Систематизация органической жизни

В связи с важностью рассматриваемого в этом разделе вопроса отметим некоторые особенности изложения дальнейшего материала (при соблюдении подхода): нахождение наиболее общих закономерностей, связанных с другими явлениями во Вселенной; нахождение особенностей, присущих лишь органической жизни; стремление на основе сформулированных особенностей создать непротиворечивую классификацию и спрогнозировать дальнейшее развитие органической жизни.

Есть достаточно разветвленная система наук, изучающих различные аспекты существования органических систем, со сложившимися сводами терминов и методов, отличающимися от принятых в физике и математике. Поэтому во избежание многозначности (неясности) толкования в данном разделе используются по возможности общепринятые термины, а узкоспециальные подробно расшифровываются (особенно когда анализируются качественные зависимости и тенденции существования/появления/развития органических структур).

Совершенно естествен но, что органическая жизнь на Земле началась не с появления разума (хотя пути развития и того и другого аналогичны по сути), а с более общего случая возникновения сепарирующих иерархических структур.

Данные структуры позволяли производить сепарацию в случаях возможности действия более чем одного закона, то есть могли дать преимущество одному из законов. Согласно принципу «действие-противодействие», живые организмы непременно оказывают влияние на космические поля, с которыми находятся в резонансе. Следовательно, как мы уже указывали выше, органическая жизнь является космическим фактором. О количественной стороне процесса пока говорить рано, но, имея лавинообразный характер, процесс обязательно будет расширять свои границы. Этим же представлением подтверждаются предположения А. Л. Чижевского О «ноосфере», которые в свете современного развития науки требуют дальнейшей серьезной проработки.

В более узком смысле слова (в качестве классификации органической жизни и появления сознания у высших форм жизни) можно на основе аналогового моделирования предположить основное направление развития жизни на Земле и составить систематизацию организмов, подобную периодической системе элементов Менделеева.

При физико-химических законах Земли, получающей энергию от Солнца, и при существующем состоянии планеты (атмосфера, океан и пр.) энтропия должна увеличиваться. Однако этого не происходит, и тут важную роль играет именно органическая жизнь. На тепловой баланс влияют круговорот воды, радиационные процессы в земной коре и порожденные органической жизнью эндотермические процессы (образование угля, нефти, осадочных пород, живого вещества и продуктов жизнедеятельности), которые стабилизируют энергетику.

Изменения параметров поверхности Земли (ветры, облачность, похолодание/потепление и пр.), на которые влияют и органические факторы (например, массы планктона в океане, изменения площадей лесов и т. п.), воздействуют в том числе и на скорость вращения планеты, ю есть на гравитационное взаимодействие Земли с космическими объектами.

Изменение коэффициента отражения поверхности Земли (за счет поверхностей океанов, ледников, облачности и пр.) меняет структуру электромагнитного поля в Солнечной системе.

Следовательно, в основе систематизации живых организмов должна лежать аналоговая схема, но созданная не на базе каких-либо морфологических различий (ибо аналогичные признаки могут присутствовать у организмов с разным уровнем развития, например, крылья у птиц и крылья у жуков и бабочек), а с учетом представления жизни как космического фактора, формируемого полевыми структурами и формирующего полевые Структуры.

Общепринятый филогенетический подход предусматривает адаптивные, унаследованные от общего предка признаки. Однако в ряде случаев наиболее существенные признаки (например, наличие сепарирующих оболочек) к ним не относят. Также не универсальны и метаболический (построенный на законах обмена веществ), и кибернетический (функциональный) подходы. Не универсальны и их сочетания вроде модели Форрестола.

Более широким представлением может являться термодинамическая модель организма, заключенного в сепарирующую оболочку (оболочки) с центральной структурой, которая активно взаимодействует с внешними энергией и материей.

Наиболее интересным решением этого вопроса можно считать работу П. П. Кузьмина, специалиста по аналоговым вычислительным методам, системотехнике и автоматизированному управлению большими системами, рассмотревшего весь совокупный биологический мир как квазистационарную термодинамическую систему, основанную на использовании космической энергии и построенную в виде строгой иерархической структуры. К сожалению, Кузьмин не рассмотрел взаимовлияния геологической эволюции и предыстории развития материи, тем самым не предоставил себе возможности спрогнозировать направления совершенствования и предпочтительности отдельных биологических признаков в дальнейшей эволюции. Тем не менее использование его подхода позволяет «спроектировать» возможные формы жизни. Результаты при этом получаются совершенно неожиданные. Дабы не отвлекать читателя, в настоящей работе эти результаты не приводятся, однако доказывают, что биологическая эволюция предусматривает некоторое число «запасных вариантов», что в определенной степени поддерживает оптимистическую оценку грядущего.

Во взаимодействии организмов (таксонов) с окружающей средой отмечается периодичность, обусловливающая аналогичную периодичность и в структуре строения организмов.

Известны условные схемы разделения организмов на группы: растения — продуценты (фотосинтезаторы органического вещества), грибы — редуценты (разлагающие организмы) и животные — консуманты (потребители органики и неорганики). У первых двух групп потребляе-мые вещества поступают в основном осмосорбционным путем, у животных сначала идет включение внутрь организма (глотание— заключение внутрь сепарирующей оболочки), а затем — физико-химическая обработка.

Таким образом любой организм представляет собой квазистационарную систему, обеспечивающую внутреннее термодинамическое равновесие системами метаболизма и управляемую прямыми и об' ратными связями в системах управления.

С учетом реальных условий протекания жизни можно представить наиболее общую картину ее взаимодействия с окружающей средой и уже на основе параметров взаимодействия произвести классификацию живых организмов.

Основными направлениями будут:

I — внешние энергия и материя, привносимые в занятое организмом пространство;

II — внешние условия (гравитация, ареал обитания, взаимодействие с другими организмами и т. д.);

III — преобразование материи и энергии внутри организма.

Направление I. Для подавляющей массы организмов это — космическая (в частности, солнечная) энергия, поступающая сверху, и материя (пища), поступающая сверху, снизу или находящаяся в гравитационной плоскости расположения организма.

Направление II. Для наземных организмов (в том числе птиц) важнейшими определяющими условиями будут гравитация, так как перемещение «вверх-вниз» требует наибольшего расхода энергии, и температура окружающей среды. Для водных форм жизни, взвешенных в толще воды, гравитация имеет значительно меньшее значение. Взаимодействия с другими организмами (в основном в цели питания) строятся с учетом первых двух факторов — координат и температур и определяются минимизацией усилий для достижения цели.

Направление III. Преобразование материи и энергии в организмах (обмен веществ) происходит в основном за счет химических реакций на сепарирующих оболочках в наиболее универсальном растворителе — воде. При этом направление движения материи во взвесях и растворах достаточно свободно (так как гравитация не играет доминирующей роли), в частности, из-за преимущественно сферических клеточных структур и перемен положения тела животного в пространстве.

Эти составляющие для различных органических образований можно представить наглядно, например, в векторной форме для наиболее общих классов (вертикальная координата G — гравитация).

Растения наиболее четко ориентированы вверх, пищу получают из окружающей атмосферы и снизу из почвы, внутренний обмен веществ протекает преимущественно в направлении «вверх-вниз».

Фактически указанные признаки позволяют провести классификацию организмов по первичным признакам, так как направления векторов I, II и III определяют реальные условия существования и пути изменения (приспособления) организмов.

Растения преобразуют электромагнитную энергию (свет) в потенциальную химическую, животные концентрируют химическую энергию и рассеивают ее в виде теплового излучения.

Гравитация у растений компенсируется потенциальной энергией массы, у животных — кинетической энергией передвижения. Расположение векторов определяется условиями существования организмов.

Так, для растений векторы электромагнитной энергии и гравитационной составляющей коллинеарны — угол между ними α = 0˚.

Для животных, перемещающихся в основном по горизонтальным эквигравитационным плоскостям, угол α = 90˚.

Грибы обычно получают пищу снизу (осмосорбционно) против силы тяжести и α = 180˚.

У бактерий, питающихся органическими остатками, α = 90˚ (270˚).

Существует большое количество переходных форм жизни, что не позволяет в рамках данной работы построить удовлетворяющую всем формальным признакам единую диаграмму, которая характеризовала бы суммарные массы, энергию и тип организма. Но если отвлечься от времени существования индивидов, то, по расчетам биологов, массы растений и животных соизмеримы, причем изменения космического потока энергии влияют на их величину. Следует также учитывать, что часть энергии (в некоторых случаях до 10 %) находится в круговороте органических сообществ, что создает дополнительные сложности при расчете биосистемы в целом. Даже в случаях высших животных этот показатель очень различается для разных видов. Так, если мы рассмотрим соотношение энергетических затрат в форме потребления кислорода (ρ) при движении млекопитающих, то в логарифмической зависимости получим линейный, убывающий от увеличения массы (m) закон (рис. 6).

Основную часть энергии на создание органической массы растения получают от Солнца.

На границе атмосферы Земли ее величина составляет 1,78 1017 Дж/с, но с учетом потерь в области фотосинтеза (380–740 Нм) растения могут максимально использовать только часть:

[0,3÷0,4]17 Дж/с.

Преобразование энергии в организмах происходит в пределах от так называемой красной (в сторону инфракрасного излучения) границы до порога активации основного энергоносителя —адензитрифосфата (АТР ≈ 30 кДж). Темп образования АТР составляет от долей секунды до минут (у человека ≈ 2400 раз в сутки) и может служить энергетической характеристикой организма по соотношению:

I + II = KN,

где К — энергетическая характеристика (аналог КПД использования энергии) данного организма; N— количество молекул АТР, синтезируемых в одной клеточной структуре.

Для обеспечения устойчивого состояния клеток, систем и организма в целом должно выполняться достаточно устойчивое равновесие циркуляции материи и энергии в организме (квазистационарное состояние), что осуществляется за счет сепарирующих (фильтрующих) оболочек.

Так как перераспределение материи и энергии в клетке идет в основном через всю ее оболочку {радиальносимметрично), геометрическое и физическое строение оболочки и ядра определяет интенсивность и продуктивность обмена. При этом сложность строения определяется как разнообразием способов преобразования ядром материи и энергии, так и приспособляемостью оболочки к фильтрации.

Основных случаев два.

1. Устройство ядра или внутренней полости клетки определяет сложную структуру внутренней и внешней оболочек. При этом клетка способна поглощать достаточно узкий диапазон веществ, но может приспособиться к значительному разнообразию внешних воздействий.

2. Просто устроенные клетки способны усваивать широкий диапазон веществ, но очень чувствительны к изменению внешних условий.

Вышеизложенное подтверждается сравнением простейших безъядерных одноклеточных (прокариот) и одноклеточных с ядром (эвкариот) организмов по параметрам их приспособляемости к пище и среде обитания.

По мере усложнения организма (появления иерархии фильтрующе-сепарирующих оболочек) на каждом уровне происходит преобразование материи и энергии, что требует дополнительных времени и энергетических затрат. Одновременно происходи г сужение границ приспособляемости к пище и внешним условиям.

Таким образом, развитие органических структур определяется последовательно-параллельной системой противодействующих энтропии сепарирующих оболочек; по данному признаку может быть построена достаточно четкая система управляющих уровней организма безотносительно к внутривидовому и другим субъективным признакам.

В этом случае отмечается следующее.

• Уровень развития (иерархия) организма не зависит от его величины. Организмы разных ступеней развития вырабатывают аналогичные системы взаимодействия с внешними признаками (крыльями у птиц и жуков, плавниками у рыб и китов и пр.),

• Организм делится на полевые (объемные) области, окруженные сепарирующими оболочками. Следует особо отметить важнейшее свойство таких оболочек: независимо от их геометрической формы, размеров, дублирования органов в организме и прочего биологически они являются непересекающимися границами замкнутых множеств.

• Живой организм можно описать единичной топологической структурой, так как в процессе жизни такие структуры абсолютно независимы (и информационно, и генетически, и энергетически). Даже микроб в организме млекопитающего — это две независимые структуры, связанные по внешним для каждого организма параметрам (то же самое — симбиоз).

Развитие организмов идет по двум направлениям:

1) рационализация структуры, ведущая к более экономному обеспечению жизни;

2) улучшение стратегии сохранения вида и увеличение ареала обитания (экологической ниши).

Приведенная классификация позволяет выполнить количественный и качественный анализы зависимостей расхода энергии организмов от:

• среды обитания (вода, суша, воздух и пр.);

• средств строения (лапы, крылья, плавники и пр.);

• средств защиты;

• калорийности и разнообразия пищи;

• активности взаимодействия с другими организмами и т. д.

К сожалению, обилие разрозненного описательного материала и недостаточная осведомленность ученых-биологов в области форм существующих живых организмов не позволяют в настоящий момент говорить об их полной классификации. Из общего числа обитателей Мирового океана и мира насекомых найдено, описано и исследовано не более 60 %; из бактерий, грибов, микробов и вирусов — не более 20 %; из форм жизни, обитающих под землей на глубинах более 100 м, — не более 10 %. Также существует большая вероятность того, что на Земле есть неизвестные науке млекопитающие и рептилии.

Однако в первом приближении органический мир может быть разделен по сложности организации потоков энергии и материи на 8–9 (возрастающих от 0 до 8/9 по количеству сепарирующих систем) иерархических групп, состоящих из нескольких классов.

Способность организма обеспечивать себя энергией называется трофностью и определяет фазовую среду обитания организма. За единицу трофности удобнее □сего принять средний удельный поток энергии, проходящий через одну клетку одноклеточного организма, находящегося в водной среде в условиях доступа солнечной энергии.

Изменение трофности будет происходить за счет появления в организме обеспечивающих качественное изменение (дифференциацию) клеток нового типа и появления дополнительных, не имевшихся у предыдущего класса органов.

Основными функциями для определения трофности являются функции организма по добыче пищи и терморегулированию.

Например, у паразитов, не затрачивающих энергии на поиск пищи и терморегуляцию, трофность равна нулю.

Примечание. Объем настоящей работы и необходимость масштабных классификационных пояснений не позволяют представить полную таблицу. Задача автора — указать общий вид, продемонстрировать перспективность применения данной методики для прогнозирования развития и направлений исследования биологических систем в качестве частного, но закономерного пути развития Вселенной.

К первому уровню иерархии можно отнести четыре класса простейших животных: споровиков, саркодовых, жгутиковых и ресничных; из растений — одноклеточные водоросли (сине-зеленые, золотистые, диатомовые и т. п.). К этому же уровню относятся и эвглены.

Третий уровень, например, содержит плоских червей, червей-сосальщиков и ленточных червей; из растений — красные, бурые и зеленые водоросли. У животных на этом уровне появляются новые типы клеток, которые служат для формирования общего кожного покрова, кишечной полости и органов восприятий электромагнитных излучений в световом диапазоне.

Седьмой уровень включает в себя животных полухордовых и хордовых: бесчелюстных, хрящевых и костистых рыб, земноводных, пресмыкающихся, млекопитающих и птиц. Рассматривая строение этих организмов, можно построить иерархические структуры клеток новых видов — эндокринной, щитовидной и половых желез; органов внешних рецепторов (глаза, уши, нос); клеток защитных систем — перьев, волос, чешуи, костей подвижных скелетов и пр. К седьмому уровню относятся и семенные растения.

Паразиты выделены в нулевой уровень, так как местом их обитания является не внешний мир, а внутренняя среда организмов более высокой трофности.

Если по горизонтали откладывать уровень трофности (0÷9), а по вертикали — уровень иерархии (1÷[7÷8]), анализ которых выполнен по принципу построения ветвящейся структуры, аналогичному формам организмов, то можно под уровнем внутрииерархической организации принять число независимых величин (векторов) активации в системе «ядро — оболочка», то есть многозначность ответа на аналогичные раздражители.

Образуется таблица наподобие периодической таблицы элементов Менделеева, куда войдут все известные организмы. При этом часть клеток останется пустой, что, в свою очередь, поможет ученым-биологам правильно сориентироваться в поиске новых видов животных и растений, опираясь на заранее рассчитанные характеристики организма и среду его обитания.

Однако в связи со спорностью ныне существующей классификации живых организмов и недостаточной изученностью подавляющего большинства видов окончательный вариант составленной автором таблицы приводить в настоящей работе не имеет смысла, в частности для того, чтобы не сковывать инициативы других исследователей.

Некоторые виды биологических структур могут получать питательные вещества (как росянка, например) по полной программе растения — фотосинтез, всасывание через корневую систему, а также и по способу хищных животных, целенаправленно отлавливающих комаров, мух и т. д., то есть более высокоорганизованных существ. При классификации есть над чем подумать исследователям.

Следует отметить очень интересное явление — дуализм животного и растительного миров, то есть своего рода антианалогию. В этом заложен достаточно глубокий смысл: растения в основной своей массе генерируют органическое вещество, а животные на основе потреблений органики генерируют более быстрое развитие органического мира, перерабатывают и создают информацию, что в результате ведет к появлению разума как новой формы проявления материи. При сравнении некоторых параметров это подтверждается (см. таблицу).

Такой дуализм позволяет более полно использовать все существующие экологические ниши, что является определенной гарантией сохранения органической жизни в случае катастроф.

В данном случае проявляется более глубокий физический и философский смысл аналогии, то есть использование не прямого копирования (подобия), а замена направленности на противоположную (математически — смена знака вектора развития). К сожалению, еще не разработан даже понятийный аппарат зеркальной аналогии (отображенной с поворотом вектора на 180˚) и тем более этот принцип не используется на практике, хотя многие явления, признанные отрицательными, в рамках более широкого рассмотрения могут быть использованы для более глубокого познания мира.

Необходимо также отметить следующее.

• При увеличении сложности организма уменьшается влияние естественного отбора.

• При приспособлении к условиям существования преимущественное влияние на организмы оказывают безусловные и условные рефлексы, что осуществляется двумя путями, такими как:

• «коллективный разум» стаи (муравьев, термитов);

• накопление и передача опыта, то есть обучение новых поколений.

Такой подход позволяет прогнозировать поиск органических (или близких по физико-химическим характеристикам) областей Вселенной, и наоборот, учитывать влияние жизни на Вселенную.

Вершиной эволюции известной нам органической жизни пока является Homo sapiens.

Во-первых, мы можем отметить в нем наибольшую степень дифференциации, что придает человеку пластичность по отношению к внешним условиям.

Во-вторых, скорость переработки информации качественно изменила мозг и позволяет человеку не только прогнозировать грядущие события (уровень высших животных), но и строить модели еще не происходивших явлений на основе аналогового восприятия, а именно, создавать мир вторичных знаковых систем (в том числе язык и письменность), доступных практически каждому члену человеческого сообщества. Следовательно, ноосфера становится основой всего дальнейшего развития.

* * *

Одним из интереснейших вопросов биологии является репродукция молекул ДНК и РНК с матрицы спирали, в особенности то, каким образом задается сигнал о готовности репродукции.

Вероятнее всего, включенная (колеблющаяся) в ритм Вселенной, готовая к репродукции копии матрица входит в антирезонанс с основным полем. По линиям силового воздействия матрицы и копии появляются разрывные силы, и молекула отходит.

Размеры, форма, оси колебаний спиральных структур органических молекул строятся по законам формирования достаточно стационарных космических полей; исследование молекул с этой точки зрения позволит определить структуру, частоты, напряженность и, возможно, уточнить физическую природу полей, провоцирующих развитие органической жизни.

Также можно предположить, что органическая жизнь отличается от неорганической ритмами индивидуального времени и переход от одного вида существования к другому определяется изменением настроенной в резонанс с неким полем структуры. Это поле можно условно назвать «полем жизни» или «полем разума»

* * *

Одним из важнейших свойств, по которому определяется уровень развития материи, является количество уровней симметрии.

У фундаментальных (простейших) частиц преобладает симметрия с центром, совпадающим с центром частицы. При сравнении таких частиц между собой, в принципе, безразлично, с какой точки и в каком направлении производить обход для сравнения, то есть все направления фактически равноценны и без ущерба для понимания могут рассматриваться как находящиеся на одной линии (подобно одномерной структуре).

При формировании структур элементов, куда входят несколько одинаковых или разных элементарных частиц (ядро атома или атом в целом), появляются преимущественные направления, обеспечивающие двух- и трехмерные пространства симметрии, такие как кристаллическая решетка. Подобные структуры различаются возможностями разложения на составляющие элементы и обратной сборки при затрате энергии, но без преобразования информации. Например, кристалл поваренной соли может много раз растворяться и выпадать в осадок. При этом, если нет изменения внешних условий, дополнительной информации он не приобретет, то есть формально моделируется возможность обратного хода времени (знаки «+» и «-» в физических законах).

Совершенно иное явление — органическая жизнь.

Даже в самых простых формах уровень симметрии не обеспечивает многократного воспроизведения одной и той же структуры при ее количественном или качественном изменении. Способность некоторых вирусов переходить в кристаллические формы не противоречит данному случаю, так как при возвращении к активной деятельности вирус способен мутировать и в зависимости от конкретных условий развиваться иными, чем ранее, способами, то есть получать, использовать и накапливать дополнительную информацию, но только в состоянии биологически активной жизни. Преобразование кристаллических структур ведет просто к разрушению вируса.

Для органической жизни характерна зеркальная симметрия на самой количественно высокой ступени организации, но и тут она не является полной и обеспечивает лишь дублирование наиболее важных органов. На клеточном уровне такая симметрия отсутствует (вероятнее всего, в клетках появляются четырехуровневые и более симметричные структуры, то есть имеющие несколько плоскостей симметрии; математический аппарат описания подобных структур еще не разработан). Такая система интересна тем, что создающая эти структуры информация несимметрична относительно процесса «сборка-разборка», даже несмотря на то, что для некоторых живых организмов она существует, то есть позволяет отращивать утраченные части или органы, но они при этом отличаются от первоначальных.

Таким образом, если в неорганическом мире могут происходить симметричные процессы «сборки — разборки» без качественного изменения, то в органической жизни господствует закон подобия и аналогового усложняющегося развития. Только таким образом может происходить прогрессивное развитие. Жизненный цикл любого организма всегда заканчивается необратимым распадом. Если же, с нашей точки зрения, из останков организма вырастает точно такой же организм, то это есть только внешнее подобие (аналоговое моделирование), повторяющее не материальное содержание, а закон построения системы. Мерность систем симметрии начинается с определения сложности строения сепарирующих оболочек на уровне клеток и органов. В настоящее время можно говорить о не менее чем 7–8 уровнях такого сепарирования у наиболее развитых организмов. Вероятно, это примерно соответствует количеству уровней симметрии и их ярусности.

То, что усложняющиеся биологические структуры появляются, сохраняются и численно растут, кажется про-тиворечащим здравому смыслу и рационалистическому представлению. Вероятно, камень у дороги просуществует, почти не изменяясь, более долгий срок, чем человек, по этой дороге идущий, ведь в каждый миг в человеке происходят изменяющие его процессы, неизбежно приводящие к достаточно близкому (по сравнению с камнем) финалу Однако, если смотреть в достаточно отдаленное будущее, то у камня существует только одна перспектива — разрушение и превращение во что-то, не являющееся ступенью развития данной морфологической структуры. Биологическая структура (человек) является звеном (этапом) непрерывно развивающейся и совершенствующейся биологической цепочки, и при его дальнейшем развитии тот же камень может послужить в качестве материала биологической эволюции.

Информация (в виде законов природы), заложенная при создании камня, им не используется, и его разрушение никакого активного противодействия не имеет. Любая биологическая структура тем и отличается, что имеет запас информации (типовые реакции на изменение внешних условий) и механизмы для активного противодействия ее разрушения, при этом чем сложнее биосистема, тем изощреннее и эффективнее осуществляется защита. Время работы такого механизма составляет от миллионов лет (декристаллизация вирусов) до средней продолжительности биоформ (от часов до сотен лет), обеспечивающей развитие, появление потомства и передачу информации следующему поколению (для лучшего приспособления к изменяющемуся окружающему миру).

Финал «жизни» камня — распад и рассеяние информации, тогда как, например, род человеческий, эволюционируя, увеличивает ареал своего расселения и соответственно зону разума, накапливая и используя информацию об окружающем мире.

Рассмотрев приведенные в настоящем разделе аспекты биологической эволюции, можно сделать несколько наиболее общих выводов с учетом результатов исследований в области биологии за последние десятилетия.

1. Биологическая эволюция имеет свои достаточно четкие границы развития, когда появление очередной сепарирующей границы не ведет к качественному изменению потока энергии или информации, способствующему увеличению возможностей выживаемости вида. Упрощенно это сводится к тому, что энергетические затраты на преодоление новой сепарирующей оболочки оказываются большими, чем прирост (или изменение) преобразованной ею энергии (или материи/вещества), то есть уменьшают энергетические запасы (возможности) организма и являются ограничивающим дальнейшее усложнение фактором.

Сохраняющиеся в процессе эволюции рудиментарные элементы либо не участвуют в активной жизни каждого конкретного организма, либо при определенных условиях приносят вред. Примером «отсечения» таких элементов (и соответствующих сепарирующих границ) является развитие зародыша у млекопитающих, когда формирующиеся на определенном этапе структуры — хвост и прочее — не реализуются.

Приведенный в п. 1 закон имеет универсальное значение и проявляется в любом эволюционном процессе. Вероятно, его простота и очевидность как раз и препятствуют его осмысленному применению по принципу «И так все ясно!» в биологических и социальных задачах. Например, при разработке моделей государственного устройства чиновничьи иерархии всеми силами стараются вводить как можно больше иерархически выстроенных контролирующих структур, фактически являющихся своеобразными сепарирующими границами непересе-кающихся множеств. Преодоление данных границ связано с немалыми энергетическими (для этого вида деятельности) потерями — времени, сил, денег на взятки и др. Банкротство контролирующих и подконтрольных структур является аналогом вымирания биологического вида.

В реализации технических задач и теоретических разработках технических систем управления указанный закон в основном выполняется, однако не всегда однозначно, ибо реализация любой технической задачи должна начинаться с анализа энергетическо-информационной цепочки и сравнения количества сепарирующих границ с энергией, нужной для их преодоления, для прототипа и разрабатываемого устройства.

2. Интересным вопросом является лабильность (вариабельность) биологического разумного вида с точки зрения его выживания и развития.

Результаты исследований хромосомных наборов собак, крыс и мышей показывают, что вид Homo sapiens сильно уступает им в возможностях изменений, имея меньше хромосом, чем перечисленные животные. Дополнительные наборы хромосом позволили человеку в течение нескольких столетий вывести принципиально новые породы собак; крысам и мышам эти наборы помогают успешно противостоять любым попыткам их уничтожить и быстро приспосабливаться к изменяющимся условиям.

Разумным существам возможности быстрой адаптации вряд ли нужны и полезны. В стратегическом плане задачей разума является не приспособление к окружающему миру, а его разумное преобразование, что как раз требует определенной стабильности.

Создание «химер» на базе человеческих хромосом принципиально возможно, однако главной опасностью в этом случае станет нарушение динамического взаимодействия космического фонового ПОЛЯ (сложившейся СИстемы полей Вселенной) и искусственной генетической структуры, в которой может возникнуть система ценностей, противоречащая тенденциям развития человечества.

Вообще с тенденциями развития цивилизаций не все так просто, как это казалось в прошлых веках. Возможность заставить обезьян на основе учебных программ, составленных людьми, двигаться по пути приобщения к цивилизации и развитию разума вряд ли реальна. Здесь могут быть лишь генетические достижения, но не более чем создание «химер», не имеющих внутреннего стимула к самосовершенствованию.

Признание «разумности» дельфинов, особенно после ряда публикаций Дж. Лилли, является выдачей желаемого за действительное. Если рассматривать в том же стратегическом долговременном плане развитие разума, то «цивилизация дельфинов», сколь сложна она ни была бы, имеет очень жесткие пространственные ограничения. Даже гипотетически не представляется возможным расширить разум до объемов, занимаемых океаном, так как должны оставаться среда обитания и цепи питания, масса которых обязана в тысячи раз превосходить осознавшую себя часть. Освоение пространства вне океана (земля, воздух, космос) потребует выхода водной цивилизации на сушу (а там уже есть человек), создания технических средств неизмеримо более сложных, чем для сухопутных млекопитающих, и преодоления препятствий, которые мы себе не можем даже представить. К тому же информационная система дельфина построена на принципах отображения окружающей среды в пространственно-качественных представлениях и отработки реакций на воздействия, а не на приспособлении окружающей среды к потребностям индивида. Сообщество дельфинов можно условно назвать «пассивно-самодостаточным», у него нет объективных причин для качественного изменения.

Здесь напрашивается интересное сопоставление: с одной стороны, очень подвижные генетические структуры типа мышей, крыс, собак, с другой — необыкновенно специализированные, приспособленные к очень узкой нише существования дельфины. Человек находится между этими крайностями, что, вероятно, и обеспечивает оптимальность его развития.

Загрузка...