕОПРЕДЕЛЁН; НЕТ ПРЕДСКАЗАНИЙ. Теория струн превосходит в этом смысле квантовую теорию поля и предлагает способ объяснения свойств частиц. Однако пока этот потенциал остаётся нераскрытым: разнообразие возможных различных форм дополнительных измерений означает разнообразие возможных наборов свойств частиц. Пока нет способа выделить из множества форм какую-то одну.
Экспериментальное подтверждение теории ДА. Это единственный способ определить, правильно ли теория описывает природу. НЕОПРЕДЕЛЁН; НЕТ ПРЕДСКАЗАНИЙ. Наиболее важный критерий; на данный момент теория струн не прошла подобную проверку. Оптимисты надеются, что эксперименты на Большом адронном коллайдере и наблюдения на спутниковых телескопах смогут приблизить теорию струн к экспериментальной проверке. Но нет никакой гарантии, что современные технологии достаточно мощны для достижения этой цели.
Устранение сингулярностей ДА. Квантовая теория гравитации должна уметь осмысленно описывать сингулярности, возникающие в ситуациях, которые могут хотя бы в принципе реализоваться физически. ОТЛИЧНО. Огромный прогресс; были устранены многие типы сингулярностей. Но сингулярности типа чёрных дыр и Большого взрыва ещё не поддаются теории струн.
Объяснение энтропии чёрных дыр ДА. Именно в вопросе об энтропии чёрных дыр общая теория относительности и квантовая механика стыкуются ключевым образом. ОТЛИЧНО. Теория струн явным образом вычислила и подтвердила формулу для энтропии, предложенную в 1970-х годах.
Вклад в математику НЕТ. Теории, правильно описывающие природу, не обязаны приводить к математическим открытиям. ОТЛИЧНО. Хотя математические открытия не являются необходимыми для подтверждения теории струн, её развитие привело к значительным достижениям, что продемонстрировало мощь математического фундамента теории.

Оценивая текущей статус теории струн, многие струнные теоретики считают, что следующий важный шаг состоит в том, чтобы придать уравнениям теории наиболее полный и точный вид. Большая часть исследований на протяжении первых двух десятилетий развития теории до середины 1990-х годов была выполнена с помощью приближённых уравнений, ибо многие полагали, что так можно выявить общие свойства теории. Однако приближённые уравнения оказались слишком грубы, чтобы дать точные предсказания. Последние открытия, к которым мы сейчас перейдём, вывели понимание на уровень, намного превосходящий тот, что был достигнут приближёнными методами. Хотя определённые предсказания сделать сложно, открылись новые перспективы. Они опираются на достижения в области удивительных возможных приложений теории, к которым относятся и новые типы параллельных миров.

Загрузка...