Говорить о научном познании Вселенной можно только в одном случае — когда для всех происходящих в ней явлений действуют единые законы развития и существования. При этом законы могут по-разному проявляться, что зависит от сложившихся наборов граничных условий, однако их достаточно полный анализ снимает якобы возникающие противоречия. В некоторых редких случаях, когда встречаются некие необъяснимые явления (условно чудеса), мы, вероятнее всего, имеем дело с собственными недостаточным объемом информации, неверной методологией проведения исследований или неверным объяснением произошедшего.
С этих позиций следует подходить к рассмотрению геологической эволюции Земли. В данном случае требуется проявить максимальную осторожность, так как наша планета пока является уникальным объектом, интерпретировать этапы развития которого мы можем лишь по косвенным признакам. Знания, полученные о других планетах Солнечной системы астрономическими (косвенными) методами, вряд ли существенно изменят наши представления в ближайшие несколько десятилетий.
Единственное, что можно отметить, это — каждая планета имеет свой путь развития (по времени и по этапам), что позволит в будущем более обоснован-но сформулировать связь геологической эволюции с появлением и развитием жизни и разума.
Происхождение и развитие планет Солнечной системы, в частности Земли, является с давних пор предметом научного познания. Одной из самых ранних научных (не рассматривая мифологические представления, где встречаются интересные, не отвергаемые современной наукой предположения, полученные, однако, не опытным путем, а путем аксиоматических предположений-догм) гипотез было предположение Рене Декарта, основанное на астрономических наблюдениях, о формировании небесных тел из протозвездной материи. Далее на основе сформулированного Исааком Ньютоном закона всемирного тяготения Кант, Гершель и Лаплас создали более точные модели эволюционирующих звездных и планетных систем; основными факторами их развития им представлялись гравитация и изменения параметров движения в пределах каждой изолированной системы. Однако образование планет и их спутников было невозможно объяснить в рамках тогдашней классической физики. Причинами сгущения материи на удаленных от звезды орбитах могли быть случайные явления — прохождение звезды через облако вещества, метеорный поток, прохождение вблизи другой звезды, провоцирующее выброс звездной материи, и т. д. Возникновение планеты типа Земли представлялось достаточно уникальным явлением, а появление на ней жизни — тем более. Открытие ядерных реакций позволило объяснить энергетику звездных процессов, но сразу возник ряд вопросов о преобразовании материи. Открытие активно взаимодействующих космических объектов (двойных, тройных звезд, сверхновых, черных карликов и т. д.), являющихся довольно распространенными в Космосе, пошатнуло наше представление об уникальности Земли и, соответственно, наш неуемный антропоцентризм.
Одной из перспективных в настоящее время представляется «новая космогоническая теория» А. Е. Хотькова, где рассматривается влияние космических факторов на формирование и физико-химические свойства планет. По этой теории, формирование элементов, образующих небесные тела типа планет, происходит при периодических вспышках звезд, последовательно сбрасывающих со своей поверхности слои вещества вместе с энергозарядом. При этом образование соответствующего химического вещества определяется последовательностью вспышек. Первыми сбрасываются водород и гелий (первый столбец таблицы Менделеева), во второй вспышке — элементы второго столбца и т. д. При этом соблюдаются основные постулаты: гетерогенность Вселенной, разновозрастность материи, усложнение в процессе развития, качественные изменения на каждом этапе, выполнение законов сохранения и преобразования материи и энергии. Становится очевидной связь внутризвездных процессов с эволюционными явлениями во Вселенной. В принятой в астрономии классификации «Главной звездной последовательности» подтверждается вышесказанное.
Таким образом, космогонические процессы полностью подчиняются критериям развития по системе сепарирующих границ (оболочек); существует даже терминологическая аналогия при проявлении последовательно все более сложных структур. Интересно, что число таких этапов составляет не более 7–9, а при дальнейшем преобразовании практически всегда реализуется новая структура со своими сепарирующими границами.
Геологическая эволюция оболочки Земли началась с того момента, когда ее внешняя поверхность охладилась до температуры +600 ÷ +800˚С. Следует отметить, что в настоящее время теория о формировании нашей планеты из сгустка материи имеет наибольшее количество теоретических и практических доказательств и может быть принята за основу.
На первом этапе внешняя оболочка Земли, вероятнее всего, состояла из достаточно однородной смеси, в основном из оливино-простых силикатов, окруженных не содержащими активных окислителей газами (типа крем-некислородиых соединений). В основе построения молекул данных веществ лежит тетраэдр, а межмолекулярные связи достаточно слабы и не имеют жестких (в смысле тенденции к построению) структур. Эти породы до настоящего времени сохранились на больших глубинах и образовали систему плит под поверхностью планеты.
Неустойчивая энергетика поверхностного слоя способствовала активному перемешиванию элементов (вулканы, землетрясения и т. д.) и внесению в атмосферу больших масс вещества, а также излучению энергии, что, соответственно, привело к охлаждению и затвердеванию поверхности планеты на достаточно небольшую глубину, ниже которой располагалась горячая пластичная подстилающая зона, в которой и происходило сложное перемещение так называемых вагнеровских плит, образующих нестационарную, твердую поверхность. Естественно, что единая система оболочки не могла сохраняться вследствие ряда внутренних и внешних силовых воздействий, что привело к образованию системы отдельных и взаимодействующих между собой плит.
На втором этапе, когда появились универсальный растворитель — вода, водяной пар (окись водорода) и газовая атмосфера изменяющегося состава со своими сложными динамическими законами, началась дифференциация минерального состава поверхности. Этому способствовало увеличение путей взаимодействия при образовании минералов: путь термического взаимодействия в зоне вулканов; растворение в водной среде; взаимодействие в газовой среде; взаимодействие при избыточной энергии электрических и магнитных полей (грозовые разряды и т. п.).
Таким образом, образование минералов обусловливалось уже набором законов взаимодействия для каждого конкретного случая. Началось образование более сложных структур из цепочек молекул или каркасных (сетчатых) структур, где узлы сеток могут занимать атомы различных элементов. Появились новые классы минералов типа пироксена или полевого шпата.
На третьем этапе геологической эволюции решающим фактором явилось взаимодействие с газоводяной оболочкой Земли. Появился третий класс минералов — осадочные породы (то есть раздробленные минералы с большой поверхностью взаимодействия, переносимые в водных растворах).
Четвертым и самым интересным для нас является этап эволюции геосферы, в котором планета пребывает до настоящего времени. Произошло образование длинных цепочек и кольцевых структур на основе атомов углерода, водорода и кислорода, то есть образование предшественников органических структур. При этом уже существующие органические структуры также включаются в геоэволюцию, так как после завершения своего цикла развития они становятся минералообразующим фактором: создаются залежи угля, нефти и др.
Время существования минерала определяется сложностью его структуры. Условной характеристикой может быть «субъективное время» — tсуб:
где N1 — количество составных элементов системы; Кс — коэффициент сложности элемента N; К3 — коэффициент законов связи элементов N; i — количество базовых (элементарных) образований, ниже которых общей структуры не существует.
При этом совершенно четко выявляются следующие закономерности:
1. Каждый последующий этап эволюции происходит во все более короткий промежуток собственного времени (от миллиардов до сотен миллионов лет).
2. Время индивидуального существования геологической формации, минерала и структуры месторождения также укорачивается по мере эволюции.
3- Структуры минералов усложняются за счет несимметричности соединений элементов, появления кольцевых и цепных (линейных и сложнозакрученных) структур, включения чужеродных соединений на основе как химического, так и физического взаимопроникновений.
Следует отметить и численный рост элементов, образующих геосистемы. Если элементарных частиц насчитываются десятки, протоминералов — сотни, сложных минералов — тысячи, то веществ на основе углерода, водорода и кислорода (так называемых органических соединений) — миллионы. Причем последние получены не без помощи органической жизни — вначале как элементы жизнедеятельности, а затем и при участии человека.
4. Существует принцип необратимости развития: вещества, втянутые в кругооборот преобразований (на поверхности Земли, в океанах и в атмосфере), при всех преобразованиях захватывают все большие пространства — по площади, глубине проникновения в первичные породы и атмосферу.
Тут совершенно четко прослеживается аналоговое подобие с развитием органической жизни — усложнение структуры, захват ниши обитания (ареала), необратимость процессов,
5. На границах минералы: ых образований появляются своеобразные оболочки, выборочно пропускающие, отбрасывающие или взаимодействующие с другими минералами. Так, металлические образования (месторождения) окружены окисленными или ощелаченными зонами; пустоты в породах, через которые перетекают перегретые растворы, выборочно (в зависимости от элемента-затравки, то есть зародыша вещества) абсорбируют растворенные элементы и т. д.
Кроме того, изменение цвета минерала на поверхности (пример: так называемый загар пустыни на поверхности кварцев, облучаемых видимым светом) свидетельствует о том, что минерал выборочно изменяет вид поглощаемой космической энергии на своей границе и пропускает внутрь себя уже преобразованную энергию. Этот процесс аналогичен работе биологических мембран у живых организмов.
Очень важным фактором является реакция минералов на внешние воздействия.
Например, месторождения металлов имеют достаточно разнородные по электрической и магнитной проводимости области, где под влиянием космических полей возникают теллурические токи, аналогичные токам, протекающим в индустриальных электросхемах. Существуют структуры с предпочтительным направлением проводимости — аналоги полупроводников. Еще более сложные системы, разнообразно преобразующие космическую энергию, расположены вблизи океанов, которые являются электромагнитами. Например, отмечен тот факт, что геометрия полярных сияний и некоторых других ионосферных полей повторяет береговую линию «земля — океан», то есть теллурические и океанские электрические поля прямо взаимодействуют с электромагнитными полями Космоса.
Другим интересным примером является обнаружение на юге Африки структуры природного «атомного реактора», работавшего в «автоматическом режиме» достаточно долгое время — несколько миллионов лет. Регулятором работы данного «реактора» была вода, поступавшая с поверхности в зону, богатую ураном. Это геологическое образование является аналогам устройства ячейки «да— нет» вычислительной структуры, осмысленной и произведенной человеком лишь на данном этапе развития цивилизации.
В настоящее время наиболее перспективным путем развития устройств преобразования электрических сигналов по определенным законам будет создание микрочипов из биоминеральных структур (например, кристаллических белков на подложках из пластполимеров), устройств на основе реакций в жидкокристаллических веществах и в веществах, преобразующих энергию (люминофорах).
Следует отметить и самое непосредственное влияние неорганического мира на органическую жизнь. Появление минералов и их распределение влияют на структуры развития: наличие или отсутствие определенных минералов может привести к изменению физического облика органической жизни (например, появлению кислородной и бескислородной форм, разных структур на суше, в поде и др.). Минералы влияют также и на темпы эволюции (в том числе и на гибель вида) посредством радиоактивного излучения, выбросов вулканов и т. д.
Недавно была отмечена связь между геологическими процессами и социальными катаклизмами в человеческих сообществах. Установлено, что за 1–2 года до землетрясения в зонах разлома щитов, образующих оболочку Земли, резко изменяются электрическое и магнитное поля, возникающие за счет пьезоэлектрического эффекта (сжатия кристаллических структур), инфразвуковых волн, изменяющейся температуры и положения вулканически активных зон; происходят вертикальные и горизонтальные сдвиги границ плит, концентрация напряжений, выделение газа из магматических зон и радона из более глубоких слоев по щелям и пустотам вблизи линий активности, изменение режимов грунтовых вод и теллурических токов. У проживающих в опасных областях людей указанное явление вызывает на подсознательном уровне чувство тревоги, неуверенности и другие психические реакции. Подобные места на Земле получили название геопатологических зон, их положение может быть определено с большой степенью вероятности. Это могут быть густонаселенные районы, крупные города, области благоприятных климатических зон, что делает просто невозможным превращение их в необитаемые. К тому же время наступления катастроф просчитывается не всегда.
В 1970-80-е годы в СССР группа независимых ученых на основе долговременных прогнозов предполагаемых сдвигов земной коры и дрейфа магнитных полюсов, обусловливающих изменения напряжений в плитах, образующих оболочку Земли, указала зоны, где в течение ближайших 10–50 лет вероятны геологические процессы (в локальных областях Молдавии, Армении, Северного Кавказа, Средне-Русской возвышенности и т. д.), способные спровоцировать проживающее там население к конфликтным ситуациям вплоть до военных столкновений. Прогнозы по другим странам, например, району Персидского залива, районам компактного проживания курдов в Турции, Иране и Ираке в периоде 1985 по 1995 г, на Балканском полуострове в период с 1990 по 2000 г., на Ближнем Востоке в самом конце века, к сожалению, не были учтены и полностью подтвердились.
В настоящее время существуют аналогичные неблагоприятные прогнозы на 2005 2010 гг. для Средне-Русской возвышенности (включая Москву) и на 2040–2050 гг. — для бассейна реки Волги. Для Европы в целом неблагоприятная ситуация ожидается не ранее 2400 года, что позволяет надеяться на предотвращение нежелательных последствий.
Результаты расчетов на 1975–1980 гг. были направлены в официальные и научные учреждения (Президиум ЦК КПСС, Президиум АН СССР, Гидрографическую службу и т. д.), частично опубликованы выводы, но… интереса не вызвали, так как «выбивались» из общей благостной картины победного шествия советской науки.
В то же время возможно изменение полярности магнитного поля Земли при дрейфе магнитных полюсов в район экватора.
Вероятнее всего, подобное земному направление геологической эволюции возможно для планет как Солнечной, так и иных планетных систем. Общими свойствами будут усложнение геологической структуры, наличие качественных изменений и ускорение развития. Наблюдение за иными планетами Солнечной системы позволит ближе подойти к решению вопроса о том, как соотношения физических характеристик планеты и ее энергетический баланс способствуют появлению жизни.
Для структур, масса которых приближается к массе Солнца и иных звезд, вероятность перехода на третий и четвертый этапы геоэволюции исчезающе мала. Соответственно отсутствует возможность появления разумной в нашем понимании жизни.